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1. Introduction

Traditional decision-making approaches based on classical set theory often strug-
gle to manage incomplete, vague, or inconsistent information. To address such
limitations, Zadeh [30] introduced fuzzy sets (FSs), which generalize classical sets
to better accommodate imprecision and ambiguity. Since their introduction, FS
theory has been widely employed across domains such as Science, Engineering, and
Management. Researchers including Dubois and Prade [6], Rosenfeld [20], Adlass-
nig [1], Gerla and Volpe [8], Liu [14], Lee, Pedrycz, Sohn [12], and others have
developed numerous distance measures for fuzzy objects and applied them in fields
such as object recognition and medical diagnosis.

Building upon FSs, Atanassov [4] introduced intuitionistic fuzzy sets (IFSs),
which assign to each element a membership degree (MD) and a non-membership
degree (NMD), constrained such that their sum lies within the unit interval. This
formulation spurred the development of various distance measures for IFSs. For
example, Szmidt and Kacprzyk [23] proposed Euclidean and Hamming-based met-
rics, while Vlachos and Sergiadis [26] introduced entropy-based distances. Wang
and Xin [27] further advanced this field with an axiomatic definition and a novel
distance measure applied to pattern recognition.

Yager [28] later introduced Pythagorean fuzzy sets (PFSs) as an extension of
IFSs, where the sum of the squares of MD and NMDmust remain within [0, 1]. This
was followed by the development of q-rung orthopair fuzzy sets (q-ROFSs) [29], in
which the qth power of MD and NMD lies within the same interval, allowing for
greater flexibility in handling uncertainty. Fermatean fuzzy sets (FFSs), proposed
by Senapati and Yager [21], represent a special case of q-ROFSs for q = 3. In
recent years, scholars such as Aydın [5], Kirişci [11], Ashraf et al. [3], Peng et
al. [16, 17], Zeng et al. [31], Hussian and Yang [9], and Ejegwa et al. [7] have
introduced additional distance measures for PFSs, FFSs, and q-ROFSs, applying
them to areas such as image processing, medical diagnostics, and decision-making.

One limitation common to these generalizations is their symmetric treatment
of MD and NMD, which restricts flexibility in decision-making scenarios that re-
quire different weights or powers for MD and NMD. To address this, Al-Shami [2]
proposed the concept of (m,n)-fuzzy sets ((m,n)-FSs), where the sum of the mth

power of MD and the nth power of NMD must lie within [0, 1]. This model encom-
passes all n-ROFSs as a special case and proves more adaptable in multi-attribute
decision-making (MADM) problems. Thakur et al. [25] introduced Hamming and
Euclidean distance measures for (m,n)-FSs. Rajput, Shukla, and Thakur [19] de-
veloped cosine and cotangent similarity measures, which they applied to plant leaf
disease classification. Additional metrics were proposed by Shivdas and John [24],
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who used t-norms in the context of lung disease diagnosis, and by Rahim et al.
[18], who defined cosine-based distance functions.

This paper presents two novel distance measures for (m,n)-FSs, referred to as
the (m,n)-fuzzy logarithmic distance and the (m,n)-fuzzy tangent inverse distance.
Their properties are explored and validated through applications in construction
material classification and plant leaf disease identification.

2. Preliminaries

Definition 2.1. [10, 2] An structure G = {< p, ϱG (p), σG (p) >: p ∈ P} where,
ϱG : P → [0, 1] and σG : P → [0, 1] denotes the degree of membership and the degree
of nonmembership of each p ∈ P to G is called a (m,n)- fuzzy set ((m,n)-FS) where
m,n ∈ N in P if 0 ≤ ϱmG (p) + σn

G (p) ≤ 1, ∀ p ∈ P.
For simplicity an (m,n)-FS G = {< p, ϱG (p), σG (p) >: p ∈ P} will be denoted

by (ϱG , σG ) and Fn
m(P) refers the family of all (m,n)-FSs over P.

Remark 2.2. [2] Definition 2.1 can be reduced to the definition of :

(i) q-ROFSs if m=n=q.

(ii) FFS if m=n=3.

(iii) PFS if m=n=2.

(iv) IFS if m=n=1.

(v) FS if m=1,n=0 .

Definition 2.3. [10] Let G ,G1,G2 ∈ Fn
m(P). Then the subset, equality, union and

intersection over Fn
m(P) are defined as follow:

(a) G1 ⋐ G2 ⇔ ϱG1 ≤ ϱG2 and σG1 ≥ σG2.

(b) G1 = G2 ⇔ ϱG1 = ϱG2 and σG1 = σG2.

(c) G1 ⋓ G2 = (max{ϱG1 , ϱG2}, min{σG1 , σG2}).

(d) G1 ⋒ G2 = (min{ϱG1 , ϱG2}, max{σG2 , σG2}).

(e) G c = (σG , ϱG ).

Definition 2.4. [25] Let G ∈ Fn
m(P) and p ∈ P. Then the degree of indeterminacy

of p to G is defined as πG (p) = (1− ϱmG (p)− σn
G (p))

2
m+n .
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3. Novel distance measures for (m,n)-FSs
Recently, Thakur and his associates [25] proposed the axiomatic definition of

distance measure for ((m,n)-FSs as follows:

Definition 3.1. [25] Let P = {p1, p2, .....pr.} be an universe of discourse and
G1,G2,G3 ∈ Fn

m(P), the distance function d : Fn
m(P)×Fn

m(P) → [0, 1] is defined as:

(i) 0 ≤ d(G1,G2) ≤ 1 (boundedenes).

(ii) d(G1,G2) = 0 ⇔ G1 = G2(separability).

(iii) d(G1,G2) = d(G2,G1)(symmetric).

(iv) d(G1,G2) ≤ d(G2,G3) and d(G2,G3) ≤ d(G1,G3) if G1 ⋐ G2 ⋐ G3(inequality).

The (m,n)-fuzzy normalize Hamming distance and the (m,n)-fuzzy normalize
Euclidean distance for(m,n)-FSs are proposed by Thakur et.al. [25].

Definition 3.2. [25] Let P = {p1, p2, .....pr.} and G1,G2 ∈ Fn
m(P). The (m,n)-

fuzzy normalize Hamming distance dnHFn
m

and the (m,n)-fuzzy normalized Euclidean

distance dnEFn
m
between G1 and G2 are respectively defined as follows:

dnHFn
m
(G1,G2) =

1

2r

r∑
1

 |ϱG1(pi)− ϱG2(pi)|
+|σG1(pi)− σG2(pi)|
+|πG1(pi)− πG2(pi)|

 . (1)

dnEFn
m
(G1,G2) =

√√√√√ 1

2r

r∑
1

 (ϱG1(pi)− ϱG2(pi))
2

+(σG1(pi)− σG2(pi))
2

+(πG1(pi)− πG2(pi))
2

. (2)

In this section we proposed two new (m,n)-fuzzy distance measures for (m,n)-
FSs and present their properties.

3.1. Logarithmic distance measure for (m,n)-FSs

Definition 3.3. Let P = {p1, p2, .....pr.} and G1,G2 ∈ Fn
m(P). The (m,n)- fuzzy

logarithmic distance dLFn
m
between G1 and G2 is defined as follows:

dLFn
m
(G1,G2) =

1

3rln2

r∑
1

ln

 (1 + |ϱmG1
(pi)− ϱmG2

(pi)|)
(1 + |σn

G1
(pi)− σn

G2
(pi)|)

(1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)|)

 . (3)
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Theorem 3.4. The (m,n)- fuzzy logarithmic distance measure dLFn
m
between two(m,n)-

FSs defined in definition 3.3 is a valid distance measure.
Proof. We will show that the (m,n)- fuzzy logarithmic distance measure dLFn

m
sat-

isfies conditions (i)-(iv) of definition 3.1.
(i) Since 0 ≤ |ϱmG1

(pi) − ϱmG2
(pi)| ≤ 1, we have 1 ≤ (1 + |ϱmG1

(pi) − ϱmG2
(pi)|) ≤ 2.

Similarly 1 ≤ (1+ |σn
G1
(pi)−σn

G2
(pi)|) ≤ 2, and 1 ≤ (1+ |π

m+n
2

G1
(pi)−π

m+n
2

G2
(pi)|) ≤ 2.

Therefore,

1 ≤

 (1 + |ϱmG1
(pi)− ϱmG2

(pi)|)
(1 + |σn

G1
(pi)− σn

G2
(pi)|)

(1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)|)

 ≤ 8

⇒ 0 ≤ ln

 (1 + |ϱmG1
(pi)− ϱmG2

(pi)|)
(1 + |σn

G1
(pi)− σn

G2
(pi)|)

(1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)|)

 ≤ 3ln2

⇒ 0 ≤ 1

3rln2

r∑
1

ln

 (1 + |ϱmG1
(pi)− ϱmG2

(pi)|)
(1 + |σn

G1
(pi)− σn

G2
(pi)|)

(1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)|)

 ≤ 1.

Thus 0 ≤ dLFn
m
(G1,G2) ≤ 1.

(ii)If G1 = G2. Then ϱ
m
G1
(pi) = ϱmG2

(pi), σ
n
G1
(pi) = σn

G2
(pi) and π

m+n
2

G1
(pi) = π

m+n
2

G2
(pi).

It follows that |ϱmG1
(pi) − ϱmG2

(pi)| = 0, |σn
G1
(pi) − σn

G2
(pi)| = 0 and |π

m+n
2

G1
(pi) −

π
m+n

2

G2
(pi)| = 0. And so,1 + |ϱmG1

(pi) − ϱmG2
(pi)| = 1,1 + |σn

G1
(pi) − σn

G2
(pi)| = 1 and

1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)| = 1. Therefore

dLFn
m
(G1,G2) =

1

3rln2

r∑
1

ln

 (1 + |ϱmG1
(pi)− ϱmG2

(pi)|)
(1 + |σn

G1
(pi)− σn

G2
(pi)|)

(1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)|)


=

1

3rln2

r∑
1

ln1

= 0.
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Conversely, if dLFn
m
(G1,G2) = 0 , then we have

1

3rln2

r∑
1

ln

 (1 + |ϱmG1
(pi)− ϱmG2

(pi)|)
(1 + |σn

G1
(pi)− σn

G2
(pi)|)

(1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)|)

 = 0

⇒ 1 + |ϱmG1
(pi)− ϱmG2

(pi)|) = 1, (1 + |σn
G1
(pi)− σn

G2
(pi)|)

= 1, (1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)|) = 1.

⇒ ϱmG1
(pi) = ϱmG2

(pi), σ
n
G1
(pi) = σn

G2
(pi), π

m+n
2

G1
(pi) = π

m+n
2

G2
(pi)

⇒ ϱG1(pi) = ϱG2(pi), σG1(pi) = σG2(pi).

⇒ G1 = G2.

(iii) Easy and left to the readers.
(iv) If G1 ⋐ G2 ⋐ G3, then ∀pi ∈ P we have 0 ≤ ϱG1(pi) ≤ ϱG2(pi) ≤ ϱG3(pi) ≤ 1
and 1 ≥ σG1(pi) ≥ σG2(pi) ≥ σG3(pi) ≥ 0. It implies that 0 ≤ ϱmG1

(pi) ≤ ϱmG2
(pi) ≤

ϱmG3
(pi) ≤ 1 and 1 ≥ σn

G1
(pi) ≥ σn

G2
(pi) ≥ σn

G3
(pi) ≥ 0. Thus we have

|ϱmG1
(pi)− ϱmG2

(pi)| ≤ |ϱmG1
(pi)− ϱmG3

(pi)|,
|ϱmG2

(pi)− ϱmG3
(pi)| ≤ |ϱmG1

(pi)− ϱmG3
(pi)|,

|σn
G1
(pi)− σn

G2
(pi)| ≤ |σn

G1
(pi)− σn

G3
(pi)|,

|σn
G2
(pi)− σn

G3
(pi)| ≤ |σn

G1
(pi)− σn

G3
(pi)|,

|π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)| ≤ |π

m+n
2

G1
(pi)− π

m+n
2

G3
(pi)|,

|π
m+n

2

G2
(pi)− π

m+n
2

G3
(pi)| ≤ |π

m+n
2

G1
(pi)− π

m+n
2

G3
(pi)|.

Therefore we have

dLFn
m
(G1,G2) =

1

3rln2

r∑
1

ln

 (1 + |ϱmG1
(pi)− ϱmG2

(pi)|)
(1 + |σn

G1
(pi)− σn

G2
(pi)|)

(1 + |π
m+n

2

G1
(pi)− π

m+n
2

G2
(pi)|)


≤ 1

3rln2

r∑
1

ln

 (1 + |ϱmG1
(pi)− ϱmG3

(pi)|)
(1 + |σn

G1
(pi)− σn

G3
(pi)|)

(1 + |π
m+n

2

G1
(pi)− π

m+n
2

G3
(pi)|)


= dLFn

m
(G1,G3).

Similarly, dLFn
m
(G2,G3) ≤ dLFn

m
(G1,G3).

Theorem 3.5. Let G1,G2 ∈ Fn
m(P). Then:
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(i) dLFn
m
(G c

1 ,G
c
2 ) = dLFn

m
(G1,G2).

(ii) dLFn
m
(G1,G c

2 ) = dLFn
m
(G c

1 ,G2).

(iii) dLFn
m
(G1,G c

1 ) = 0 ⇔ ϱG1(pi) = σG1(pi), ∀1 ≤ i ≤ r.

Proof. Follows from definitions 3.3 and 2.3.

3.2. Tangent inverse distance measure for (m,n)-FSs

Definition 3.6. Let P = {p1, p2, .....pr.} and G1,G2 ∈ Fn
m(P). The (m,n)- fuzzy

tangent inverse distance dTI
Fn
m
between G1 and G2 is defined as follows:

dTI
Fn
m
(G1,G2) =

1

3r

r∑
1

 |tan−1ϱmG1
(pi)− tan−1ϱmG2

(pi)|
+|tan−1σn

G1
(pi)− tan−1σn

G2
(pi)|

+|tan−1π
m+n

2

G1
(pi)− tan−1π

m+n
2

G2
(pi)|

 . (4)

Theorem 3.7. The (m,n)- fuzzy tan inverse distance measure dTI
Fn
m
between two(m,n)-

FSs defined in definition 3.6 is a valid distance measure.

Theorem 3.8. Let G1,G2 ∈ Fn
m(P). Then:

(i) dTI
Fn
m
(G c

1 ,G
c
2 ) = dTI

Fn
m
(G1,G2).

(ii) dTI
Fn
m
(G1,G c

2 ) = dTI
Fn
m
(G c

1 ,G2).

(iii) dTI
Fn
m
(G1,G c

1 ) = 0 ⇔ ϱG1(pi) = σG1(pi), ∀1 ≤ i ≤ r.

Proof. Follows from definitions 3.6 and 2.3.

4. Applications of (m,n)-Fuzzy Distance Measures in Pattern Recogni-
tion

In pattern recognition, determining the degree of similarity or difference be-
tween data objects plays a pivotal role. Classical approaches often struggle to cope
with ambiguous or imprecise data. To address this, (m,n)-fuzzy distance measures
have been proposed as a flexible alternative that incorporates both membership
and non-membership information.

These measures are particularly advantageous in fuzzy classification scenarios,
where patterns may not have clearly defined boundaries. For example, in tasks such
as face recognition or medical image classification, overlapping features between
categories are common. Using (m,n)-fuzzy distances allows for a graded comparison
of pattern features, making classification decisions more robust and informed. The
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integration of (m,n)-fuzzy distances into clustering algorithms, such as fuzzy c-
means or its variants, has shown to enhance grouping effectiveness. These measures
provide finer granularity when calculating similarity, which is essential in datasets
with overlapping or noisy attributes.

Additionally, (m,n)-fuzzy distance measures have practical utility in other do-
mains such as document classification, gesture recognition, and fault detection,
where uncertain and vague data must be handled accurately. Their capability to
model uncertainty makes them a suitable tool for real-world recognition systems.

Example 4.1. (Categorization of Structural Substances) Assume there are
five pre-characterized construction substances represented via (4, 6)-fuzzy sets, de-
noted as Aj for j = 1, . . . , 5. These materials are structured across a descriptive
attribute set Ω = {ω1, ω2, ω3, ω4, ω5}, as shown in Table 1. Additionally, we are
given a test sample A that needs to be identified with one of the known material
classes.

From Table 2, we observe that among all calculated (m,n)-fuzzy distance val-
ues, the smallest is consistently found between A2 and A across all four distinct
measures. This indicates high resemblance, graphically substantiated in Figure 1,
where A2 yields the lowest dissimilarity scores. Therefore, A can be logically clas-
sified as part of the same group as A2, validating the competence of the fuzzy
distance methodology for accurate material classification.

Table 1: (4, 6)-fuzzy representation of material features

Attribute A1 A2 A3 A4 A5 A
ω1 (0.5, 0.8) (0.6, 0.7) (0.3, 0.4) (0.5, 0.3) (0.4, 0.7) (0.7, 0.6)
ω2 (0.6, 0.4) (0.7, 0.3) (0.7, 0.5) (0.4, 0.4) (0.2, 0.6) (0.8, 0.2)
ω3 (0.8, 0.3) (0.6, 0.2) (0.9, 0.3) (0.6, 0.2) (0.5, 0.4) (0.4, 0.3)
ω4 (0.6, 0.9) (0.8, 0.6) (0.4, 0.8) (0.4, 0.7) (0.5, 0.3) (0.7, 0.8)
ω5 (0.1, 0.4) (0.3, 0.5) (0.2, 0.3) (0.2, 0.6) (0.4, 0.2) (0.4, 0.2)

Table 2: Computed dissimilarities between known and unknown samples

Distance Metric (A1,A ) (A2,A ) (A3,A ) (A4,A ) (A5,A )
dnHFn

m
0.2177 0.1551 0.2643 0.2618 0.3058

dnEFn
m

0.2010 0.1445 0.2262 0.2536 0.2423

dLFn
m

0.2002 0.1111 0.2137 0.1911 0.1858

dTI
Fn
m

0.1525 0.0816 0.1647 0.1450 0.1421
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Figure 1: Visual comparison of dissimilarities for construction materials

Example 4.2. (Identification of Plant Leaf Conditions) Plant health is
critical to both natural and agricultural systems, yet leaf-related diseases can
disrupt productivity significantly. This illustration utilizes fuzzy distance eval-
uation to determine the likely disease based on observed symptoms. Let Ψ =
{ψ1, ψ2, ψ3, ψ4, ψ5} be a set of observed symptoms: ψ1 = Dark brown leaf, ψ2 =
Brown leaf, ψ3 = Yellow leaf, ψ4 = Patches, and ψ5 = Spots. Each disease cat-
egory is modeled by (6, 10)-refined orthopair fuzzy sets as Ak for k = 1, . . . , 5,
corresponding to conditions such as Gray Leaf Spot, Bacterial Canker, etc., with
membership data in Table 3. A new unknown symptom profile A is tested for di-
agnosis. Table 4 outlines the resulting distances from A to each known condition.
It is evident that A2 exhibits the least deviation under all four distance formulas,
as also depicted in Figure 2. Thus, A can be inferred to match Bacterial Canker
most closely, verifying the reliability of the technique.

Table 3: (6, 10)-fuzzy symptom for leaf disease diagnosis

Symptom A1 A2 A3 A4 A5 A
ψ1 (0.45, 0.95) (0.25, 0.75) (0.95, 0.55) (0.85, 0.45) (0.15, 0.95) (0.35, 0.70)
ψ2 (0.95, 0.35) (0.85, 0.25) (0.35, 0.85) (0.65, 0.45) (0.25, 0.65) (0.80, 0.30)
ψ3 (0.95, 0.65) (0.75, 0.35) (0.95, 0.45) (0.15, 0.95) (0.95, 0.15) (0.70, 0.40)
ψ4 (0.45, 0.65) (0.15, 0.95) (0.85, 0.15) (0.45, 0.75) (0.95, 0.55) (0.20, 0.90)
ψ5 (0.55, 0.95) (0.15, 0.85) (0.55, 0.35) (0.95, 0.15) (0.55, 0.95) (0.25, 0.80)
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Table 4: (m,n)-Fuzzy distances between symptom profile and diseases

Distance Metric (A1,A ) (A2,A ) (A3,A ) (A4,A ) (A5,A )
dnHFn

m
0.2193 0.0643 0.4737 0.4442 0.3935

dnEFn
m

0.2316 0.0668 0.4387 0.4141 0.3793

dLFn
m

0.3939 0.0970 0.3268 0.3477 0.4188

dTI
Fn
m

0.3114 0.0716 0.2555 0.2711 0.3305

Figure 2: Graph showing (m,n)-fuzzy distances for disease identification

5. Conclusion

The (m,n)-FS is a highly effective generalization of fuzzy structures that is
well-suited for addressing uncertainty and imprecision in decision-making problems.
With its m and n parameters, the (m,n)-FS is capable of accommodating a broader
range of information than IFS, PFS, FFS, and n-ROFS for n ≥ 3. This paper
presents logarithmic and tangent inverse distance measures, for (m,n)-FSs. The
distance measures established for (m,n)-FS information include those for IFS, PFS,
FFS and n-ROFS information as special cases. To assess their effectiveness, we
apply our proposed distance measures to and building material problems and plant
leaf disease classification compare them with existing distance measure for (m,n)-
FSs. Graphical representations are provided to represent the accuracy, reliability
and effectiveness of the established measures. Our findings indicate that our defined
distance measures are more appropriate and generalizable for real-world problems
than existing measures.
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