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1. Introduction

The study of manifolds is highly regarded by geometers and physicists for its
broad applications in geometry, physics, and relativity. By examining manifolds,
geometers have utilized two essential tools-the Riemannian curvature tensor and the
Ricci tensor-to understand their differential geometric properties. Over time, these
tools have enabled the introduction of several new concepts to describe complex
structures. One such concept is the *-Ricci tensor S*, initially introduced by
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Tachibana for almost Hermitian manifolds [18] and later explored by Hamada [11]
on real hypersurfaces in non-flat complex space forms. The *-Ricci tensor on a
Riemannian manifold M is defined by [18§]

S* (X1, X) = %(tmce{gb o R(X1,6Xs)}), (1.1)

for any vector fields Xy, X, € I'(T'M). Here, R represents the Riemannian curva-
ture tensor, S* denotes the *-Ricci tensor of type (0,2), ¢ is a tensor field of type
(1,1) and T(T'M) refers to the set of all smooth vector fields of M.

On the other hand, Hamilton [12] introduced the concept of a Ricci soliton
in 1988 as a generalization of Einstein manifolds. Since then, various classes of
Ricci solitons have been developed. An important example is the *-Ricci soliton,
which was defined by Kaimakamis et al. in 2014. They explored this concept in
the setting of real hypersurfaces within complex space forms [14]. A Riemannian
metric g on a smooth manifold M is termed a *-Ricci soliton, if there exists a
smooth vector field V' such that [14]

(ng)(Xl,X2> + 25*(X1,X2) + 2)\g<X1, XQ) = 0, )\ S R,

for any vector fields X, Xy € M. Here, Ly denotes the Lie-derivative operator
along the vector field V.

Dey and Roy introduced the concept of x-n-Ricci soliton as a generalization of
«-Ricci soliton, defined as follows [6]:

(Lvg) (X1, X2)+25"(X1, Xo)+2Ag( X1, Xo)+2un(X1)n(Xe) =0, A peR, (1.2)

for any vector fields X, Xo € M. If Lyyg = \g, then the potential vector field V' is
conformal Killing, where A is a function. If A vanishes identically, then V is said
to be a Killing vector field.

The *-n-Ricci solitons have been explored by several geometers, such as Dey
and Roy [6], Dey et al. [7], Dey and Turki [8] and, others.
An important class of almost contact manifolds is the cosymplectic manifolds,
which were introduced by Goldberg and Yano [10] in 1969. The simplest examples
of almost cosymplectic manifolds include the products of almost Kéhlerian mani-
folds with the real line R or the circle S' [17]. Many mathematicians have studied
almost cosymplectic manifolds, as seen in the literature ([17], [9], and [13]).

On the other hand, Riemannian manifolds with torqued vector fields, which
are defined as a combination of concurrent and recurrent vector fields, were first



Some Results on Submanifolds of a a-cosymplectic Manifold ... 49

introduced by Chen in [2]. A vector field 7 on a Riemannian manifold M is called
a torqued vector field, if it satisfies the following two conditions:

Vx, 7= fX1+6(X1)r, 6(r)=0, (1.3)

where V is the Levi-Civita connection on M , and for any X; € I'(T'M). The
function f is referred to as the torqued function, and the 1-form ¢ is called the
torqued form of 7. Chen characterized and studied rectifying submanifolds in Rie-
mannian manifolds equipped with a torqued vector field [2]. In [3], Chen classified
all torqued vector fields on Riemannian manifolds and investigated Ricci solitons
with torqued potential fields.

Inspired by the aforementioned studies, this paper investigates submanifold N
of an a-cosymplectic manifold M equipped with a torqued vector field 7. We show
that if the characteristic vector field £ on N is both a torqued and recurrent vec-
tor field, then N must be a cosymplectic manifold. Additionally, we explore the
characteristics of the tangential component of the vector field 7 on the subman-
ifold N of M. We demonstrate that if N admits a s-7-Ricci soliton within a-
cosymplectic manifold M with torqued vector field 7, then N becomes n-Einstein.
Finally, we provide an example of a 3-dimensional submanifold of a 5-dimensional
a-cosymplectic manifold to illustrate and verify some of our results.

2. Preliminaries

Let M be an m-dimensional differential manifold equipped with the structure
tensors (¢, &, n, g), where ¢ is a (1, 1)-tensor field, £ is a characteristic vector field,
n is a 1-form and ¢ is a Riemannian metric. These tensors satisfy the following
conditions [1]

X1 = —X1 +n(X1)E, (2.1)
9(0X1,9X2) = g(Xy, Xo) = n(X1)n(Xz2), n(X1) = g(Xy,8) (2.3)

for all vector fields X; and X, on M , Wwhere \V/ denotes the Levi-civita connection
associated with the Riemannian metric g. Then M is said to admit almost contact

StruCture (¢7 57 T]? g) [1] -
The fundamental 2-form ® on M is defined as follows:

q)(leXQ) = g(X17X2)7

for all Xy, X, € T(TM). An almost contact metric manifold (M, ¢, £, 7, g) is said
to be almost cosymplectic [10] if dp = 0 and d® = 0, where d denotes the exterior



50 South FEast Asian J. of Mathematics and Mathematical Sciences

operator. An almost contact manifold (M ,0,€,m, ) is considered normal if the
Nijenhuis torsion

Ny(X1, X2) = [0X1, 0 X2] — 9[0.X1, Xo] — [X1, 0.Xo] + 0% [ X1, Xo] + 2dn (X1, X2)€

vanishes for any vector fields X; and X5. A normal almost cosymplectic manifold
is called a cosymplectic manifold.

An almost contact metric manifold M is said to be almost a-Kenmotsu if it satisfies
the conditions dn = 0 and d® = 2an A ¢, where « is a non-zero real constant.

Kim and Pak [15] introduced a new class of manifolds called almost a-cosymplectic
manifolds by combining the concepts of almost a-Kenmotsu and almost cosymplec-
tic manifolds, where « is a scalar. An almost a-cosymplectic manifold is defined
by the following conditions:

dn=0, d®=2anA P,

for any real number o. A normal almost a-cosymplectic manifold is referred to as
an a-cosymplectic manifold. Specifically, an a-cosymplectic manifold is:

e cosymplectic when a = 0, or
e a-Kenmotsu when o # 0, with a € R.

In a a-cosymplectic manifold, we have [13]:

(Vx,0)Xs = a(g(9X1, X2)§ — n(Xa)9 X)), (2.4)
Vx, € = —ap? Xy, (2.5)

R(X1, X2)€ = o?(n(X1) X2 — n(X2) X1), (2.6)
S(X1,¢) = —a®(m — 1)n(Xy), (2.7)

for all X, X, € I'(M) and o € R, where R is the Riemannian curvature tensor
and S is the Ricei curvature tensor of M, respectively.

Let N be an n-dimensional (n < m) submanifold of an a-cosymplectic manifold
M with induced metric g. Let T(T'N) and I'(T-N) denote the tangent and normal
subspaces of N in M, respectively.
Then the Gauss and Weingarten formulas are given by [4]:

Vx, Xo = Vi, Xo + 0(X1, Xo) (2.8)

and )
VxiXs = —Ax, X1 + Vi, X, (2.9)
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for all X;, Xo € T(T'N) and X5 € T'(T*N), where V and V+ denote the induced
connections on the tangent bundle TN and T+ N of N, respectively.
The second fundamental form o and shape operator A are related by the following
equation:

9(Ax; X1, X2) = g(0(X1, Xa2), X5), (2.10)
for any X, X, € ['(TN) and X5 € T'(T+N).
The first covariant derivative of the second fundamental form o is defined by [4]

(ﬁxla)(Xg,Xg) = V§10(X2,X3) - O'(VXlXQ,Xg) — U(XQ, VX1X3), (211)

for any X, X, X5 € I'(T'N).
The mean curvature vector H of N is given by

n

H= %tr(a) _ %Z o(e ex), (2.12)

where n is the dimension of N and {ey, es, ...€,, } is the local orthonormal frames of
N.
A submanifold N is said to be totally umbilical if

U(Xl,XQ) :g<X1,X2)H, (213)

for any X;, Xy € I'(T'N). A submanifold N is said to be totally geodesic if
0(X1,X5) =0 and N is said to be minimal if H = 0. )
The equation of Gauss for any submanifold /V of a Riemannian manifold M is given

by [4]
R(XDXQ)X?, =R(X1, X2) X5 + Ag(x1,x5) X2 — Ao(x0,x5) X1 + (@XlU)(Xz,Xs)
— (Vx,0)(X3, Xs), (2.14)

where R is the Rimannian curvature tensor of N.
The tangential component of the equation (2.14) is given by

9(R(X1, X2) X3, X5) = g(R(X1, X2) X3, X5) + g(0(X1, X5), 0(Xa, X3))
— g(O(Xl,Xg),O'(XQ,Xg)) (215)

for any X3, X5, X3 € T'(TN).
Using equations (2.5) and (2.8), we obtain:

Vi, § = a(X1 —n(X1)§), (2.16)
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o(X1,€) =0, (2.17)

for all X, Xy € I'(T'N).
By substituting equations (2.11), (2.16) and (2.17) in equation (2.14), we find

R(X1, X2)¢ = o*(n(X1) Xy — n(X2)X1). (2.18)
Contraction of previous equation gives us
S(X1,§) = —a*(n — L)n(Xy). (2.19)

Lemma 2.1. [13]| In an m-dimensional a-cosymplectic manifold M, the %-Ricci
tensor is given by

S*(Xl,XQ) = S(Xl,Xg) + oz2(m — 2)g(X1,X2) + (Jézn(Xl)n(Xg), (220)

for any X1, Xy € T(TM), where S and S* are the Ricci tensor and x-Ricci tensor
of type (0,2), respectively.

Definition 2.1. A submanifold N of an a-cosymplectic manifold M is said to be
n-Finstein if its Ricci tensor S satisfies the following expression:

S(X1, Xs) = ag(X1, Xo) + bn(X1)n(Xs),

where a and b are smooth functions on N.
A vector field v on a Riemannian manifold (M, g) is called torse-forming if it
satisfies the condition )
lev == fX1 + 5(X1)U, (221)

for any X, € T(TM), where f is a function and ¢ is a I-form. The 1-form § is
referred to as the generating form, and the function f is called the conformal scalar
of v.

If the 1-form ¢ in (2.21) vanishes identically, then the vector field v is called con-
circular. If f = 1 and 0 = 0, the vector field v is called concurrent. The vector
field v is referred to as recurrent if it satisfies (2.21) with f = 0. Additionally, if
both f =0 and § = 0, the vector field v is called parallel.

Let u : N — M be an isometric immersion of a submanifold N into the Rie-
mannian manifold M. For each point p € N, we denote T, »IN and T, pLN as the
tangent and the normal spaces at p, respectively. There is a natural orthogonal
decomposition given by [2]

T,M = T,N + T, N.
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Let N be a submanifold of a a-cosymplectic manifold M endowed with a torqued
vector field 7, and let ¢ : N — M is an isometric immersion. Then, we have 2,
19

T=7" 47, (2.22)

where 77 and 71 represent the tangential and normal components of 7 on M,

respectively.

3. Submanifold of a-cosymplectic manifold admitting *-7-Ricci soliton
and with torqued vector field

This section examines the study of a submanifold N of an a-cosymplectic man-
ifold M endowed with a torqued vector field.

Theorem 3.1. Let N be a submanifold of an a-cosymplectic manifold M equipped
with a torqued vector field T, and let the characteristic vector field & be a torse-
forming vector field on N. Then, N is cosymplectic submanifold provided & is
torqued vector field.

Proof. Let 7 be a torqued vector field on M. Then, from equation (1.3) we have

Vx, 7= fX1+6(X1)r, 6(r)=0, (3.1)

for any X; € F(TM ). Assuming ¢ is a torse-forming vector field on M, replacing
7 with £ in equation (3.1) gives us

Vx & = fX1+6(X))E. (3.2)
Substituting equations (2.8) and (2.17) in (3.2), we obtain
VX1€ = le + 6(X1)€7 (33)

for any X; € I'(T'N).
Taking the inner product of (3.3) with &, we get

6(X1) = —fn(Xq). (3.4)
By using (2.16) and (3.4) in (3.3), we find
a(Xy = n(X1)8) = f(Xi —n(X1)S). (3.5)

Taking the inner product of (3.5) with an arbitrary vector field X5, we obtain

(f —a)g(¢X1,9Xz) = 0. (3.6)
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Let {e1, €9, ..., e, } be an orthonormal basis of the tangent space T,N, Vp € N. By
setting X; = Xy = ¢; in (3.6) and summing over i = 1,2, ..., n, we obtain

(f —a)n=0. (3.7)

Since n # 0, which implies that f = «.

Now, we consider the following cases:
Case I: If ¢ is a torqued vector field on N, then we get §(§) = 0. From (3.4), it
follows that f = 0. In this case, N is a cosymplectic submanifold and thus ¢ is a
Killing vector field.
Case 1II: If € is a recurrent vector field on NV, then we have that f = 0. Conse-
quently, N is a cosymplectic submanifold, and ¢ is a Killing vector field.

Theorem 3.2. Let N be a submanifold of an a-cosymplectic manifold M equipped
with a torse-forming vector field 7. The submanifold N s totally geodesic if and
only if the tangential component 71 of T is a torse-forming vector field on N whose
conformal scalar is the restriction of the torqued function, and whose generating
form is the restriction of the torqued function of T on N.

Proof. Since 7 is a torqued vector field on the ambient space M, it follows from
equations (1.3), (2.22), (2.8) and (2.9) that

Vol + (X1, 77) + Vg, mt — A Xy = fX +6(X0) T + 86X, (3.8)

for any X; € T'(T'N).
By comparing the tangential and normal components of equation (3.8), we arrive
at

Vi, 7l — A Xy = fX, +6(X)77, (3.9)

X1, ")+ Vi, 70 = 0(X) T
If N is a totally geodesic submanifold of M, then (3.9) simplifies to
VXlTT = fX1 + 5(X1>TT, (310)

which implies that 77 is torse-forming on N. The converse is straightforward.
From now on, we assume that the submanifold N admits a *-7-Ricci soliton in
Theorem (3.2). Considering equation (3.9), we have the following cases:

Case I: If we take 77 € T'(D), then from equations (2.10), (2.16), (2.17) and (3.9),
we get

g(VX1TT7€) :g(thg)v (311)
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where TN = D & span&, for any X; € T'(T'N). Since ¢ is non-degenerate, from
equation (3.11) we have

Vx, 7" = fX, (3.12)

which shows that the vector field 77 is concircular on N.
On the other hand, from the definition of the Lie derivative and (3.12), we
obtain

(LTTg)(X17 X2) - g(leTT, X2) + g(X17 VX2TT)
= 2fg(X1, Xo), (3.13)

for any X, X, € T'(T'N), which means that the vector field 77 is conformal Killing.
Also, from (1.2), (2.20) and (3.13), we obtain

S(X1,X2) = —(A+ f+ a?(n—2))g(X1, X2) — (1 + ®)n(X1)n(Xs),

where S is the Ricci tensor of N. Hence, N is n-Einstein.
Case II: If we use £ instead of 77 in (3.10), we have

V& = X1+ 6(X))E. (3.14)

Taking inner product of (3.14) with £, we get

9(Vx,&,€) = fn(X1) +6(X1).

Utilizing (2.16) in previous equation, we get

0(X1) = —fn(X1).

It is straightforward to see that 6(£) # 0. Therefore, £ is a torse-forming vector
field on N.

Theorem 3.3. Let N be a submanifold of an a-cosymplectic manifold M endowed
with a torse-forming vector field 7. If the submanifold N is totally geodesic and
the vector field 77 is orthogonal to the characteristic vector field &, then 71 is a
recurrent vector field on N.

Proof. Let 7 be a torse-forming vector field on M. Then, from the definition of
Lie derivative and from equation (1.2), we have

(Lr9)(X1, Xo) = Lrg(X1, Xo) — g(L; X1, Xo) — g(X1, L X3)
= 9(@)(17', Xo) + g(Xq, @Xﬂ') (3.15)
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By substituting equation (2.22) in the above equation, we get
(Lrg)(X1, X2) = g(Vx, 7" + Vi, 75, Xo) + g(X1, Vx, 77 + Vi, 7). (3.16)

Now, by applying (2.8), (2.9) in (3.16) and if N is a totally geodesic submanifold
of M, then we obtain

(L79>(X1>X2) = Q(VX17T7X2) + Q(Xl, VXQTT)- (3-17)
Applying (3.10) to (3.17), we arrive at
(Lrg) (X1, X2) = 2fg(X1, X2) + 0(X1)g(7", X2) + 6(X2)g( X1, 77), (3.18)

for any Xy, Xy € I'(T'N).
Upon substituting X; = Xy = £ in (3.18), we obtain

(L:9)(&,€) =2f +25(&)n(rT). (3.19)
However, by using (2.2), (2.8), (2.16), (2.17) and (2.22), we get

(Lr9)(&,6) = —29(L-€, )
= —2g(V:£,£) +29(Ver, €)
= —29(V;£,8) —29(h(7,€),§) + 29(VeT, &) + 29(h(T,§),§)
=29(Ve(r" +71),¢)
=29(VerT ). (3.20)

Furthermore, it is straightforward to show that V¢(g(77,€)) = g(VerT, €). There-
fore, from (3.19) and (3.20), we get

F+0En(r") = Ve(g(r", ). (3.21)

If the vector field 77 is orthogonal to &, then from equation (3.21), we obtain f = 0.
It follows from (3.10) that 77 is a recurrent vector field on N.
Thus, the proof is complete.

Theorem 3.4. Let M be an a-cosymplectic manifold endowed with a torqued vector
field 7, and let N be a submanifold that admits a x-n-Ricci soliton of M. Then
(N, g,&, A\, 1) is n-Einstein and the constants A and p satisfy the relation A = —pu.
Proof. If we substitute ¢ for 77 in (3.9), we have

Vxlf — ATLXl =fX;+ 5(X1)€ (3.22)
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Making use of (2.16) in (3.22), we get
ATLXl = (O[ — f)X1 - Oz?’/(Xl)g - 5(X1)£ (323)

Additionally, using the equations (2.3), (2.10) and taking the inner product with
X, in the above equation, we obtain

9(0(X1,X2), 71) = (= f)g(X1, X2) — (an(X1) + 6(X1))n(Xa). (3.24)
By interchanging the roles of X; and X in (3.24), we obtain

9(0(X2, X1), ") = (@ = f)g(X2, X1) — (an(Xa) + 3(X2))n(X1). (3.25)
As o and g exhibit symmetry, from (3.24) and (3.25) we have

29(0(X1, X2),77) = 2(a— F)g(X1, Xz) =2am(X1)n(X2)—5(X1 n(X2)—6(Xa)n(X1),
(3.26)

for any X, Xy € I'(T'N).

On the other hand, using the definition of Lie derivative along with equations (2.3),

(2.10), (3.22) and (3.26), we obtain

(Leg) (X1, Xa) = 9(Vx, &, Xa) + 9(X1, Vi, )
= g(fX1 +0(X1)E+ A0 X1, Xo)
+g(f X2+ 0(X2)€ + A Xp, Xy)
= 2a9(X1, Xo) — 2an(X1)n(X2). (3.27)

Since N is a submanifold admitting a *-n-Ricci soliton, from equations (1.2) and
(3.27), we have

S*( X1, X2) = —(a+ N)g(X1, X2) — (1 — a)n(X1)n(Xz). (3.28)
Utilizing (2.20) in (3.28), we find
S(X1, X2) = —(A+ a4 a%(n — 2))g(Xe, Xa) — (5 — o+ 0)(X0)n(Xa). (329)

which implies that N is n-Einstein.
Taking Xs = £ in (3.29), we get

S(X1,€) = —(A+ p+a’(n — 1))n(Xy). (330)
From (2.19) and (3.30), we obtain
At pu=0= A= —pu. (3.31)
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Thus, the theorem is proved.

4. Example: 3-dimensional submanifold of an 5-dimensional a- cosym-
plectic manifold

In this section, we give an example of a 5-dimensional a-cosymplectic manifold.
Subsequently, we utilize this example to construct a three-dimensional submani-
fold, thereby verifying the results we have obtained.
Let us consider a five-dimensional manifold M = {Z1, %9, T3,74,t € R}, here
(T1, Tg, T3, T4,t) represent the standard coordinates of R®. The linearly independent
vector fields {€}, €,, €3, €4, €5} on M are given by

€ = ae™—, 6y =qae—, ¢é3= cyeati €4 = aeati €5 = —2
0y’ 0y’ 03’ 04’ ot
Now, let us define Riemannian metric g on M as
o . L it i=y,
g<€i7 ej) = . . . ..
0, if i#y4, for 1<4,57<5.

The 1-form 7 corresponding to the metric g is defined as n(X;) = g(X;,£) and
setting €5 = & we observe that n(es) = 1, and 7n(é;) = 0 for i=1, 2, 3, 4.

Furthermore, let us define the (1, 1)-tensor field ¢ as follows:

p(e1) = —€1, B(éa) =€1, @(€3) = —€3, ¢(€s) =¢3, é(e5) = 0.

Considering the equations above, it is straightforward to verify that ¢>X; = — X, +
n(X1)§ and g(@ X1, Xo) = g(Xy, Xa) — n(X1)n(Xa), for any vector fields X, Xy €
TM?>. This demonstrates that the structure M (¢,&,n,g) constitutes an almost
contact metric manifold.
Suppose V represents the Levi-Civita connection corresponding to the metric g.
This leads to:
. . ae;,, if 1=1,2,3,4;7=05
6651 = {0, otherwise, : (1)
here [., .| represents the Lie bracket.
By utilizing Koszul’s formula and (4.1), we derive the following:
661601 = 06605, @61 602 = O, @glé’g = 0, 66‘3604 = O, 66‘1605 = 06601,
Ve,ér =0,Ve,6s = —acs, Vs = 0, Ve, 6y = 0, Ve, €5 = aés,
Ve3€1 0, V6362 =0, Vegeg —qés, Ve3e4 =0, V6365 = «es,
Ve4€1 =0 Ve4€2 =0, V6463 0 Ve4e4 0465,V64e5 ey,
VeOel = 0 Veseg O V 63 0, V5°5€4 = 0, 655605 = 0.
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In consequence of above equations, the manifold M satisfies
V€ = —ad’ Xy,

and 3
(Vx,0) X2 = a(g(0X1, X2)§ — n(X3)0X,),

The components of the Riemannian curvature tensor f? can be derived using the
equation R(X1, X2)X3 = Vx, Vx, X3 — Vx,Vx, X3 — Vix, x,)X3. This yields:

-ﬁi(é)h 602)602 = R(éh 603)603 ( 4) (61, 65)65 —0526017
R(é’l, 602)601 = 6(2602, R(el, 63) R( 63)62 R(€5, 63)605 = 052603,
R(€3,€3)€3 = R(€3,€4)€s = R(€s, €5)e5 = —a’éy,  R(€3,61)é = —a’es,

R(eolv €5)€z = R(6017 €5)€1 = R(6047 €5)€s = R(és, €5)€3 = a’es,
R(Gol, 604)601 = R(é’g, 604)602 = R(ég, 604)603 = R(605, 604)605 = 042604.
Making use of (2.6) and performing direct calculations, we get
é(‘fol, €y)€y = 042[9(601, €s)€y — g(€a, €2)€1] = —a’é).
R(é2,€3)6> = 0®[g(én, 2)€5 — g(és, €2)6] = a’és.
R(eoz, €5)€5 = 02[9(802, €5)€s — g(€5, €5)€2] = —a?és.
R(é4, 605)604 = Oé2[g(604, 604)605 - g(é})? é4)é4] = 042605.
Similarly, all other components satisfy the above conditions. .
Hence, from the above curvature tensor expressions, we finally conclude that M?®
constitutes an a-cosymplectic manifold. )
Now, let us consider the three-dimensional submanifold N 3 of M°(,&,m,9)
given by the isometric immersion ¢ : N — M defined by ¢(&1, Z2,t) = (1, T2, 0,0,1).
It is clear that N = {(Z1,%2,t) € R3}, where (Z1, %, t) represent standard coor-

dinates in R?, and it forms a 3-dimensional submanifold of M. The vector fields
{€1, €3, €5} are given by

€ =ae™—, € =ae"—, €5=——.

Let us define metric g; as

. L it i=yj,
91(67;763‘) = e g .
0, if 7#j4, where 1,j=1,2,5.
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Taking €5 = £, we observe that the 1-form 7;(€5) = §1(£,€5) = 1 and ¢; denote the
(1, 1)-tensor field is defined as

$1(€1) = —€3, ¢a(€2) = €1,  ¢3(c5) = 0.
Utilizing the equations above, it is straightforward to show that
P1X1 = —X1 +m(X1)E, m(é) =1,

91(1 X1, 91Xo) = g1( X1, Xo) — mi(X1)m(Xa),
for any X, Xy on N. This indicates that N(¢1,&,m, g1) constitutes a submanifold
of M.
Suppose V represent the Levi-civita connection induced by the metric ¢g;. Utilizing
Koszul’s formula, we obtain the following:

ve°1 601 = —04605, Vglé’g = 0, Ve"lég, = 04601,
Veﬂzé} = O, Ve°2ég = —aé}), Ve°2€o5 = 04602,
Ve e =0,Veea =0,V es =0.
The above obtained results satisfy Vx,& = —a¢?X;. The Riemannian curva-

ture tensor R utilizing the formula R(X;, X2)X3 = VX, Vx, X35 — Vx,Vx, X35 —
Vix,,x2) X3 is given by
R(Bol, 602)602 = R(Gol, 605)605 = —CE2€01,
R(él, 602)601 = R(ég, 605)605 = 062602
R(eol, 55)52 = R(eol, 605)601 = 0426057
By direct calculations and using (2.18), we get
R(eﬂl, 602)602 = —062601, R(eoz, €O5>€D5 = @2602, R(eol, é5>601 = 062605.

Thus, N(¢1,&,m,91) forms a 3-dimensional a-cosymplectic manifold.
With the help of the above results we get the components of the Ricci tensor as
follows:

5(601, 601> = S(ég, 602> = S(é’g, 603> = —2062. (42)
From (3.29) for n = 3, we get
5(603, 603) =—-\— m— 20./2. (43)

Equating (4.2) and (4.3), we obtain
A= —/.

Hence A and p satisfies the equation (3.31) for n = 3 and, so g defines a *-n-Ricci
soliton on a 3-dimensional a-cosymplectic manifold, which verifies Theorem (3.4).
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