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Abstract: In this study, we analyze the curvature properties and Ricci solitons in
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1. Introduction, Notations and Definitions

On a non-degenerate pseudo-Hermitian CR-manifold, the Tanaka-Webster con-
nection is a canonical affine connection [18, 21]. For contact metric manifolds,
Tanno [19] defined the generalized Tanaka-Webster connection via the canonical
connection, which is equivalent to the Tanaka-Webster connection provided that
the corresponding CR-structure is integrable. Numerous writers have recently ex-
amined the generalized Tanaka-Webster link in Kenmotsu manifolds [5, 13, 15].
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Hamilton [6] first proposed the idea of Ricci solitons in 1982. They are Einstein
metrics in their most natural form.

(Lxg)(U,V)+2S(U,V)+2X9(U,V) =0, (1.1)

is the definition of a Ricci soliton (g, V, A) on a Riemannian manifold (M, g), where
Lx is the Lie-derivative of Riemannian metric g along a vector field X, A is a
constant, and U and V' are arbitrary vector fields.

An n-dimensional differentiable manifold M equipped with a structure (¢, &, 7, g)
is classified as a Lorentzian almost paracontact metric manifold if it possesses a (1,
1)-tensor field ¢, a contravariant vector field £, a 1-form 7 and a Lorentzian metric
g that satisfy the following conditions [1]

n(€) = -1, (1.2)

¢’U =U +n(U)g, (1.3)

¢ = 0,1(oU) =0, (1.4)
9(eU,oV) = g(U, V) +n(U)n(V), (1.5)
9(U, &) = n(U), (1.6)

(U, V) = ®(V,U) = g(U,¢V). (1.7)

A Lorentzian almost Paracontact manifold M is said to be a Lorentzian para-
Sasakian manifold if

(Vuo)V = g(U, V)§+n(V)U 4 2n(U)n(V)E, (1.8)

for any vector fields U,V on M. Now, we define Lorentzian para-Kenmotsu mani-
fold: (i) A Lorentzian almost paracontact manifold M is referred as a Lorentzian
para-Kenmotsu manifold if the following condition holds for any vector fields U
and V on M:

(Vu@)V = —g(oU, V)€ —n(V)oU, (1.9)

for any vector fields U,V on M.
In a Lorentzian para-Kenmotsu manifold, we have

Vy§ = —U—n(U)E, (1.10)

(Vun)V = —g(U, V) = n(U)n(V), (1.11)
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where V is the Levi-Civita connection with respect to the Lorentzian metric g.
Further, on a Lorentzian para-Kenmotsu manifold M, the following results hold:

g(R(U, V)W, &) = g(V.W)n(U) — g(U W)n(V), (1.12)
R(&,U)V = =R(U,§)V = g(U, V)& —n(V)U, (1.13)
R(U, V)¢ =n(V)U —n(U)V, (1.14)
R(EU)E=U +n(U), (1.15)
S(U,§) = (n—=1)nU),5(,€) = —(n = 1), (1.16)
Q€ = (n— 1), (1.17)
S(@U,¢V) = S(U, V) + (n = )nU)n(V), (1.18)
for any vector fields U, V,W € x(M).
First Bianchi identity with respect to Levi-Civita connection is given by
RU VYW + R(V,W)U + R(W,U)V = 0. (1.19)

(ii)If Ricci tensor of Lorentzian para-Kenmotsu manifold satisfies the condition
S(U,V) = ag(U, V) + bn(U)n(V) (1.20)

where a and b are scalar functions on M, then manifold is said to be n-Einstein
manifold. If the Ricci tensor of the Lorentzian para-Kenmotsu manifold satisfies
the condition

S(U, V) =ag(U,V)+bU)n(V)+ cp(U,V), (1.21)

where a,b and ¢ are scalar functions on M and ¢(U, V') = g(¢U, V'), then manifold
is said to be generalized n-Einstein manifold [23]. If ¢ = 0, then the manifold
reduces to an n—FEinstein manifold.

2. Curvature properties of Lorentzian para-Kenmotsu manifolds admit-
ting generalized Tanaka-Webster connection

In this paper, we use the symbol * to represent the quantities associated with
the generalized Tanaka-Webster connection. The generalized Tanaka-Webster con-
nection V* in terms of Levi-Civita connection V is given by [5, 20]

ViV =VuV =n(V)Vu§ + (Vun)(V)E = n(U)eV, (2.1)
for any vector fields U,V on M. Using (1.10) and (1.11), the above equation reduces
ViV =VuV = g(U,V)§ +n(V)U —n(U)pV. (2.2)
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By taking V' = ¢ in (2.2) and using (1.10), we get
Vi€ =-2U —2n(U)¢E. (2.3)
We now find Riemann curvature tensor R*, using (2.2), we get

R (U, VYW = R(U, V)W + 3¢(V, W)U — 3¢(U, W)V
+2n(U)g(V,W)§ = 2n(V)g(U,W)E = 2n(U)n(W)V (2.4)
+2n(V)n(W)U = 2n(U)n(W)eV + 2n(V)n(W)eU.
Taking W = ¢ in (2.4), and using (1.4), we get
R (U, V)¢ = 2n(V)U = 2p(U)V + 2n(U) ¢V — 2n(V)oU. (2.5)

On contracting (2.4), we obtain the Ricci tensor S* of a Lorentzian para-Kenmotsu
manifold with respect to the generalized Tanaka-Webster connection V* as

S*U,V)=SU,V)+ Bn—=5)g(UV)+ (2n+2¢ —4)n(U)n(V), (2.6)

where 1) = trace(9).
This gives

QV=QV +Bn->5V+(2n+2¢—4)n(V)~, (2.7)
Contracting with respect to U and V' in (2.6), we get
r=r+Bn—4)(n—1)— 2, (2.8)

where, r* is the scalar curvatures with respect to the generalized Tanaka-
Webster connection V* and r is the scalar curvature with respect to the Levi-Civita
connection V.
The projective curvature tensor P* [22] associated with the generalized Tanaka-
Webster connection V* is defined as follows:
PHUVYW = B (U, V)W — ﬁ{s*(v, WU — SOV (2.9)

If the projective curvature tensor P* associated with the generalized Tanaka-
Webster connection V* is zero, then from (2.9), it follows that

RUVIW = ﬁ{s*a/, WU — S (U, W)V}, (2.10)
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Now, in view of (2.4) and (2.6), (2.10) takes the form

g(RU, V)W, Y) +3g(V,W)g(U,Y) — 3g(U,W)g(V,Y) + 2n(U)g(V, W)n(Y)
= 2n(V)n(Y)g(U,W) = 2n(U)n(W)g(V,Y) + 2n(V)n(W)g(U,Y)

= 20(U)(W)gloV: ¥) + 20(V (W )g(6U,Y) = ——{S(V, W)g(U,Y)

+ (30— 5)g(V.W)g(U,Y) + (20 + 26 — gV In(W)g(U, ) 240
= S(U,W)g(V,Y) = (3n = 5)g(U, W)g(V,Y) — (2n + 2¢ — 4)n(U)n(W)g(V,Y)}.
Now, taking Y = ¢ and U = £ in (2.11), we obtain
S(V,W) = (—n+3)g(V, W) + (=2n + 4)n(V)n(W). (2.12)
Contracting the above equation (2.12), we get
r=—(n—1)(n—4). (2.13)
This leads to the following;

Theorem 2.1. If in a Lorentzian para-Kenmotsu manifold, projective curvature
tensor with respect to generalized Tanaka-Webster connection vanished then mani-
folds reduces to n-FEinstein Manifold.

Now, interchanging U and V' in (2.9), we get

.VMUMKJWMWW—E%ﬁ?@ﬂmﬁ%N%WW} (2.14)

After summing up (2.9) and (2.14) and applying the formula
R(U, V)W = —R(V,U)W, we obtain
P*(U, V)W 4+ P*(V,U)W = 0. (2.15)
From (2.4), (2.9) and (1.19) we obtain
P (U VYW + P*(V,W)U + P*(W,U)V = 0. (2.16)

The projective curvature tensor with respect to the generalized Tanaka-Webster
connection in a Lorentzian para-Kenmotsu manifold is therefore skew-symmetric
and cyclic, as we may infer from (2.15) and (2.16).

(i) A Lorentzian para-Kenmotsu manifold is called ¢-projectively semi-symmetric
with respect to the generalized Tanaka-Webster connection V* if

PU,V)-9 =0, (2.17)
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for all vector fields U,V on M.
Now, from (2.17), we have

(P*(U,V) - $)W = P*(U, V)W — 6P*(U, V)W = 0. (2.18)
Using (2.9), (2.4) and (2.6) in (2.18), we get

R(U, V)W + 3g(V, oW )U — 3g(U, pW)V + 2n(U)g(V, oW )&
= 2n(V)g(U, pW)& — o(R(U, V)W) = 3g(V,W)oU + 3g(U, W)pV
+ 2n(U)n(W)oV = 2n(V)n(W)oU + 2n(U)n(W)V = 2n(V )n(W)U

SV, W)U + (30— 5)g(V,W)GU + (20 + 26 — 4)n(V)n(W)oU

—S(U, W)V — (3n — 5)g(U, W)$V — (2n + 2 — )n(U)n(W)eV — S(V, W)U
— (3n = 5)g(V, ¢W)U + S(U, W)V + (3n — 5)g(U, oW)V'} = 0. (2.19)

Taking V' = ¢ in (2.19), using (1.4) and (1.6), we get

SWU, W) = (—n+3)g(U, ¢W)€+2w77(W)¢U—2(n—1)77(W)U—2(n—1)77(U)77<(W)§-

2.20
Taking inner product of (2.20) with £ and replacing U by ¢U and using (1.5) and
(1.8), we get

S(UW)=(—n+3)g(U W)+ (=2n+ 4)n(U)n(W), (2.21)

and
r=(—n+4)(n—1). (2.22)

Again, by substituting (2.21) in (2.9), we obtain

P (U VYW = RU, V)W + g(V,W)U — g(U, W)V +2n(U)g(V,W)¢

— (Vg W) + (L — @V + 2 — 22 yn(V)n(W)U

n—1 n—1 (2.23)
= 2n(U)n(W)oV + 2n(V)n(W)eU.

Thus we state the following:

Theorem 2.2. If a Lorentzian para-Kenmotsu manifold with respect to the gener-
alized Tanaka- Webster connection V* is ¢- projectively semi-symmetric then it is
n-Einstein manifold.

If in a Lorentzian para-Kenmotsu manifold M, (P*(U,V)-S*)(W,Y) = 0. Then,

we have

S*(P*(U, VYW, Y) + §*(W, P*(U,V)Y) = 0. (2.24)
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Using the equations (2.9), (2.4), (2.6) and (2.7) into the above equation, we have

2(2n = 2¢ = 2)n(Y)g(V, W) = 2n(W)S(V,Y) — 2(3n — 5)n(W)g(V,Y)

—2(2n +2¢ —n(V)n(W)n(Y) + 2n(W)S(oV,Y) +2(3n — 5)n(W)g(4V,Y)
+2(2n = 2 = 2n(W)g(V,Y) = 2n(Y)S(V,W) = 280 = 5)n(Y)g(V.W) (9 95)
= 2(2n 4 2¢ — Hn(V)n(W)n(Y) + 2n(Y)S(¢V, W) + 2(3n — 5)n(Y)g(#V, W) = 0.

Using U =Y = ¢ into above equation, we get

(n+2¢ = 4)g(V. W) + (2n + 24 — 4)n(V)n(W)

+ S(V.W) = S(6V, W) — (3n — 5)g(oV, W) = 0. (2:26)

Thus, we can state that

Theorem 2.3. If a Lorentzian para-Kenmotsu manifold M with respect to the
generalized Tanaka-Webster connection V* satisfies P* - S* = 0, then (n + 2¢ —
D)g(V, W)+ (2n+ 20— D)n(V)p(W) +S(V, W) = S(6V, W) — (3n—5)g(6V, W) = 0.
With respect to the generalized Tanaka-Webster connection V* the conharmonic
curvature tensor [4], K* is defined by
* * 1 * *

K*(U,V)W = R*(U, V)W (n—2){S (V,WHU — S*(U W)V (2.27)

+9(V.W)QU — g(UW)Q"V}.

If the conharmonic curvature tensor K* associated with the generalized Tanaka-

Webster connection V* is zero, then from equation (2.27), we obtain

R*(U,V)W = {S*(V, W)U = S*(U, W)V + g(V,W)Q*U — g(U, W)Q*V'}.

(2.28)

1
(n—2)
By using the equations (2.4), (2.6) and (2.7) into equation (2.28), we get

(n—=2)g(R(U,VIW,Y) = (3n — 4)g(V,W)g(U,Y) + (3n — 4)g(U, W)g(V,Y)

= 2¢yn(U)n(Y)g(V, W) + 2¢m(V)n(Y)g(U, W) + 2¢m(U)n(W)g(V,Y) — 2¢n(V)
n(W)g(U,Y) = 2(n = 2)n(U)n(W)g(@V.Y) +2(n = 2)n(V)n(W)g(eU,Y) (9 o9
= S(V,W)g(U,Y) = S(UW)g(V,Y) + g(V,W)g(QU,Y) — g(U, W)g(QV,Y).

Taking U =Y = £ into the above equation, we get

S(V,W) = (=3n + 2 + 3)g(V, W) + (—4n + 2t + 4)n(V)n(W). (2.30)
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So, we state the following:

Theorem 2.4. If a Lorentzian para-Kenmotsu manifold is conharmonically flat
with respect to the generalized Tanaka-Webster connection, then it reduces to an
n-Finstein manifold.

A Lorentzian para-Kenmotsu manifold associated with the generalized Tanaka-
Webster connection V* is termed recurrent if its curvature tensor R* meets the
following condition:

(VR (U, V)W = A(Y)R*(U, V)W, (2.31)

where R* is the curvature tensor corresponding to the connection V*, and A is
a 1-form. using (2.31), we have

Vi (R (U, V)W) — R (VLU V)W — R*(U, VEV)W
— RYU, V)V W = A(Y)R*(U, V)W.
Making use of (2.2), (2.4) and (2.6) in (2.32), we get
=gV, R(U, V)W) +n(R(U, VIW)Y —n(Y)o(R(U, V)W) = 3g(V,W)g(Y,U)¢§
—4n(U)g(V, W)Y + 3g(U,W)g(Y, V)& + 4n(V)g(U, W)Y — 8n(U)n(Y )g(V, W)¢
+ 8n(Y)n(V)g(U, W)E + 8n(U)n(Y )n(W)V + 4n(U)g(W, Y)V — 8n(V)n(W)n(Y)U
—4n(V)g(W, YU = 8n(V)n(W)n(Y)oU + 4n(U)g(W,Y )oV + n(U)n(W)g(Y, ¢V )§
—dn(W)g(V,Y)oU —n(V)n(W)g(Y,sU)& — n(U)R(Y, V)W + 8n(U)n(W)n(Y")
)9(eU, W)§ —n(V)R(U,
)g

(2.32)

Y
V

)
)g )
U, vV
£ (

+n(Y)R(oU, V)W = 3n(Y)g(¢U, W)V — 4n(Y)n Y)W
+n(Y)R(U, oV )W + 6n(Y)g(aV, W)U + 4n(Y )n(U)g(¢V, W)¢ (2.33)
+9(Y,W)R(U,V)§ —n(W)R(U, V)Y +n(Y)R(U, V)W — 3n(W)g(V,Y)U

+3n(W)g(U,Y)V = 3n(Y)g(U, oW)V = 2n(U)n(W)g(V, Y )€ + 2n(V)n(W)g(U,Y )¢
—4An(V)g(Y, W)U + 4n(W)g(U,Y )oV = A(Y ){39(V, W)U — 39(U, W)V
+2n(U)g(V,W)§ = 2n(V)g(U, W)§ = 2n(U)n(W)V + 2n(V)n(W)U

=2n(U)n(W)eV + 2n(V)n(W)eU }.

Replacing W by ¢ and using (1.2), (1.3), (1.4), (1.13) and (1.14) into equation
(2.33) we get

—n(V)g(Y,U)§ +n(U)g(Y,V)§ = n(Y)n(V)oU + n(Y)n(U)pV
—on(V)g(U,Y)E + 5n(U)g(V, Y )€ — dn(U)n(Y)V + 4n(V)n(Y)U
+5n(V)n(Y)oU —sn(U)n(Y)eV —n(U)g(Y, ¢V)E +4g(V,Y)oU  (2.34)
+n(V)g(Y,oU)¢ + R(U, V)Y + 3¢(V,Y)U — 3¢(U,Y)V

—49(U,Y)oV = AY ){n(V)U = n(U)V + 2n(U)V = 2n(V)oU}.

~~ —

)
)
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Taking an inner product with Z in (2.34), we have

— 6n(V)n(2)g(Y,U) + 6n(U)n(Z)g(V,Y) + 4n(V)n(Y)g(eU, Z)
—An(U)n(Y)g(oV, Z) — 4n(U)n(Y)g(V, Z) + 4n(V)n(Y)g(U, Z)
—n(Un(Z)g(Y,oV) +4g9(V,Y)g(oU, Z) + n(V)n(Z2)g(Y, ¢U)
+9(RU, V)Y, Z) +39(V,Y)g(U, Z) — 39(U,Y)g(V, Z)
—4g9(U,Y)g(9V, Z) = A(Y {n(V)g(U, Z) —n(U)g(V, Z)
+29(U)g(oV, Z) = 2n(V)g(¢U, Z)}.
Let {ey, e, €3,...,e, = &} be a local orthonormal basis of vector fields in M.Then
by putting U = Z = ¢; in (2.35) and summing over i from 1 to n, we obtain
(4n + 49 — 10)n(V)n(Y) + (=9+3n +4¢)g(V,Y) + S(V,Y)
—39(Y,9V) = (n — 1 =2¢)A(Y)n(V).

Suppose the associated 1-form A is equal to the associated 1-form 7, then from
(2.36), we get

S(U,V)=(=3n—-60+9)nU)n(V)+ (9 —3n—4¢Y)g(U,V) + 3g9(¢U, V). (2.37)

(2.35)

(2.36)

Thus, we state the following:

Theorem 2.5. If a Lorentzian para-Kenmotsu manifold with respect to the gen-
eralized Tanaka-Webster connection V* is recurrent and the associated 1-form A
15 equal to the associated 1-form n, then the manifold s a generalized n-Einstein
manifold.

3. Ricci solitons in Lorentzian para-Kenmotsu manifold with generalized
Tanaka Webster connection

Suppose the Lorentzian para-Kenmotsu manifold M supports a Ricci soliton
with respect to the generalized Tanaka-Webster connection V*. Then, we have:

(Lxg)(U, V) +25*(U,V)+2Xg(U, V) = 0. (3.1)

If the potential vector field X is pointwise collinear with the structure vector field
¢, meaning X = b€ where b is a function on M, then equation (3.1) leads to:

bg(VLEV)+H(UD)n(V)+bg(U, Vi,E)+(Vb)n(U)+25* (U, V)+2X9(U, V) = 0. (3.2)
Using (2.3) and (2.6) into (3.2), we get

(6n —4b+2X —10)g(U, V) + (4n — 4b+ 4y — 8)n(U)n(V)

+ (UbN(V) + (Vb)n(U) +2S(U, V) = 0. (3:3)
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By setting V' = £ in (3.3), we get

Ub={b+4n — 4+ 2\ — 4y }n(U). (3.4)
Again, replacing U by & in (3.4), we get
(€b) = —2n+2 — A+ 27, (3.5)
Substituting this into (3.4), we get
Ub={2n—2¢+ X —2}n(U). (3.6)
By applying exterior derivative on (3.6), we get
(2n —2¢ + X —2)dn = 0. (3.7)
Since dn # 0 from (3.7), we get
A=21Y+2—2n. (3.8)

Hence, the Ricci soliton is shrinking, steady and expanding according as ¢ <
(n—1),v=(n—1) and ¢ > (n — 1), respectively.

Theorem 3.1. If a Lorentzian para-Kenmotsu manifold with respect to the gen-
eralized Tanaka-Webster connection admits a Ricci soliton (g, X, \) where, X is
pointwise collinear with &, then the Ricci soliton is classified as shrinking, steady,
or expanding based on whether ¢ < (n—1), ¥ = (n—1), or ¢ > (n — 1), respec-
tively.

4. Example of a Lorentzian para-Kenmotsu manifold admitting gener-

alized Tanaka-Webster connection
We consider the 3-dimensional manifold

M? ={(z,y,2) € R*: 2 > 0}, (4.1)
where (z,y, z) are the standard coordinates in R3. Let e, e; and es be the vector
fields on M? defined by

0 0

€l =2, =2+—,63 =2 ~— =
0z

ox dy

Clearly, the above vectors are linearly independent at each point of M? and hence
form a basis of T,M?. Let g be the Lorentzian metric defined by

e. (4.2)

1, if i=j+#3
Gij = 0, if Z;ﬁ]
1, if i=j=3.
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Let n be the 1-form on M? defined as n(X) = g(X, e3) = g(X, &) for all X € x(M)
and let ¢ be the (1,1)-tensor field on M? defined as

per = —eg, pey = —eq, peg = 0. (4-3)

Using linear property of ¢ and g, we have n(§) = —1, $*X = X +n(X)&, n(¢X) = 0,
9(X, &) =n(X),g(¢X,0Y) = g(X,Y) + n(X)n(Y) for all X, Y € x(M). Let V be
the Levi-civita connection with respect to the Lorentzian metric g. Then, we have

le1,e0) =0, ez, e1] =0, [e1, e3] = —eq, [es, e1] = €1, [ea, e3] = —ea, [e3, €2] = €a.
(4.4)

The Riemannian connection V of the Lorentzian metric g is given by

29(VuV,W) =Ug(V,W) +Vg(W,U) = Wg(U,V)

o VW) o) 9w vy,
which is known as Koszul’s formula. we can easily calculate
Ve e1 = —e3, Ve ea =0,V e3 =—e1, Ve =0,
Ve,0 = —€3,Ve,e3 = —€3,Ve,e1 =0, Ve =0,V,e3 = 0. (4.6)

Let ,
U= ZUiei = Ule, + U%ey + Uses,

=1

3
V=) Vie,=V'er+ Ve + Ve,
=1

3
W=> We=W'e + W+ Wes,
=1
for all U,V,W € x(M).
Using
3
U= Ul =U'e,+ U+ Ules,
=1

and the properties of connection we can easily verify that Vi = —U —n(U)¢ and
(Vud)V = —g(oU, V)€ —n(V)oU.

which shows that the chosen manifold is a Lorentzian para-Kenmotsu manifold of
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dimension 3.
We know that

RUVIW =V VyW — Vy VW — Vg W. (4.7)

From the equations (4.6) and (4.7), it can be verified that

R(ey,e9)e1 = —eq, R(e1,e3)e; = —es, R(eq, e3)e; = 0,
R(e1,ex)es = eq, R(eq, e3)es = 0, R(eq, e3)es = —es, (4.8)
R(e1, e2)e3 = 0, R(er, e3)es = —eq, R(ez, e3)es = —es.

Further, we find the following:
V:lel = —263, V:leg = 0, V:leg = —261, V:Qel = 0, (49)
v:2€2 = —263, V:Qeg = —262,V:3€1 = _627V23€2 = —el,VZBeg =0.
Now, we calculate the value of R*(U, V)W
R*<€1, 62)61 = —462, R*(el, 63)61 = —263, R*(ez, 63)61 = 0,

R* (61, 62)62 = 461, R*(el, 63)62 = O7 R* (62, 63)62 = —263, (410)
R*(617 62)63 == O, R*(el, 63)63 == —261 - 262, R*<€2, 63)63 = —261 — 262.
Using the above results we obtain the Ricci tensor as follows:

S(er,e1) = g((R(e1,er)er,er)) + g((R(ez, e1)er, e2)) + g((R(es, e1)er, es)) = 2. (4.11)

Similarly, we have
5(62, 62) = 2, 8(63, 63) = —2.

Now, by using the formula
SUU V) = g(R (e, U)V, e1) + g(R" (e, U)V, €2) + g(R*(e3, U)V, e3),
We get the following results:
S*(e1,e1) = 6,5"(eq, €2) = 6,5%(e3, e3) = —4.

Therefore, above manifold is an Lorentzian para-Kenmotsu manifold admitting
generalized Tanaka-Webster connection.
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