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Mathematical and Physical Science Foundation
4200 Slagelse, DENMARK

E-mail : saeidjafari@topositus.com, pigazzini@topositus.com

*Institute of Experimental Physics,
Slovak Academy of Sciences,

Watsonova 47, 043 53 Košice, SLOVAK REPUBLIC
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1. Preliminaries
The notion of R0 topological space is introduced by Shanin [16] in 1943. Davis

[4] rediscovered it independently and studied some properties of this weak sepa-
ration axiom. Several topologists (e. g. [8], [9], [10], [13]) further investigated
properties of R0 topological spaces and many interesting results have been ob-
tained in various contexts. In the same paper, Davis also introduced the notion of
R1 topological space which are independent of both T0 and T1 but strictly weaker
than T2.

Throughout the paper (X, τ) (or simply X) will always denote a topological
space. For a subset A of X, the closure and interior of A in X are denoted by
Cl(A) and Int(A), respectively. Recall that a topological space (X, τ) is said to be
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an R0 space [4] if every open set contains the closure of each of its singletons. A
topological space (X, τ) is said to be R1 [4] if for x, y in X with Cl({x}) ̸= Cl({y}),
there exist disjoint open sets U and V such that Cl({x}) is a subset of U and
Cl({y}) is a subset of V. For the interest of the reader it should be mentioned that
regularity implies R1 and R1 implies R0.

A topological space (X, τ) is said to be Kolmogorov or T0 if for each pair of
two distinct points, there exists an open set containing one of them but not the
other. A topological space (X, τ) is said to be T1 if for each pair of distinct points
x and y of X, there exists a pair of open sets one containing x but not y and the
other containing y but not x. A topological space (X, τ) is said to be Hausdorff
or T2 if for each pair of distinct points x and y of X, there exists a pair of disjoint
open sets such that one containing x and the other containing y. A subset G of
a topological space (X, τ) is called a difference set (briefly D-set) [17] if there are
two open sets U and V of X such that U ̸= X and G = U \V . A topological space
(X, τ) is said to be D0 if for any distinct pair of points x and y of X, there exists
a D-set of X containing x but not y or a D-set of X containing y but not x. A
topological space (X, τ) is said to be countably compact if every countable open
cover of X admits a finite subcover. Recall that a topological space is Alexandroff
[1] if arbitrary intersection of open sets are open.

In what follows, we refer the interested reader to [12] for the basic definitions
and notations. Recall that a representation of a C∗-algebra A consists of a Hilbert
space H and a ⋆-morphism π : A −→ B(H), where B(H)is the C∗-algebra of
bounded operators on H. A subspace I of a C∗-algebra A is called a primitive
ideal if A= ker(π) for some irreducible representation (H, π) of A. The set of all
primitive ideals of a C⋆-algebra A plays a very important role in noncommutative
spaces and its relation to particle physics. We denote this set by Prim A. As Landi
[12] mentions, for a noncommutative C∗-algebra, there is more than one candidate
for the analogue of the topological space X:
1. The structure space of A or the space of all unitary equivalence classes of irre-
ducuble ∗-representations and
2. The primitive spectrum ofA or the space of kernels of irreducible ∗-representations
which is denoted by Prim A. Observe that any element of Prim A is a two-sided
∗-ideal of A.
It should be noticed that for a commutative C∗-algebra, 1 and 2 are the same
but this is not true for a general C∗-algebra A. Natural topologies can be defined
on spaces of 1 and 2. But here we are interested in the Jacobsen (or hull-kernel)
topology defined on Prim A by means of closure operators. The interested reader
may refer to [5] for basic properties of Prim A.
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Proposition 1.1. [5] The space Prim A is a T0-space.

Davis in [4] proved that T1-spaces are precisely those which are both R0 and
T0. For the convenience of the reader, we bring the meaning of Hasse diagram from
[12]:

A pictorial representation of the topology of a poset is obtained by construct-
ing the associated Hasse diagram: one arranges the points of the poset at different
levels and connects them by using the following rules :
1. if x ≺ y, then x is at a lower level than y;
2. if x ≺ y and there is no z such that x ≺ z ≺ y, then x is at the level immediately
below y and these two points are connected by a link. Now we have the following
result whose proof is due to Professor Giovanni Landi in a private communication
to the first author for more than 15 years ago. He referred to a concrete example in
his book [12], i.e. the second Hasse diagram, the singleton x1 is open but its closure
is made of the points {x1, x3, x4}. This shows that Prim A is not an R0-space.

Proposition 1.2. The space Prim A is not an R0-space.

Remark 1.3. Since T1-spaces are precisely those which are both R0 and T0, there-
fore the space Prim A can not be T1. Indeed if the space Prim A was R0, then the
closures of the points will partition it but this is impossible, and also whenever a
point belonged to an open set, say U , then there could not exist a closed set F with
x ∈ F ⊆ U . Moreover in such space which is not R0, a normal space can not be
completely regular, see (Corollary 3.1, [7]). According to Tong [17], a topological
space (X, τ) is D0 if and only if it is T0. Hence the space Prim A is also D0. Recall
that a topological space (X, τ) is called symmetric if for x and y in X, x ∈ Cl({y})
implies y ∈ Cl({x}). It is obvious that the space Prim A can not be symmetric.

Remark 1.4. It is worth-noticing that Kanjamapornkul and Pinčák [11] obtained
some interesting and important results when studying time series data. They
showed that one can find a time series data in spinor field [3] whose underlying
structure is Kolmogorov in time series data. They also discussed the situation
when a time series is considered in terms of quaternionic projective space [2]. They
proved that a new space of time series is a Kolmogorov space with eight hidden
dimensions with spin invariant property in time series data by which it relates to
quantum entaglement qubit state [15] in time series data. Here is the main result
of their paper (Theorem 1, [11]) which they showed that a space of financial time
series data is a covering space S7 with based space in X ≃ HP 1, where HP 1 is the
quaternionic projective space. It is a Kolmogorov space, i.e., it is a space satisfying
the T0-separation axiom. It definitely can not be T1 and thus not R0.
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Definition 1. A topological space (X, τ) is said to be R1 if for every x, y in X
with Cl({x}) ̸= Cl({y}), there exist disjoint open sets U and V such that Cl({x})
is a subset of U and Cl({y}) is a subset of V .

Proposition 1.5. ([4]) If (X, τ) is a R1 topological space, then (X, τ) is R0.

Definition 2. Let (X, τ) and (Y, σ) be topological spaces. A function f : (X, τ) →
(Y, σ) is said to be

(1) irresolute [14] if the preimage of every open subset of Y is open in X,
(2) open if the image of every open subset of X is open in Y .

Definition 3. A subset A of a topological space (X, τ) is said to be L-bounded
[6] in X if it is contained in some countable union of the members of every open
covering of X.

2. RL topological spaces

Definition 4. If A and B are subsets of a topological space (X, τ) and A is L-
bounded in X, by A <<L B we mean that A ⊂ B and A is L-bounded in the
subspace (B, τB) of X.

In the following, let bL(X) denotes the L-bounded subsets of X.

Definition 5. A topological space (X, τ) is said to be RL if the following condition
holds
A <<L U implies Cl(A) ⊂ U for all A ∈ bL(X) and U ∈ τ .

A regular countably compact space is an example of RL topological spaces.

Proposition 2.1. Every RL topological space is R0.
Proof. Suppose x is an arbitrary point of X and U is an arbitrary non-empty
open set such that x ∈ U . Then {x} <<L U which implies Cl({x}) ⊂ U .

Lemma 2.2. Let (X, τ) be a R1 Alexandroff topological space. Let A ∈ bL(X) and
D ⊂ X such that A <<L D. If x ∈ X, Cl(x) ∩D = ∅, then x and A have disjoint
open-neighbourhoods.
Proof. By the fact that X is R1, for each x ∈ X and y ∈ D, there are disjoint
neighborhoods Ux and Vy of x and y, respectively. We have D ⊂ ∪{Vy | y ∈ D}
which implies the existence of a countable subcover of A, say Vy1 , Vy2 ,. . . , Vyk such
that A ⊂ ∪k

i=1Vyi = V . By setting U = ∩k
i=1Uxi

which is open. This implies that
U ∩ V = ∅.

By using the above lemma one can prove the following result.

Proposition 2.3. Every R1 Alexanderoff topological space is RL.
Proof. Let A ∈ bL(X), U ∈ τ such that A <<L U . We prove that Cl(A) ⊂ U .
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Assume that a ∈ Cl(A). Let Cl({a})∩U = ∅. By Lemma 2.2, there exists disjoint
open neighborhoods Va, VA of a and A respectively. Hence a /∈ Cl(A) which is a
contradiction. Therefore, Cl({a})∩U ̸= ∅. Let x ∈ Cl({a})∩U . Since X is R1, we
have that x ∈ Cl({a}) which implies a ∈ Cl({x}). So x ∈ U implies Cl({x}) ⊂ U .
Hence a ∈ Cl({x}) ⊂ U . This means that Cl(A) ⊂ U .

Theorem 2.4. Every subspace of a RL topological space is RL.
Proof. Let (X, τ) be RL and Y ⊂ X. Since every subset of a L-bounded set
is L-bounded, let A ⊂ Y such that A ∈ bL(Y ) and suppose U ∈ τY . Assume
that A <<L U . Then there exists V ∈ τ such that U = V ∩ Y . We show that
Cl(A) ⊂ U . We have A ∈ bL(X). Thus, A <<L V . Then Cl(A)X ⊂ V in X.
Therefore, Cl(A) ∩ Y ⊂ V ∩ Y in X. Thus, Cl(A) ⊂ U in Y and hence the result.

Next, we will prove that product of finitely many RL spaces is a RL space. In
order to prove this, we need the following lemma.

Lemma 2.5. Let (X, τ) and (Y, σ) be two topological spaces. If A × B is a L-
bounded set in the product space X × Y , then both A and B are L-bounded sets in
X and Y , respectively.
Proof. Assume A×B is a L-bounded set in X × Y . Let {Oα : α ∈ I} be a open
cover of Y . Then B ⊂

⋃
{Oα : α ∈ I}. So for any a ∈ A, {a} × B ⊂ A× B is L-

bounded in X×Y . Thus, B ∼= {a}×B ⊂
⋃
{{a}×Oα : α ∈ I} ⊂ {a}×Y ⊂ X×Y .

Therefore, B ∼= {a} × B ⊂
⋃n

i=1({a} × Oαi
) ∼=

⋃n
i=1 Oαi

. So B is a L-bounded set
in Y .

Similarly, we can show that A is a L-bounded set in X.

Now we are ready to prove that product of finitely many RL spaces is a RL

space.

Theorem 2.6. Finite products of RL topological spaces is RL.
Proof. Let (X, τ) and (Y, σ) be two RL topological spaces. We claim that the
product space X × Y is RL. Let A × B ∈ bL(X × Y ), U × V ∈ τ × σ such that
A × B <<L U × V . We show that Cl(A × B) ⊂ U × V . Using Lemma 2.5, A
is in bL(X) and B is in bL(Y ). Also, A <<L U and B <<L V . Then we have
Cl(A×B) = Cl(A)× Cl(B) ⊂ U × V .

Using induction, we can show that finite products of RL spaces is RL.

Lemma 2.7. If a function f : (X, τ) → (Y, σ) is open and bijective, then
f−1(Cl(B)) ⊂ Cl(f−1(B)) for each subset B of Y .
Proof. Suppose that x /∈ Cl(f−1(B)). Then there exists a open set U in X con-
taining x such that U ∩ f−1(B) = ∅; hence f(U) ∩ B = ∅. Since f(U) is open,
f(U) ∩ Cl(B) = ∅ and U ∩ f−1(Cl(B)) = ∅. Therefore, we have x /∈ f−1(Cl(B)).
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This shows that f−1(Cl(B)) ⊂ Cl(f−1(B)).

Theorem 2.8. Let (X, τ) be countably compact and a function f : (X, τ) → (Y, σ)
be a continuous, open surjection. If (X, τ) is RL, then (Y, σ) is RL.
Proof. Suppose that (X, τ) is RL. Let B ∈ bL(Y ), V ∈ σ such that B <<L

V . We show that Cl(B) ⊂ V . Since (X, τ) is countably compact, we have
f−1(B) ∈ bL(X). Since f is continuous, f−1(V ) ∈ τ such that f−1(B) <<L f−1(V ).
Since (X, τ) is RL, Cl(f−1(B)) ⊂ f−1(V ). Since f is open, by Lemma 2.7 we
have f−1(Cl(B)) ⊂ Cl(f−1(B)) ⊂ f−1(V ). Since f is surjective, we obtain
Cl(B) ⊂ f(Cl(f−1(B))) ⊂ V . This shows that (Y, σ) is RL.

Theorem 2.9. Let a function f : (X, τ) → (Y, σ) be an open, irresolute injection.
If (Y, σ) is RL, then (X, τ) is RL.
Proof. Suppose that (Y, σ) is RL. Let A ∈ bL(X), U ∈ τ such that A <<L U .
We show that Cl(A) ⊂ U . Let {Vα : α ∈ ∆} be any open cover of Y . Then, since
f is irresolute, {f−1(Vα) : α ∈ ∆} is a open cover of X. Since A ∈ bL(X), there
exists a finite subfamily ∆0 of ∆ such that A ⊂ ∪{f−1(Vα) : α ∈ ∆0} and hence
f(A) ⊂ ∪{Vα : α ∈ ∆0}. Therefore, we obtain f(A) ∈ bL(Y ). Since f is open,
f(U) ∈ σ such that f(A) <<L f(U). Since (Y, σ) is RL, we have Cl(f(A)) ⊂ f(U).
Since f is injective, we obtain A = f−1(f(A)) ⊂ f−1(Cl(f(A))) ⊂ f−1(f(U)) = U .
Since f is irresolute, f−1(Cl(f(A))) is closed and hence Cl(A) ⊂ U . This shows
that (X, τ) is RL.
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