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Abstract: A quadrature rule based on hybrid functions and uniform Haar wavelets
is provided to find approximations of the values of definite integrals. The main
advantages of this approach are its simplicity and efficacy. We offer error estimates
and numerical examples to verify the convergence and accuracy of the suggested
approach.
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1. Introduction
In science and engineering, numerical integration has numerous uses. Regarding

the quadrature rule of numerical integration, a great deal of research has been done
in this field. Polynomial interpolation serves as the foundation for the quadrature
rule. To determine the weights associated with nodes, interpolating polynomials
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are utilized. There are several disadvantages to numerical quadrature. These in-
clude:
i. In the case of the Newton-Cotes quadrature rule, using a large number of iden-
tically spaced nodes may result in chaotic behaviour with high degree polynomial
interpolation.
ii. The Gaussian quadrature rule also uses polynomial interpolation as its founda-
tion, but it chooses its nodes and weights to optimize the final rule’s accuracy.

Newton-Cotes formulas (trapezoidal, Simpson’s rule) and Gaussian quadrature
are two methods used in quadrature methods to approximate definite integrals with
greater accuracy. The use of computational tools such as SciPy, MATLAB, and
Mathematica facilitates implementation, and error analysis (Runge’s phenomenon,
Richardson extrapolation) and adaptive techniques enhance accuracy. Special
function-based quadrature techniques, like the Lobatto and Chebyshev methods,
increase efficiency even more.

The method of undetermined coefficients can be used to derive the Gaussian
quadrature rule, but the resulting equations for the 2 n unknown nodes and weights
are nonlinear. The process is laborious when done by hand, and nodes and weights
must be tabulated before integrals can be evaluated numerically.

The number of coefficients grows exponentially in higher dimensions, and the
method’s computational cost rises significantly as well. The current method is
based on taking one integral at a time and using the hybrid function or Haar
wavelet method for a single integral in order to prevent the growing computational
cost. The same procedure is used to evaluate other integrals in a similar way after
one integral has been solved.

We learned a variety of techniques to solve integral problems in calculus and
engineering mathematics classes, as detailed in [13]. These techniques included the
change of variables method, integration by parts method, partial fractions method,
trigonometric substitution method, and others. Different types of generalized two-
variable Bessel functions are examined in the article, with a focus on how they relate
to second-order Bessel-type differential equations. It simplifies the study of Bessel
function properties by introducing the Bessel operator through shift operators. In
the current article, we primarily examine the following three categories of integrals,
for which it is difficult to find solutions using the previously listed techniques.

∫
eaxeλee

bx

dx (1)
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eax sin

(
λebx

)
dx (2)∫

eax cos
(
λebx

)
dx (3)

Where a, b, λ are real numbers, and b, λ ̸= 0. The study used a combination
of research methods, including manual calculations to find solutions and Matlab
verification of those solutions.

The study uses Kampé de Fériet-type Hermite polynomials to extend first and
second kind Chebyshev polynomials, as in [4]. It derives integral representations
and establishes links with Gegenbauer polynomials. In [7] Chebyshev and Block
Pulse Wavelet are applied to solve integrals where as in [1, 2, 5, 6, 10, 11], a
novel approach based on hybrid functions and Haar wavelets is used to numerically
integrate double and triple integrals with variable limits. This method is an im-
provement and generalization of our previous method. This method offers several
advantages over the conventional quadrature rule. The new approach is tested on
a number of benchmark problems. When comparing the two methods, the hybrid
functions method produces better results than the Haar wavelets method. It is
shown that the present approach is both easier to use and more accurate than the
hybrid functions method and the symmetric Gauss Legendre quadrature.

The present study suggests a novel approach based on hybrid functions and
basic Haar wavelets. These are the benefits of this approach:
i. Offers a more precise solution than the current approach.
ii. A built-in method is used to determine optimal weights in terms of wavelets or
hybrid function coefficients. With the new method, we can find the ideal weights
without consulting a number of tables.
iii. The collocation points serve as nodal points and no quadrature nodes are
required.
iv. The new approach does not require solving a nonlinear system resulting from
the unknown nodes and weights because it computes the integrals explicitly.
v. Direct application that is easy to understand and doesn’t require the use of any
intermediary techniques.

2. Numerical Methods based on Quadrature rules

a. Haar wavelets
For the family of haar wavelets specified in the range [a,b], the scaling function

is

h1(x) =

{
1 for x ∈ [a, b)

0 elsewhere .
(4)
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Additionally defined on the interval [a,b) and provided by, the mother wavelet
for the family of Haar wavelets.

h2(x) =


1 for x ∈ a, a+b

2

)
−1 for x ∈

[
a+b
2
, b
)

0 elsewhere .
(5)

The dilation and translation processes used to create h2(x) produce all the other
functions in the Haar wavelet family, which are specified on subintervals of [a,b).
With the exception of the scaling function, all functions defined for x ∈ [a, b) in
the Haar wavelets family can be represented as

hi(x) =


1 for x ∈ [α, β)
−1 for x ∈ [β, γ)
0 elsewhere .

(6)

Where

α = a+ (b− a)
k

m
, β = a+ (b− a)

k + 0.5

m
, γ = a+ (b− a)

k + 1

m
, i = 3, 4, .., 2M

The integer m = 2j, where j = 0, 1, ..J, J = 2M and integer j = 0, 1, ..,m− 1. The
translation parameter is denoted by the number k, whereas the integer j represents
the wavelet’s level. Integer J represents the highest level of resolution. I = m+k+1
is the formula for the relationship between I,m, and k. Because of this, the Haar
wavelet functions are orthogonal to one another.∫ b

a

hj(x)hk(x)dx =

{
(b− a)2−j when j = k

0 when j ̸= k
(7)

Consequently, any function f(x) that can be squarely integrated in the interval
[a, b) can be represented as an infinite sum of Haar wavelets.

f(x) =
α∑

i=1

aihi(x) (8)

If f(x) is piecewise constant or can be approximated as piecewise constant
throughout each subinterval, then the aforementioned series ends at finite terms.

b. Method of numerical integration based on Haar wavelets
The numerical integration of single integrals using Haar wavelets is discussed

in this section. We consider the integral
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∫ b

a

f(x)dx (9)

Over the stretch [a, b] Using Haar wavelets, the function f(x) can be approxi-
mated as

f(x) =
2M∑
i=1

aihi(x) (10)

By raising the value of M , the Haar wavelets approximation quickly converges
to the precise function.

Lemma 2.1. [9] The approximate value of the integral is∫ b

a

f(x)dx ≈ a1(b− a)

It is clear from that Haar approximation involves only one coefficient in the
evaluation of the definite integral. To calculate the Haar coefficient a1 we consider
the nodal points

xk = a+
(b− a)(k − 0.5)

2M
,k = 1, 2, .., 2M (11)

(10) Can be expressed as the discretized form, which is

f (xk) =
2M∑
i=1

aihi (xk) (12)

Lemma 2.2. [9] The solution of the system (12) for a1 is

a1 =
1

2M

2M∑
i=1

f (xk)

Consequently, we obtain the following formula for numerical integration using
the quadrature method and Haar wavelets:∫ b

a

f(x)dx ≈ (b− a)

2M

2M∑
i=1

f

(
a+

(b− a)(k − 0.5)

2M

)
(13)

c. Hybrid functions
The orthogonal set of hybrid functions φij(x), i = 1, 2, ..n and j = 0, 1, . . .m−1

is defined in the interval [0, 1) Where the orders of the Legendre polynomials and
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the block-pulse functions are, respectively, n and m . To distinguish hybrid func-
tions from Haar wavelets, use the notation φ. Recursively, the Legendre polyno-
mials can be computed as

l0(x) = 1, l1(x) = x . . . lk+1(x) =
2k + 1

k + 1
xlk(x)−

k

k + 1
lk−1(x), k = 1, 2, 3

Any function f(x) which is square integral in the interval [0, 1) can be expressed
as

f(x) =
∞∑
i=1

∞∑
j=0

cijφij(x), i, j = 1, 2, . . .∞, x ∈ [0, 1)

d. Method of numerical integration based on hybrid functions

Consider the case where m = 1,for this value of m the formula is given by∫ 1

0

f(x)dx ≈ 1

n

n∑
i=1

f

(
(2i− 1)

2n

)
(16)

The numerical integration formulas using hybrid functions for the integral equa-
tion (9) making the substitution x = a+ (b− a)y were derived for different values
of m in [9].i.e

For m = 1, ∫ b

a

f(x)dx ≈ (b− a)

n

n∑
i=1

f

(
a+

(b− a)(2i− 1)

2n

)
(17)

For m = 2,∫ b

a

f(x)dx ≈ (b− a)

2n

n∑
i=1

[
f

(
a+

(b− a)(4i− 3)

4n

)
+ f

(
a+

(b− a)(4i− 1)

4n

)]
(18)

For m = 3,∫ b

a

f(x)dx ≈ (b− a)

8n

n∑
i=1

[
3f

(
a+

(b− a)(6i− 5)

6n

)
+ 2f

(
a+

(b− a)(6i− 3)

6n

)
+3f

(
a+

(b− a)(6i− 3)

6n

)]
(19)
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For m=4,

∫ b

a

f(x)dx ≈ (b− a)

48n

n∑
i=1

[
13f

(
a+

(b− a)(8i− 7)

8n

)
+ 11f

(
a+

(b− a)(8i− 5)

8n

)
+ 11f

(
a+

(b− a)(8i− 3)

8n

)
+ 13f

(
a+

(b− a)(8i− 1)

8n

)
(20)

In a similar way the formulas for m = 5, 6, 7 . . . given in [8].

3. Numerical Examples

In order to solve complex problems where traditional methods might have trou-
ble with discontinuities, numerical integration is essential. The localized nature
of Haar wavelets allows them to handle such cases well, whereas hybrid functions
combine wavelets with orthogonal polynomials to improve accuracy. The effective-
ness of these methods in solving numerical integral problems is illustrated in this
study through examples.

Example 3.1.

I1 =

∫ −2

−5

e−6xe5e
4x

dx

= 1.7810791247247284432.1012( Chii − Huei Yu., [13] )
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Example 3.2.

I2 =

∫ 5

−1

e2x sin
(
7e−6x

)
dx

= 0.647591256320565998061 (Chii - Huei Yu., [13])

Example 3.3.

I3 =

∫ 2

−3

e4x cos
(
8e−3x

)
dx

= 737.407836945388 ( Chii - Huei Yu., [13])
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Table 1: Comparison of numerical results with exact values for different
n and m orders.

Exact Value Order Haar Wavelet Order Hybrid Function

I1 = 1.7810791247247284432× 1012 n = 25 1.781079124722314× 1012 n = 35,m = 4 1.781070483939743× 1012

I2 = 0.647591256320565998068 n = 25 0.647591256322499 n = 13,m = 2 0.646906796851105

I3 = 737.407836945389 n = 25 7.374078369454077× 102 n = 35,m = 4 7.374013465294072× 102

4. Conclusion
Numerical approximations of various integral types are found by comparing

hybrid functions and Haar wavelets. In the context of numerical approximation
of integral equations, the straightforward applicability of Haar wavelets and the
quick convergence of hybrid functions offer a strong foundation for their use.Future
research might concentrate on expanding these techniques to multi-dimensional in-
tegrals and enhancing their suitability for functions with high oscillations. Fur-
thermore, investigating adaptive mesh refinement in Haar wavelet techniques and
creating hybrid function-based deep learning models for integral equations may
improve their suitability for use in engineering and computational mathematics.
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