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Abstract: In this paper, we examine a submanifold N of an α-cosymplectic man-
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1. Introduction
The study of manifolds is highly regarded by geometers and physicists for its

broad applications in geometry, physics, and relativity. By examining manifolds,
geometers have utilized two essential tools-the Riemannian curvature tensor and the
Ricci tensor-to understand their differential geometric properties. Over time, these
tools have enabled the introduction of several new concepts to describe complex
structures. One such concept is the ∗-Ricci tensor S∗, initially introduced by
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Tachibana for almost Hermitian manifolds [18] and later explored by Hamada [11]
on real hypersurfaces in non-flat complex space forms. The ∗-Ricci tensor on a
Riemannian manifold M̃ is defined by [18]

S∗(X1, X2) =
1

2
(trace{ϕ ◦R(X1, ϕX2)}), (1.1)

for any vector fields X1, X2 ∈ Γ(TM̃). Here, R̃ represents the Riemannian curva-
ture tensor, S∗ denotes the ∗-Ricci tensor of type (0, 2), ϕ is a tensor field of type
(1, 1) and Γ(TM̃) refers to the set of all smooth vector fields of M̃ .

On the other hand, Hamilton [12] introduced the concept of a Ricci soliton
in 1988 as a generalization of Einstein manifolds. Since then, various classes of
Ricci solitons have been developed. An important example is the ∗-Ricci soliton,
which was defined by Kaimakamis et al. in 2014. They explored this concept in
the setting of real hypersurfaces within complex space forms [14]. A Riemannian
metric g on a smooth manifold M̃ is termed a ∗-Ricci soliton, if there exists a
smooth vector field V such that [14]

(LV g)(X1, X2) + 2S∗(X1, X2) + 2λg(X1, X2) = 0, λ ∈ R,

for any vector fields X1, X2 ∈ M̃ . Here, LV denotes the Lie-derivative operator
along the vector field V .
Dey and Roy introduced the concept of ∗-η-Ricci soliton as a generalization of
∗-Ricci soliton, defined as follows [6]:

(LV g)(X1, X2)+2S∗(X1, X2)+2λg(X1, X2)+2µη(X1)η(X2) = 0, λ, µ ∈ R, (1.2)

for any vector fields X1, X2 ∈ M̃ . If LV g = λg, then the potential vector field V is
conformal Killing, where λ is a function. If λ vanishes identically, then V is said
to be a Killing vector field.

The ∗-η-Ricci solitons have been explored by several geometers, such as Dey
and Roy [6], Dey et al. [7], Dey and Turki [8] and, others.
An important class of almost contact manifolds is the cosymplectic manifolds,
which were introduced by Goldberg and Yano [10] in 1969. The simplest examples
of almost cosymplectic manifolds include the products of almost Kählerian mani-
folds with the real line R or the circle S1 [17]. Many mathematicians have studied
almost cosymplectic manifolds, as seen in the literature ([17], [9], and [13]).

On the other hand, Riemannian manifolds with torqued vector fields, which
are defined as a combination of concurrent and recurrent vector fields, were first
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introduced by Chen in [2]. A vector field τ on a Riemannian manifold M̃ is called
a torqued vector field, if it satisfies the following two conditions:

∇̃X1τ = fX1 + δ(X1)τ, δ(τ) = 0, (1.3)

where ∇̃ is the Levi-Civita connection on M̃ , and for any X1 ∈ Γ(TM̃). The
function f is referred to as the torqued function, and the 1-form δ is called the
torqued form of τ . Chen characterized and studied rectifying submanifolds in Rie-
mannian manifolds equipped with a torqued vector field [2]. In [3], Chen classified
all torqued vector fields on Riemannian manifolds and investigated Ricci solitons
with torqued potential fields.

Inspired by the aforementioned studies, this paper investigates submanifold N
of an α-cosymplectic manifold M̃ equipped with a torqued vector field τ . We show
that if the characteristic vector field ξ on N is both a torqued and recurrent vec-
tor field, then N must be a cosymplectic manifold. Additionally, we explore the
characteristics of the tangential component of the vector field τ on the subman-
ifold N of M̃ . We demonstrate that if N admits a ∗-η-Ricci soliton within α-
cosymplectic manifold M̃ with torqued vector field τ , then N becomes η-Einstein.
Finally, we provide an example of a 3-dimensional submanifold of a 5-dimensional
α-cosymplectic manifold to illustrate and verify some of our results.

2. Preliminaries
Let M̃ be an m-dimensional differential manifold equipped with the structure

tensors (ϕ, ξ, η, g), where ϕ is a (1, 1)-tensor field, ξ is a characteristic vector field,
η is a 1-form and g is a Riemannian metric. These tensors satisfy the following
conditions [1]

ϕ2X1 = −X1 + η(X1)ξ, (2.1)

η(ξ) = 1, ϕξ = 0, η(ϕX1) = 0, (2.2)

g(ϕX1, ϕX2) = g(X1, X2)− η(X1)η(X2), η(X1) = g(X1, ξ) (2.3)

for all vector fieldsX1 andX2 on M̃ , where ∇̃ denotes the Levi-civita connection
associated with the Riemannian metric g. Then M̃ is said to admit almost contact
structure (ϕ, ξ, η, g) [1].
The fundamental 2-form Φ on M̃ is defined as follows:

Φ(X1, X2) = g(X1, X2),

for all X1, X2 ∈ Γ(TM̃). An almost contact metric manifold (M̃, ϕ, ξ, η, g) is said
to be almost cosymplectic [10] if dη = 0 and dΦ = 0, where d denotes the exterior
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operator. An almost contact manifold (M̃, ϕ, ξ, η, g) is considered normal if the
Nijenhuis torsion

Nϕ(X1, X2) = [ϕX1, ϕX2]− ϕ[ϕX1, X2]− [X1, ϕX2] + ϕ2[X1, X2] + 2dη(X1, X2)ξ

vanishes for any vector fields X1 and X2. A normal almost cosymplectic manifold
is called a cosymplectic manifold.
An almost contact metric manifold M̃ is said to be almost α-Kenmotsu if it satisfies
the conditions dη = 0 and dΦ = 2αη ∧ Φ, where α is a non-zero real constant.

Kim and Pak [15] introduced a new class of manifolds called almost α-cosymplectic
manifolds by combining the concepts of almost α-Kenmotsu and almost cosymplec-
tic manifolds, where α is a scalar. An almost α-cosymplectic manifold is defined
by the following conditions:

dη = 0, dΦ = 2αη ∧ Φ,

for any real number α. A normal almost α-cosymplectic manifold is referred to as
an α-cosymplectic manifold. Specifically, an α-cosymplectic manifold is:

� cosymplectic when α = 0, or

� α-Kenmotsu when α ̸= 0, with α ∈ R.

In a α-cosymplectic manifold, we have [13]:

(∇̃X1ϕ)X2 = α(g(ϕX1, X2)ξ − η(X2)ϕX1), (2.4)

∇̃X1ξ = −αϕ2X1, (2.5)

R̃(X1, X2)ξ = α2(η(X1)X2 − η(X2)X1), (2.6)

S(X1, ξ) = −α2(m− 1)η(X1), (2.7)

for all X1, X2 ∈ Γ(M̃) and α ∈ R, where R̃ is the Riemannian curvature tensor
and S is the Ricci curvature tensor of M̃ , respectively.

Let N be an n-dimensional (n ≤ m) submanifold of an α-cosymplectic manifold
M̃ with induced metric g. Let Γ(TN) and Γ(T⊥N) denote the tangent and normal
subspaces of N in M̃ , respectively.
Then the Gauss and Weingarten formulas are given by [4]:

∇̃X1X2 = ∇X1X2 + σ(X1, X2) (2.8)

and
∇̃X1X5 = −AX5X1 +∇⊥

X1
X5, (2.9)
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for all X1, X2 ∈ Γ(TN) and X5 ∈ Γ(T⊥N), where ∇ and ∇⊥ denote the induced
connections on the tangent bundle TN and T⊥N of N , respectively.
The second fundamental form σ and shape operator A are related by the following
equation:

g(AX5X1, X2) = g(σ(X1, X2), X5), (2.10)

for any X1, X2 ∈ Γ(TN) and X5 ∈ Γ(T⊥N).
The first covariant derivative of the second fundamental form σ is defined by [4]

(∇̃X1σ)(X2, X3) = ∇⊥
X1
σ(X2, X3)− σ(∇X1X2, X3)− σ(X2,∇X1X3), (2.11)

for any X1, X2, X3 ∈ Γ(TN).
The mean curvature vector H of N is given by

H =
1

n
tr(σ) =

1

n

n∑
i=1

σ(ei, ei), (2.12)

where n is the dimension of N and {e1, e2, ...en} is the local orthonormal frames of
N .
A submanifold N is said to be totally umbilical if

σ(X1, X2) = g(X1, X2)H, (2.13)

for any X1, X2 ∈ Γ(TN). A submanifold N is said to be totally geodesic if
σ(X1, X2) = 0 and N is said to be minimal if H = 0.
The equation of Gauss for any submanifold N of a Riemannian manifold M̃ is given
by [4]

R̃(X1, X2)X3 =R(X1, X2)X3 + Aσ(X1,X3)X2 − Aσ(X2,X3)X1 + (∇̃X1σ)(X2, X3)

− (∇̃X2σ)(X1, X3), (2.14)

where R is the Rimannian curvature tensor of N .
The tangential component of the equation (2.14) is given by

g(R(X1, X2)X3, X5) = g(R̃(X1, X2)X3, X5) + g(σ(X1, X5), σ(X2, X3))

− g(σ(X1, X3), σ(X2, X5) (2.15)

for any X1, X2,X3 ∈ Γ(TN).
Using equations (2.5) and (2.8), we obtain:

∇X1ξ = α(X1 − η(X1)ξ), (2.16)



52 South East Asian J. of Mathematics and Mathematical Sciences

σ(X1, ξ) = 0, (2.17)

for all X1, X2 ∈ Γ(TN).
By substituting equations (2.11), (2.16) and (2.17) in equation (2.14), we find

R(X1, X2)ξ = α2(η(X1)X2 − η(X2)X1). (2.18)

Contraction of previous equation gives us

S(X1, ξ) = −α2(n− 1)η(X1). (2.19)

Lemma 2.1. [13] In an m-dimensional α-cosymplectic manifold M̃ , the ∗-Ricci
tensor is given by

S∗(X1, X2) = S(X1, X2) + α2(m− 2)g(X1, X2) + α2η(X1)η(X2), (2.20)

for any X1, X2 ∈ Γ(TM̃), where S and S∗ are the Ricci tensor and ∗-Ricci tensor
of type (0, 2), respectively.

Definition 2.1. A submanifold N of an α-cosymplectic manifold M̃ is said to be
η-Einstein if its Ricci tensor S satisfies the following expression:

S(X1, X2) = ag(X1, X2) + bη(X1)η(X2),

where a and b are smooth functions on N .
A vector field v on a Riemannian manifold (M̃, g) is called torse-forming if it

satisfies the condition
∇̃X1v = fX1 + δ(X1)v, (2.21)

for any X1 ∈ Γ(TM̃), where f is a function and δ is a 1-form. The 1-form δ is
referred to as the generating form, and the function f is called the conformal scalar
of v.
If the 1-form δ in (2.21) vanishes identically, then the vector field v is called con-
circular. If f = 1 and δ = 0, the vector field v is called concurrent. The vector
field v is referred to as recurrent if it satisfies (2.21) with f = 0. Additionally, if
both f = 0 and δ = 0, the vector field v is called parallel.

Let u : N → M̃ be an isometric immersion of a submanifold N into the Rie-
mannian manifold M̃ . For each point p ∈ N , we denote TpN and T⊥

p N as the
tangent and the normal spaces at p, respectively. There is a natural orthogonal
decomposition given by [2]

TpM̃ = TpN + T⊥
p N.
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Let N be a submanifold of a α-cosymplectic manifold M̃ endowed with a torqued
vector field τ , and let ψ : N → M̃ is an isometric immersion. Then, we have [2,
19]

τ = τT + τ⊥, (2.22)

where τT and τ⊥ represent the tangential and normal components of τ on M̃ ,
respectively.

3. Submanifold of α-cosymplectic manifold admitting ∗-η-Ricci soliton
and with torqued vector field

This section examines the study of a submanifold N of an α-cosymplectic man-
ifold M̃ endowed with a torqued vector field.

Theorem 3.1. Let N be a submanifold of an α-cosymplectic manifold M̃ equipped
with a torqued vector field τ , and let the characteristic vector field ξ be a torse-
forming vector field on N . Then, N is cosymplectic submanifold provided ξ is
torqued vector field.
Proof. Let τ be a torqued vector field on M̃ . Then, from equation (1.3) we have

∇̃X1τ = fX1 + δ(X1)τ, δ(τ) = 0, (3.1)

for any X1 ∈ Γ(TM̃). Assuming ξ is a torse-forming vector field on M̃ , replacing
τ with ξ in equation (3.1) gives us

∇̃X1ξ = fX1 + δ(X1)ξ. (3.2)

Substituting equations (2.8) and (2.17) in (3.2), we obtain

∇X1ξ = fX1 + δ(X1)ξ, (3.3)

for any X1 ∈ Γ(TN).
Taking the inner product of (3.3) with ξ, we get

δ(X1) = −fη(X1). (3.4)

By using (2.16) and (3.4) in (3.3), we find

α(X1 − η(X1)ξ) = f(X1 − η(X1)ξ). (3.5)

Taking the inner product of (3.5) with an arbitrary vector field X2, we obtain

(f − α)g(ϕX1, ϕX2) = 0. (3.6)
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Let {e1, e2, ..., en} be an orthonormal basis of the tangent space TpN , ∀p ∈ N . By
setting X1 = X2 = ei in (3.6) and summing over i = 1, 2, ..., n, we obtain

(f − α)n = 0. (3.7)

Since n ̸= 0, which implies that f = α.
Now, we consider the following cases:

Case I: If ξ is a torqued vector field on N , then we get δ(ξ) = 0. From (3.4), it
follows that f = 0. In this case, N is a cosymplectic submanifold and thus ξ is a
Killing vector field.
Case II: If ξ is a recurrent vector field on N , then we have that f = 0. Conse-
quently, N is a cosymplectic submanifold, and ξ is a Killing vector field.

Theorem 3.2. Let N be a submanifold of an α-cosymplectic manifold M̃ equipped
with a torse-forming vector field τ . The submanifold N is totally geodesic if and
only if the tangential component τT of τ is a torse-forming vector field on N whose
conformal scalar is the restriction of the torqued function, and whose generating
form is the restriction of the torqued function of τ on N .
Proof. Since τ is a torqued vector field on the ambient space M̃ , it follows from
equations (1.3), (2.22), (2.8) and (2.9) that

∇X1τ
T + h(X1, τ

T ) +∇⊥
X1
τ⊥ − Aτ⊥X1 = fX1 + δ(X1)τ

T + δ(X1)τ
⊥, (3.8)

for any X1 ∈ Γ(TN).
By comparing the tangential and normal components of equation (3.8), we arrive
at

∇X1τ
T − Aτ⊥X1 = fX1 + δ(X1)τ

T , (3.9)

h(X1, τ
T ) +∇⊥

X1
τ⊥ = δ(X1)τ

⊥.

If N is a totally geodesic submanifold of M̃ , then (3.9) simplifies to

∇X1τ
T = fX1 + δ(X1)τ

T , (3.10)

which implies that τT is torse-forming on N . The converse is straightforward.
From now on, we assume that the submanifold N admits a ∗-η-Ricci soliton in

Theorem (3.2). Considering equation (3.9), we have the following cases:

Case I: If we take τT ∈ Γ(D), then from equations (2.10), (2.16), (2.17) and (3.9),
we get

g(∇X1τ
T , ξ) = g(fX1, ξ), (3.11)
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where TN = D ⊕ spanξ, for any X1 ∈ Γ(TN). Since g is non-degenerate, from
equation (3.11) we have

∇X1τ
T = fX1, (3.12)

which shows that the vector field τT is concircular on N .
On the other hand, from the definition of the Lie derivative and (3.12), we

obtain

(LτT g)(X1, X2) = g(∇X1τ
T , X2) + g(X1,∇X2τ

T )

= 2fg(X1, X2), (3.13)

for any X1, X2 ∈ Γ(TN), which means that the vector field τT is conformal Killing.
Also, from (1.2), (2.20) and (3.13), we obtain

S(X1, X2) = −(λ+ f + α2(n− 2))g(X1, X2)− (µ+ α2)η(X1)η(X2),

where S is the Ricci tensor of N . Hence, N is η-Einstein.
Case II: If we use ξ instead of τT in (3.10), we have

∇X1ξ = fX1 + δ(X1)ξ. (3.14)

Taking inner product of (3.14) with ξ, we get

g(∇X1ξ, ξ) = fη(X1) + δ(X1).

Utilizing (2.16) in previous equation, we get

δ(X1) = −fη(X1).

It is straightforward to see that δ(ξ) ̸= 0. Therefore, ξ is a torse-forming vector
field on N .

Theorem 3.3. Let N be a submanifold of an α-cosymplectic manifold M̃ endowed
with a torse-forming vector field τ . If the submanifold N is totally geodesic and
the vector field τT is orthogonal to the characteristic vector field ξ, then τT is a
recurrent vector field on N .
Proof. Let τ be a torse-forming vector field on M̃ . Then, from the definition of
Lie derivative and from equation (1.2), we have

(Lτg)(X1, X2) = Lτg(X1, X2)− g(LτX1, X2)− g(X1, LτX2)

= g(∇̃X1τ,X2) + g(X1, ∇̃X2τ). (3.15)
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By substituting equation (2.22) in the above equation, we get

(Lτg)(X1, X2) = g(∇̃X1τ
T + ∇̃X1τ

⊥, X2) + g(X1, ∇̃X2τ
T + ∇̃X2τ

⊥). (3.16)

Now, by applying (2.8), (2.9) in (3.16) and if N is a totally geodesic submanifold
of M̃ , then we obtain

(Lτg)(X1, X2) = g(∇X1τ
T , X2) + g(X1,∇X2τ

T ). (3.17)

Applying (3.10) to (3.17), we arrive at

(Lτg)(X1, X2) = 2fg(X1, X2) + δ(X1)g(τ
T , X2) + δ(X2)g(X1, τ

T ), (3.18)

for any X1, X2 ∈ Γ(TN).
Upon substituting X1 = X2 = ξ in (3.18), we obtain

(Lτg)(ξ, ξ) = 2f + 2δ(ξ)η(τT ). (3.19)

However, by using (2.2), (2.8), (2.16), (2.17) and (2.22), we get

(Lτg)(ξ, ξ) = −2g(Lτξ, ξ)

= −2g(∇̃τξ, ξ) + 2g(∇̃ξτ, ξ)

= −2g(∇τξ, ξ)− 2g(h(τ, ξ), ξ) + 2g(∇ξτ, ξ) + 2g(h(τ, ξ), ξ)

= 2g(∇ξ(τ
T + τ⊥), ξ)

= 2g(∇ξτ
T , ξ). (3.20)

Furthermore, it is straightforward to show that ∇ξ(g(τ
T , ξ)) = g(∇ξτ

T , ξ). There-
fore, from (3.19) and (3.20), we get

f + δ(ξ)η(τT ) = ∇ξ(g(τ
T , ξ)). (3.21)

If the vector field τT is orthogonal to ξ, then from equation (3.21), we obtain f = 0.
It follows from (3.10) that τT is a recurrent vector field on N .

Thus, the proof is complete.

Theorem 3.4. Let M̃ be an α-cosymplectic manifold endowed with a torqued vector
field τ , and let N be a submanifold that admits a ∗-η-Ricci soliton of M̃ . Then
(N, g, ξ, λ, µ) is η-Einstein and the constants λ and µ satisfy the relation λ = −µ.
Proof. If we substitute ξ for τT in (3.9), we have

∇X1ξ − Aτ⊥X1 = fX1 + δ(X1)ξ. (3.22)
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Making use of (2.16) in (3.22), we get

Aτ⊥X1 = (α− f)X1 − αη(X1)ξ − δ(X1)ξ. (3.23)

Additionally, using the equations (2.3), (2.10) and taking the inner product with
X2 in the above equation, we obtain

g(σ(X1, X2), τ
T ) = (α− f)g(X1, X2)− (αη(X1) + δ(X1))η(X2). (3.24)

By interchanging the roles of X1 and X2 in (3.24), we obtain

g(σ(X2, X1), τ
T ) = (α− f)g(X2, X1)− (αη(X2) + δ(X2))η(X1). (3.25)

As σ and g exhibit symmetry, from (3.24) and (3.25) we have

2g(σ(X1, X2), τ
T ) = 2(α−f)g(X1, X2)−2αη(X1)η(X2)−δ(X1)η(X2)−δ(X2)η(X1),

(3.26)
for any X1, X2 ∈ Γ(TN).
On the other hand, using the definition of Lie derivative along with equations (2.3),
(2.10), (3.22) and (3.26), we obtain

(Lξg)(X1, X2) = g(∇X1ξ,X2) + g(X1,∇X2ξ)

= g(fX1 + δ(X1)ξ + Aτ⊥X1, X2)

+ g(fX2 + δ(X2)ξ + Aτ⊥X2, X1)

= 2αg(X1, X2)− 2αη(X1)η(X2). (3.27)

Since N is a submanifold admitting a ∗-η-Ricci soliton, from equations (1.2) and
(3.27), we have

S∗(X1, X2) = −(α + λ)g(X1, X2)− (µ− α)η(X1)η(X2). (3.28)

Utilizing (2.20) in (3.28), we find

S(X1, X2) = −(λ+ α + α2(n− 2))g(X1, X2)− (µ− α + α2)η(X1)η(X2). (3.29)

which implies that N is η-Einstein.
Taking X2 = ξ in (3.29), we get

S(X1, ξ) = −(λ+ µ+ α2(n− 1))η(X1). (3.30)

From (2.19) and (3.30), we obtain

λ+ µ = 0 =⇒ λ = −µ. (3.31)
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Thus, the theorem is proved.

4. Example: 3-dimensional submanifold of an 5-dimensional α- cosym-
plectic manifold

In this section, we give an example of a 5-dimensional α-cosymplectic manifold.
Subsequently, we utilize this example to construct a three-dimensional submani-
fold, thereby verifying the results we have obtained.
Let us consider a five-dimensional manifold M̃ = {x̃1, x̃2, x̃3, x̃4, t ∈ R5}, here
(x̃1, x̃2, x̃3, x̃4, t) represent the standard coordinates of R5. The linearly independent
vector fields {e̊1, e̊2, e̊3, e̊4, e̊5} on M̃ are given by

e̊1 = αeαt
∂

∂x̃1
, e̊2 = αeαt

∂

∂x̃2
, e̊3 = αeαt

∂

∂x̃3
, e̊4 = αeαt

∂

∂x̃4
, e̊5 = − ∂

∂t
.

Now, let us define Riemannian metric g on M̃ as

g(e̊i, e̊j) =

{
1, if i = j,

0, if i ̸= j, for 1 ≤ i, j ≤ 5.

The 1-form η corresponding to the metric g is defined as η(X1) = g(X1, ξ) and
setting e̊5 = ξ we observe that η(e̊5) = 1, and η(e̊i) = 0 for i=1, 2, 3, 4.
Furthermore, let us define the (1, 1)-tensor field ϕ as follows:

ϕ(e̊1) = −e̊4, ϕ(e̊2) = e̊1, ϕ(e̊3) = −e̊2, ϕ(e̊4) = e̊3, ϕ(e̊5) = 0.

Considering the equations above, it is straightforward to verify that ϕ2X1 = −X1+
η(X1)ξ and g(ϕX1, ϕX2) = g(X1, X2)− η(X1)η(X2), for any vector fields X1, X2 ∈
TM̃5. This demonstrates that the structure M̃(ϕ, ξ, η, g) constitutes an almost
contact metric manifold.
Suppose ∇̃ represents the Levi-Civita connection corresponding to the metric g.
This leads to:

[e̊i, e̊j] =

{
αe̊i, if i = 1, 2, 3, 4; j = 5

0, otherwise,
(4.1)

here [., .] represents the Lie bracket.
By utilizing Koszul’s formula and (4.1), we derive the following:

∇̃e̊1 e̊1 = −αe̊5, ∇̃e̊1 e̊2 = 0, ∇̃e̊1 e̊3 = 0, ∇̃e̊1 e̊4 = 0, ∇̃e̊1 e̊5 = αe̊1,

∇̃e̊2 e̊1 = 0, ∇̃e̊2 e̊2 = −αe̊5, ∇̃e̊2 e̊3 = 0, ∇̃e̊2 e̊4 = 0, ∇̃e̊2 e̊5 = αe̊2,

∇̃e̊3 e̊1 = 0, ∇̃e̊3 e̊2 = 0, ∇̃e̊3 e̊3 = −αe̊5, ∇̃e̊3 e̊4 = 0, ∇̃e̊3 e̊5 = αe̊3,

∇̃e̊4 e̊1 = 0, ∇̃e̊4 e̊2 = 0, ∇̃e̊4 e̊3 = 0, ∇̃e̊4 e̊4 = −αe̊5, ∇̃e̊4 e̊5 = αe̊4,

∇̃e̊5 e̊1 = 0, ∇̃e̊5 e̊2 = 0, ∇̃e̊5 e̊3 = 0, ∇̃e̊5 e̊4 = 0, ∇̃e̊5 e̊5 = 0.
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In consequence of above equations, the manifold M̃ satisfies

∇̃X1ξ = −αϕ2X1,

and
(∇̃X1ϕ)X2 = α(g(ϕX1, X2)ξ − η(X2)ϕX1),

The components of the Riemannian curvature tensor R̃ can be derived using the
equation R̃(X1, X2)X3 = ∇̃X1∇̃X2X3 − ∇̃X2∇̃X1X3 − ∇̃[X1,X2]X3. This yields:

R̃(e̊1, e̊2)e̊2 = R̃(e̊1, e̊3)e̊3 = R̃(e̊1, e̊4)e̊4 = R̃(e̊1, e̊5)e̊5 = −α2e̊1,

R̃(e̊1, e̊2)e̊1 = α2e̊2, R̃(e̊1, e̊3)e̊1 = R̃(e̊2, e̊3)e̊2 = R̃(e̊5, e̊3)e̊5 = α2e̊3,

R̃(e̊2, e̊3)e̊3 = R̃(e̊2, e̊4)e̊4 = R̃(e̊2, e̊5)e̊5 = −α2e̊2, R̃(e̊3, e̊4)̊e = −α2e̊3,

R̃(e̊1, e̊5)e̊2 = R̃(e̊1, e̊5)e̊1 = R̃(e̊4, e̊5)e̊4 = R̃(e̊3, e̊5)e̊3 = α2e̊5,

R̃(e̊1, e̊4)e̊1 = R̃(e̊2, e̊4)e̊2 = R̃(e̊3, e̊4)e̊3 = R̃(e̊5, e̊4)e̊5 = α2e̊4.

Making use of (2.6) and performing direct calculations, we get

R̃(e̊1, e̊2)e̊2 = α2[g(e̊1, e̊2)e̊2 − g(e̊2, e̊2)e̊1] = −α2e̊2.

R̃(e̊2, e̊3)e̊2 = α2[g(e̊2, e̊2)e̊3 − g(e̊3, e̊2)e̊2] = α2e̊3.

R̃(e̊2, e̊5)e̊5 = α2[g(e̊2, e̊5)e̊5 − g(e̊5, e̊5)e̊2] = −α2e̊2.

R̃(e̊4, e̊5)e̊4 = α2[g(e̊4, e̊4)e̊5 − g(e̊5, e̊4)e̊4] = α2e̊5.

Similarly, all other components satisfy the above conditions.
Hence, from the above curvature tensor expressions, we finally conclude that M̃5

constitutes an α-cosymplectic manifold.
Now, let us consider the three-dimensional submanifold N3 of M̃5(ϕ, ξ, η, g)

given by the isometric immersion ψ : N → M̃ defined by ψ(x̃1, x̃2, t) = (x̃1, x̃2, 0, 0, t).
It is clear that N = {(x̃1, x̃2, t) ∈ R3}, where (x̃1, x̃2, t) represent standard coor-
dinates in R3, and it forms a 3-dimensional submanifold of M̃ . The vector fields
{e̊1, e̊2, e̊5} are given by

e̊1 = αeαt
∂

∂x̃1
, e̊2 = αeαt

∂

∂x̃2
, e̊5 = − ∂

∂t
.

Let us define metric g1 as

g1(e̊i, e̊j) =

{
1, if i = j,

0, if i ̸= j, where i, j = 1, 2, 5.
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Taking e̊5 = ξ, we observe that the 1-form η1(e̊5) = g̃1(ξ, e̊5) = 1 and ϕ1 denote the
(1, 1)-tensor field is defined as

ϕ1(e̊1) = −e̊2, ϕ2(e̊2) = e̊1, ϕ3(e̊5) = 0.

Utilizing the equations above, it is straightforward to show that

ϕ2
1X1 = −X1 + η1(X1)ξ, η1(e̊5) = 1,

g1(ϕ1X1, ϕ1X2) = g1(X1, X2)− η1(X1)η1(X2),

for any X1, X2 on N . This indicates that N(ϕ1, ξ, η1, g1) constitutes a submanifold
of M̃ .
Suppose ∇ represent the Levi-civita connection induced by the metric g1. Utilizing
Koszul’s formula, we obtain the following:

∇e̊1 e̊1 = −αe̊5,∇e̊1 e̊2 = 0,∇e̊1 e̊5 = αe̊1,

∇e̊2 e̊1 = 0,∇e̊2 e̊2 = −αe̊5,∇e̊2 e̊5 = αe̊2,

∇e̊5 e̊1 = 0,∇e̊5 e̊2 = 0,∇e̊5 e̊5 = 0.

The above obtained results satisfy ∇X1ξ = −αϕ2X1. The Riemannian curva-
ture tensor R utilizing the formula R(X1, X2)X3 = ∇X1∇X2X3 − ∇X2∇X1X3 −
∇[X1,X2]X3 is given by

R(e̊1, e̊2)e̊2 = R(e̊1, e̊5)e̊5 = −α2e̊1,

R(e̊1, e̊2)e̊1 = R(e̊2, e̊5)e̊5 = α2e̊2

R(e̊1, e̊5)e̊2 = R(e̊1, e̊5)e̊1 = α2e̊5,

By direct calculations and using (2.18), we get

R(e̊1, e̊2)e̊2 = −α2e̊1, R(e̊2, e̊5)e̊5 = α2e̊2, R(e̊1, e̊5)e̊1 = α2e̊5.

Thus, N(ϕ1, ξ, η1, g1) forms a 3-dimensional α-cosymplectic manifold.
With the help of the above results we get the components of the Ricci tensor as
follows:

S(e̊1, e̊1) = S(e̊2, e̊2) = S(e̊3, e̊3) = −2α2. (4.2)

From (3.29) for n = 3, we get

S(e̊3, e̊3) = −λ− µ− 2α2. (4.3)

Equating (4.2) and (4.3), we obtain

λ = −µ.

Hence λ and µ satisfies the equation (3.31) for n = 3 and, so g defines a ∗-η-Ricci
soliton on a 3-dimensional α-cosymplectic manifold, which verifies Theorem (3.4).
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