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1. Introduction

Let C be the complex plane and D = {z : z € C and |z| < 1} be the open
unit disc in C. Further, let A represent the class of functions analytic in D, thus
satisfying the condition:

f(0) = f'(0) =1 =0.

Then, each of the functions f in A has the following Taylor series expansion:
f(2) = 2z 4 ap2® +asz2® + .. :z—i-Zanz". (1.1)
n=2

Suppose 8 is a subclass of A consisting of univalent functions in . Also let P be
the class of Carathéodory functions p : D — C of the form p(z2) = 1+c12+c22%+....,
z € D such that ®{p(z)} > 0. An analytic function f is subordinate to an analytic
function ¢g in D, written as f < g (z € D), provided there is an analytic function
w defined on D with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g(w(z)). It follows
from Schwarz Lemma [7] that

f(z) < g(z) < f(0)=¢(0) and [f(D)Cyg(D), zeD.

The Koebe One-quarter theorem [5] ensures that the image of ID under every uni-
valent function f € A contains a disk of radius i.
Thus every univalent function f has an inverse f~! satisfying

[7(f(z) =2 (€D)

and

sty =w (ol <nlin(n = 7).
where
g(w) = fH(w) = w — ayw?® + (2435 — az)w® — (5a3 — bagas + ag)w* + ... (1.2

A function f € A is said to be bi-univalent in D if both f and f~! are univalent in
D. Let ¥ denote the class of bi-univalent functions defined in the unit disc D given
by (1.1). Note that the functions

A(2) =~ () = —log(1 - 2), f3<z>=1log(”z)

1—2’
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with their corresponding inverses

w e — 1 e —1

fit(w) = T foHw) = Ty fst(w) =

ew

are elements of 3. This subject has been discussed extensively in the pioneering
work by Srivastava et al. [18] who revived the study of analytic and bi-univalent
functions in recent years.

It is well-known that the Fibonacci sequence denoted by {F,} is such that each
number is the sum of the two preceding ones, starting from 0 and 1; that is Fy = 0,
Fy=1and F,,.1 = F,+ F,_1,n > 1. It is also well-known that we can write

F, = = , (7’L € No) (13)

where

-
S
S

o= ~ —0.618. (1.4)

Now we recall the following function

32) 1+ 7222
=
P 1 —72—7222

introduced by Sokdl in [17], where 7 is given by (1.4). The function p is not
univalent in D, but it is univalent in the disc |z| < 3=v5)/2 & 0.38. For example,
p(0) =p(~12r) =1 and p (eFors/) = V55, and it may also be noticed that

1 il

!l 1=

which shows that the number |7| divides [0, 1] such that it fulfills the golden section.
In [11], taking 72 = ¢, Raina and Sokdl showed that

. 147222 - n n
p(z) = 177222 1+ ;(Fnl + Fop1)7"2",

. These researchers also

where Fibonacci number F,, given by (1.3) and 7 =
found that

V5
2

P2) =14+ 72437222 +4732° + ...
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For 0 < ¢ < p <1, the Jackson (p, q)-derivative of a function f € A is given

by
_ (pZ) f(qz)

Therefore for f as in (1.1), we have

. (= £0).

qu _1+Z pgn2"
where [n],, = g, (0<g<p<l).

Recently for f € A, Ahuja [1] defined and discussed the (p, ¢)-Salagean differ-
ential operator as given below:

8paf(2) = [(2)
81177qf(z) =2zD,,f(2)

Spaf(2) = ZDp,q(SZle (2)), (m € No,z € D).
For f of the form (1.1), we get

2)=z+ Z[n]gfqanz”,
n=2
Further for functions g of the form (1.2), we define

Spag(w) = w — a [Q]IthUQ + (2a3 — ag)[?)];;qw?’ + ..

Motivated by works of Ahuja et al. [2], Dziok et al. [6], Giiney et al. [9], we
define a new subclass of bi-univalent functions related to shell-like curves associated
with (p, ¢)-Salagean derivative.

Definition 1.1. For 0<g<p<land 0<a <1, a function f € X is said to
be in the class SLM, x(p, ¢, m, p(2)) if it satisfies the following subordinations:

D 8m+1 8m+1 2 9
pa(Spq F(2)) +(1— )2t 2 ) < p(z) = _i+Tz - (1.5)
Dp,q(quf(z)) ngqf(z) l—72—71°2
and
Dpq(Spiq ' g(w)) Spirtg(w) 1+ 72w? (1.6)

Dp,q(SZqu(w)) (o) qu (w) < plw) = 1 — 7w — 7202’
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where 7 = (1-v5) 2~ —0.618, g = f~! given by (1.2) and z,w € D.

Definition 1.2. For 0 <g<p<1and a =0, a function f € ¥ is said to be
in the class SLMs(p, g, m,p(2)) if it satisfies the following subordinations:

SmHf(2) 147252
p7q -~ — 1.
Sm f(z) <h(z) 1—72—1722% (1.7)
and
81’;};19(10) ) = 1+ 7202 18)
8m g(w) P = T — 2w '

where T = (1-V5) 2~ —0.618, g = f~! given by (1.2) and z,w € D.

Definition 1.3. For 0 <g<p<1and a =1, a function f € ¥ is said to be
in the class KLMy s (p, ¢, m, p(2)) if it satisfies the following subordinations:

Dpo(8pq ' f(2)) 1477 (1.9)
Dp7q(ngqf(z)) 1 — 7z — 7222 ’
and
Dyy(Sptg(w) 147w’ (1.10)
Dy q(8m,9(w)) 1 — 1w — 2w’ '

where T = (1-V5) 2~ —0.618, g = f~! given by (1.2) and z,w € D.
Remark 1.4.

(Z) SLMO,E(pu q, 0723(2:)) = S'CE(pa Q7ﬁ(z>) and SLMLE(}?, q, 07]5(2)) = KS[JZO% q,
P(2)), the classes of bi-univalent functions studied by Nandini and Latha [8].

(1) 8L My xn(1,1,n,p(2)) = SLMyx(n,p(2)), the class of bi-univalent functions
established by Gurmeet Singh and Gagandeep Singh [16].

(111) 8L My 5 (1,4,0,p(2)) = 8L Mx(g, ), 8L My x(1,4,0,p(2)) = ¢ — 8Ly and
SLIM;%(1,4,0,p(2)) = ¢—K8Ly, the classes of bi univalent functions studied
by Ahuja [2].

(iv) SLM,x(1,1,0,p(2)) = 8LMux(p(2)), LMo x(1,1,0,p(2)) = 8Lx(p(2)) and
SLM;%(1,1,0,p(2)) = KLx(p(2)), the classes of bi-univalent functions de-
fined by Giiney [9
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In order to prove our results we need the following lemma.
Lemma 1.5. [3, 4] If p € P with p(z) =1+ 12 + c22® + ..., then
lenl <2, n>1.

2. Initial Coefficient Estimates and Fekete-Szego Inequalities

Theorem 2.1. For0 < ¢<p<1 0<a <1, Lt f € SLM,x(p,q, m,p(z)).

Then ]
Y [ eI >
[T {l(tn —¥)7 + (1 = 37)¢[ + 7}
B ) (ST 22
for any real number w,
| | i |u_1|§|7(77—w)‘+’(1—37)d -
CL3—,U(I2 < 9 d 2.3
2 [ —1]|7] 3 [T(n — ) + (1 = 37)¢]
o+ a-sne M2 ED ’
where
n= [3];nq([3]pq = 1)1+ (3], — 1], (2.4)
v =20 (12l — 1) [1+ (2], — D], (2.5)
¢ = 2 (12pg — * [T+ ([2lpg — DI (2.6)

The result is sharp.

Proof. As f € 8L M, x(p,q,m,p(2)), so by Definition 1.1 and using the principle
of subordination, there exists Schwarz functions u, v : D — D with u(0) = 0 = v(0),
such that

Dp,q(ngH (Z)) . w e
“Dyag, ) T Vs ) 2.1
and
Doa(Spiow)) | Silotw) oo
Dparglw)) T gty PO (2.8)

Now define the function,

~ 1+u(2)

= :1+Clz+0222+0323+----
1 —wu(z)

h(z)
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Then

- C1 1 C% 30%
p(u(z)) + 5 Tz + 5 <02 5 + -7 T2+ . (2.9)

Similarly we define the function,

1
k(w) = 14 o(w) =1+ dyw + dow? + dsw® + ...
1 —v(w)
Then p g »
1
ﬁ(v(w)) :1+517'w+§ (d2—51+%7'> TU)2—|—... (210)

and by considering the LHS of (2.7) and (2.8), we have

Dy o(81 f(2)) Syt f(z)
? _.I_ 1 i a0
DSyt () T S 1)
=1+ [Q]Z,Lq([z]p,q -1)(1+ O‘([Q]p,q —1))agz + { ]pq 1)
(14 al(3pg — ) as — 222((2}p — 1) (14 (22, — 1) a2} 2 + .
and
Doo(8rolw) | 8 gt)
o) ke I
pq(SZ"‘qg(w)) 52’29( )
=127 (2 — D1+ Oé([ ] — 1)) agw + {2 Blpa(Blpg = 1) (T + a([3]pq — 1)
+2120 (1= 2,01+ (23, — 1)) a5 ma(Blpg = 1) (1 + a([8lp,g — 1) az } w?

+.

Using (2.9), (2.10) and the above two equations in (2.7) and (2.8) and equating the
coefficients of z, 22, w and w? we get

2lg([2log = DA+ al2pg — D)az = 57, (2.11)

p.q

Bl (1Blpg = 1) (1 + a([8]pg — 1)) as — 2275 ([2]pq — 1) (1 + (22, — 1)) a5

- % <cz — %%) T+ 370%72, (2.12)
R (Ppe)(1+ [y — D)z = Dor, (2.13)
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and
{2[3]Z?q<[3]p,q -1 (1 +a([3],, — 1) + [2]]292”(1 — [2].0) (1 4 af )} a2
1 3 3d§ , (2.14)
— Bl D@ +a(3 1)} as = (d2—§>T+TT.

From (2.11) and (2.13), we have

1 = —d (2.15)
and also 2 | )2
202020 (2] — 1 (14 al(2yy - D) a3 = DT o)
, (& 1 &)
" R (2 — 1P+ a2y — D (2.17)

Adding (2.12) and (2.14), we get

2 {13l (Blpg = DA+ a(Blpg — 1) — 255 ([2lpg = DA + a2, — 1)} a3

| 1 3
5(C2 + )T — 2+ d)7 + (] +dp)T (2.18)

"2
Using (2.16) in the above equation, we get

(CQ + d2)7'2
[(n —¥)7 + (1 =37)¢]’

where 7,1 and ¢ are given by (2.4), (2.5) and (2.6) respectively.

On application of Lemma 1.5 and the triangular inequality we get the required
inequality for |as].
To find |as| first we subtract (2.14) from (2.12) and then by using (2.15), we get

(2.19)

2 _
daj =

2035 ([Blpa — 1) [1+ 0([3]pg — 1] (a5 — a3) = 2 da)r
(CQ — dg)T
130, Blpa — D11+ (Bl — 1)

Now by using (2.19) in (2.20) and Lemma 1.5, we get the coefficient bound for |as|.
From (2.20), we have

+ a3. (2.20)

as =

(CQ — dg)T
4([3lpg = D1 + a([38lpq — 1

as — pas = 7 + (1 — p)as. (2.21)
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By substituting (2.17) in (2.21), we have

B a2 _ (62 — dQ)T _ (CQ + d2)7'2
U~ = B Bl — DI+ (Bl D) (4[@7 o (1o 3T><]>

p.q

T T

- <h(“) T 1Bl (Blrs — D0 + ol - 1>>>> et (h(”) " 1Bl (Blra — D0+ alBlpg — 1)))> “
(2.22)

where
B (1—p)r?
") = o+ =30

Thus by taking modulus of (2.22) and using Lemma 1.5, we conclude that

Il _ Il
a5 —pa3| < 4 1 neE
Al -1

Using the above equation we can get the desired bound for the Fekete-Szego prob-
lem. We exhibit the sharpness by defining f(z) as

DoulS3 7)) | SE)
D@ i) TV

Corollary 2.2. For 0 < q<p <1, Let f € SLMx(p,q, m,p(z)). Then

7]
|a2| > )
\/I — 1) = [222([2]pg — 1) 7+ (1 = 37)[222([2]4 — 1)?]

|71 {| (31 (Blp.g — 1) — 21374 ([2lp, — 1)) 7+ (1 = 37) 21775 ([2lp,q — 1| + B34 (1Blp,g — DI7I}
Bl (Blo.a — 1) [ (18152 (18p.g = 1) = 2137 ([2lp.g — 1) 7+ (1 = 37) (21375 ([2]p.q 1)2|

for any real number u ,

lag| <

| (131324 (Blp.a =)= (21275 ([2]p, =) ) 7+(1=37) 2127 ([2)p.a— |
BI5 (Blp.a — DI

W%» lp—1 <
, = 1172

las = nazl < Tl Bl — 1) — 2127 (2lpg — D) 7+ (1 — 30227 ([2pg — 1)2

|([3]qu([3}p q— 1) - [ ]2m [2 D,q 1)) T "" 1 - 37' [2];) q([Q]P q— 1)2}

Bl5q([Blp,g = D7

=1 >

Corollary 2.3. For 0 < g <p <1, Let f € KLMx(p,q, m,p(z)). Then
[l

\/]([31m+1<[31p,q D) — 252 (2 = D) 7+ (1 = 30205 (20 — 17|

lazs| <
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71 {| (3152 (8100 = D) = 222D — D) 7+ (1 = 3015220 — V2| + BId (Blpg — Il }

Bl (Blra = D] (B Bl = D = 203522 = D) 74+ (1 = 30020552 (2.0 — 12|

las| <

for any real number p

| (3158 (Blpa = D) = 23220 — 1) 7+ (1= 302 (2lp.g — D?|

7| =1 <

Blpd (Blp,g—1)’ 3817 (18]p.q — D7

= 11
(3158 (Bloa = D) = 25220 — 1)) 7+ (1= 302 (2lpg — 12|
| (1815 (Blpa = D) = 2352210 — 1)) 7+ (1 = 302035 (2lpg — 12|
815 (Blp.g — 17|

las—pa3| <

lp—1] >

Remark 2.4. For m = 0,a = 0 and m = 0,a = 1, Theorem 2.1 gives the co-
efficient estimates and Fekete-Szego inequalities for the classes SLx(p,q.p(2)) and
8L4(p,q,p(2)) respectively studied by Nandini and Latha [8].

For p =1 and ¢ — 1 we obtain the following results due to Gurmeet Singh and
Gagandeep Singh [16].

Corollary 2.5. If f € SLM,x(m,p(2)), then

il
as| <
a:] < VA1 + a)? + [2(1 4 2a)3™ — (302 + 9a + 4)4™]7

Jas| < |4 (1 + a)? = (32 + 9a + 4)7]
"7 201+ 20)37 [ (14 a)? 4 (2(1 4 20)37 — (307 + a + 4)47)7]

and

|7 |,u . 1‘ < [(2(142a)3™ — (3a® +9a+4)4™) 7+ (1+x)?4™]

2 2(142c)3™ 2 14+2a)3™
|a3—uaglé{ (T 2) e [rI(1+2a)

[(2(142a)3™ —(3a% +9a+4)4™) T+ (1+)%4™]
[(2(1F2a)3m —(3a2+9a+4)4™ )7+ (1+a)24™] lw—1] = 2[7[(142a)3™

For p = 1 and m = 0 we obtain the following results due to Ahuja [2].
Corollary 2.6. For g € (0,1), a € [0,1]and p € R, let f € 8LMsx(q, ). Then

0] < \T|
_\/|T/-£— + (1 —37)¢|

las| < [Tl (s =) + (1 = 37)¢[ + [7|w}
N RIT(r = x) + (1 = 37)¢]

I7l i — 1] < lrle=xd+0=sm)e]
K7 K | S T|K
a3 — pa3| < { 7

and

|lu—1]lr|? | — 1] > [la=adri=sn¢]

IT[r=x]+(1=37)¢]” 7|~ ’
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where £ = ([3]; — 1) (1 + a([3]g — 1)), x = ([2]g = D(1 + a([2]; — 1)) and

¢ = (2l — D*(1 + a([2] — 1)*.

Remark 2.7. Forp=1,m =0, a=0andp =1,m = 0,a = 1, Theorem 2.1
gives the coefficient estimates and Fekete-Szego inequalities for the classes ¢ — 8Ly
and ¢ — K8Lyx, respectively defined by Ahuja [2].

For p =1, ¢ =1 and m = 0 we obtain the following results due to Giiney [9].

Corollary 2.8. Let f given by (1.1) be in the class SL My x(p(2)) and p € R.

Then
il

(45} S )
a2 VI+a)2—(1-a)2+3a)r
I7I[(1 + a)? — (3a® + 9o + 4)7]

az| <
las] < 2(1+20)(1 + ) [(1 + @) — (24 3a)7]
and
|| (1+a)[(1+a)—(2+3a)7]
lag — pa?| < { 20+2) o =1] < 2(+2a)]7]
37 Hagl = |1—p72 = 1] > (14+0)[(1+a)—(2+3a)7]
(+a)[(1+a)—(2+3a)7]’ K = 2(1+2a) 7|

Remark 2.9. Forp =1,g =1,m =0, a =0andp = 1, = 1,m = 0,
a = 1, Theorem 2.1 gives Coefficient estimates and Fekete-Szego inequalities for
the function classes SLx(p(z)) and KLx(p(z)) respectively defined by Giiney [9].
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