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Abstract: D’Alembert’s method is typically applied to wave equation. This study
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1. Introduction

This study began with the idea of exploring what would happen if D’Alembert’s
method, which is typically used to solve wave equations, were applied to the Laplace
equation. While this method is not as general as the Fourier series approach, it
is certainly elegant. Let us apply this elegant method to the Laplace equation
and consider the potential issue. We believe there is a reason this has not been
studied extensively until now. D’Alembert’s method was originally used to find the
solution to the vibrating string problem by setting

v = x+ ct, w = x− ct,



98 South East Asian J. of Mathematics and Mathematical Sciences

based on the characteristic of the PDE. By differentiating these values and substi-
tuting them into the wave equation

utt = c2uxx,

where c2 = T/ρ, we obtain

uvw = 0,

where T is the tension and ρ is the mass of the string per unit length [6]. Solving
this gives us the solution:

u(x, t) = ϕ(x+ ct) + ψ(x− ct),

where ϕ and ψ are arbitrary functions. Applying the initial conditions

u(x, 0) = 0, ut(x, 0) = g(x),

we find:

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s)ds.

Several intriguing studies have been conducted on related topics. These include
the derivation of q-analogues involving even-order polynomials and q-trigonometric-
type functions [1], the application of the Laplace residual power series method
to solve three-dimensional fractional Helmholtz equations [2], a generalization of
Kummer’s quadratic transformation [3], and the investigation of fractional integral
transformations of the Mittag-Leffler type E-function [9]. Initial conditions and de-
tails related to D’Alembert’s method can be found in [6]. The methods for solving
the Laplace equation mainly use separation of variables, Fourier transform, Green’s
function, finite difference method, finite element method, and physics-informed
neural networks. In this paper, we will examine why D’Alembert’s method, which
is used to solve the wave equation, is not applicable to the Laplace equation.

Now, let us apply D’Alembert’s method to the Laplace equation.

2. D’Alembert’s method in Laplace equation
Consider the analytic function f(z) = u(x, y)+ iv(x, y). It is a well-known that

the harmonic function u and v form the Laplace equation: Because,

uyy = (−vx)y = (−vy)x = (−ux)x,

by Cauchy-Riemann equation.
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Theorem 2.1. (D’Alembert’s method in Laplace equation) The solution of

∇2u = uxx + uyy = 0

can be expressed as
u(x, y) = f(x− iy) + g(x+ iy),

where i is the imagnary unit and u is a continuous function.
Proof. Since uyy = −uxx, let us put f = x+ iy and g = x− iy. Then

ux = uffx + uggx = uf + ug

and so,

uxx = (uf + ug)x = (uf + ug)ffx + (uf + ug)ggx = uff + 2ufg + ugg

because u is continuous. Similarly, from uy = uffy + uggy = i(uf − ug),

uyy = i(uf − ug)y = i(uf − ug)ffy + i(uf − ug)ggy

= −(uf − ug)f + (uf − ug)g = −uff + 2ufg − ugg.

Substituting these values into the original equation, we get

−uff + 2ufg − ugg = −uff − 2ufg − ugg.

Organizing the equality, we have ufg = 0. This gives uf = h(f) and u =
∫
h(f)df+

q(g), where h and q are arbitrary functions of f and g, respectively. Therefore, we
can simply express this as

u(x, y) = p(f) + q(g) = p(x+ iy) + q(x− iy), (1)

where p and q are arbitrary functions.
Now let us see if this is a solution to the given Laplace equation. This can be

easily seen as a solution to the given equation by substitution and the fact that

i2 = −1.

Since the above Laplace equation can be interpreted as a steady problem of the
two-dimensional heat equation, ut = 0 for t is the time. Let us consider the case
where the initial temperature is 0, i.e., u(x, 0) = 0. Then * can be expressed as

u(x, y) = p(x+ iy)− p(x− iy). (2)
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Example 2.2. Let us consider a Laplace equation

u(x, y) = a ln(x2 + y2) + b.

When the function u satisfies boundary condition u = 1 on (x2+y2) = 1 and u = 0
on (x2 + y2) = e, we can determine a and b as a = −1, b = 1.
Solution. It is easy to see that this equation satisfies the Laplace equation

uxx + uyy = 0,

and that its solution is

u(x, y) = − ln(x2 + y2) + 1 = ln
e

x2 + y2
= (1)

If u(x, 0) = 0, then x2 = e and so

u(x, y) = − ln(e+ y2) + 1 = ln
e

e+ y2
= (2),

where e is the Euler’s number.

Example 2.3. Let us compare (2) with the result by Laplace transform.
Solution. If we take the Laplace transform of the Laplace equation, we get

£(uxx) =

∫ ∞

0

e−syuxx dy

=
∂2

∂x2

∫ ∞

0

e−syu(x, y) dy =
∂2

∂x2
U

where U = £(u). In general, the interchanging of the integral and the derivative
does not hold. However, the reason why the integral and the derivative can be
swapped here is discussed in detail in [4]. Meanwhile,

£(uyy) = s2U − su(x, 0)− uy(x, 0) = s2U.

Substituting these two results into the original equation, we obtain

∂2U

∂x2
+ s2U = 0.

This gives
U(x, s) = q(s)cos sx+ p(s)sin sx,
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where p and q are arbitrary. From u(x, 0) = 0, q(0) = 0. Therefore, the solution of
Laplace equation has the form of

u(x, y) = £−1[q(s)cos sx+ p(s)sin sx] = (2).

Example 2.4. Let G = Gα is the Gα transform, a generalized Laplace-type
transform [7].
A solution of wt = c2wxx subject to the conditions w(0, t) = 0, w(L, t) = 0, and
w(x, 0) = f(x) can be represented by w(x, t) = G−1[F (x, u)], where

F (x, u) = A(u) (e
−x
c
√
u − e

x
c
√
u )

+

√
u

2c
uα (e

−x
c
√
u

∫
e

x
c
√

u · f(x) dx− e
x

c
√
u

∫
e

−x
c
√
uf(x) dx). [5, theorem 3]

In the above equation, replacing the Laplace transform with another transform
only changes the form but does not affect the result. On the one hand, the reason
this method is difficult to apply to the heat equation or Laplace equation is that
it is challenging to implement the boundaries conditions, which do not fit well.
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