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Abstract: In this article, we generalized Darbo’s fixed point theorem and estab-
lish the existence of solutions of fractional hybrid differential equations. The proof
relies on Darbo’s fixed point theorem, and the solvability is investigated in the
tempered sequence space ℓαp . An illustrative example is provided to verify the ap-
plicability of our results.
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1. Introduction

The concept of measure of noncompactness(MNC) was first proposed by Ku-
ratowski [16] in the year 1930. It proves to be an important tools in studying the
theory of fixed point, characterization of compact operators and its equations in
Banach spaces. Darbo [6] developed his famous fixed point theorem by using the
concept of measure of noncompactness which was actually a generalized version of
Schuader’s fixed point theorem [1]. Darbo’s fixed theoerem proves to be a crucial
tool in investigating the existence results of different class of integral and differen-
tial equations. Due to its widespread applications in the recent times it attracts
many researchers. Many authors generalized the Darbo’s fixed point theorem and
employed it to study the existence results of wide class of equations. The interplay
between fixed point theorems and the measure of noncompactness has been a cor-
nerstone in the study of fractional integral equations. Several papers have extended
Darbo’s theorem to accommodate the specific requirements of fractional integral
equations. For instance, [10] introduces a generalized version of Darbo’s theorem
that incorporates a new contraction operator, enabling the solution of nonlinear
fractional integral equations. Similarly, in the reference [11] the authors estab-
lished new fixed point theorems with a contractive condition based on the measure
of noncompactness, generalizing Darbo’s theorem and other results. In addition
to generalizing the Darbo’s fixed point, Mohiuddine et al. [17] investigated the
solvability of infinite system of integral equation in the tempered sequence space.
Das et al. [9] generalized the Darbo’s fixed point theorem and examined the exis-
tence result of infinite system of weighted fractional integral equations of a function
with regard to another function. Olszowy and Zajac [19] generalized Darbo and
Sadovskii type fixed point theorems and studied the existence result of Volterra
type integral equation. Recently, Haque et al. [15] generalized the Darbo’s fixed
point theorem and investigated the existence result of two variable fractional in-
tegral equation in the tempered sequence space cα0 and ℓαp . Bhujel and Hazarika
[4] examined the existence result of nonlinear integral equation of Fredholm type
satisfying the Hölder condition via Darbo’s theorem. Das et al. [8] examined the
existence result of hybrid differential and fractional hybrid differential equations in
Banach space with the help of generalized Darbo’s fixed point theorem. Recently,
Mursaleen and Savas [18] constructed a new tempered space and solvability of in-
finite system of fractional differential equations involving p-laplacian operator was
studied via Darbo’s fixed point theorem.
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Inspired and motivated by [5, 12, 14, 21, 22], in the context of an MNC in
tempered sequence space. This paper is divided into five sections: The introduction
contain a brief history of the measure of noncompactness and a literature review
The second section covers some well known fixed point theorems which will be
used later in construction of new result. The third section presents the main
result, wherein a new Darbo-type fixed point theorem is constructed. The fourth
section discusses a brief history of fractional calculus and the solvability of hybrid
fractional differential equations has been studied. The conclusion summarizes the
main findings and suggests possible future research directions.

2. Preliminaries

Let us first get acquaint with the measure of noncompactness definition(see [2]).

Let (Θ, ∥ . ∥) represents a Banach space.

• MΘ represents the family of bounded and non-empty subset of Θ and NΘ

denotes the subfamily of all relatively compact set of Θ.

• If ϕ ̸= Ω ⊂ Θ then the convex closure and closure of Ω will be denote by
ConΩ and Ω respectively.

• R+ = [0,+∞), R = (−∞,+∞), N =set of natural number.

Definition 2.1. [2] In the space Θ a measure of noncompactness is a function
�: MΘ → R+ satisfying all the below conditions:

(i) for all Q ∈ MΘ, �Q = 0 implies that Q ∈ NΘ.

(ii) ker�= {Q ∈ ME : � (Q) = 0} ≠ ϕ;

(iii) Q1 ⊂ Q2 implies that � (Q1) ≤ � (Q2) ;

(iv) �
(
Q̄1

)
= � (Q1) ;

(v) � (conQ1) = � (Q1) ;

(vi) � (κ̂Q1 + (1− κ̂)Q2) ≤ κ̂� (Q1) + (1− κ̂)� (Q2) for κ̂ ∈ [0, 1] ;

(vii) if Qn̂ ∈ MΘ, Qn̂ = Qn̂, Qn̂+1 ⊂ Qn̂, for n̂ ∈ N and lim
n̂→+∞

� (Qn̂) = 0, then

+∞⋂̂
n=1

Qn̂ is nonempty.
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Definition 2.2. [2, 16] If D̄ is a bounded subset of a metric space X, the Kura-
towski’s measure of noncompactness α

(
D̄
)
on D̄ is given as

α
(
D̄
)
= inf

ε > 0 : D̄ ⊂
n̂⋃

j̄=1

D̄j̄, diam
(
D̄j̄

)
< ε for j̄ = 1, 2, 3, . . . , n̂; n̂ ∈ N

 .

Definition 2.3. [3] If D̄ is a bounded subset a metric space X, the Hausdorff
measure of noncompactness χ(D̄) on D̄ is given as

χ(D̄) = inf

ε̂ > 0 : D̄ ⊂
n̂⋂

ĵ=1

∆(ωĵ, dĵ), ωĵ ∈ D̄, dĵ < ε̂, 1 ≤ ĵ ≤ n̂; n̂ ∈ N

 .

Here ∆(ωĵ, dĵ) represents the open ball having ωĵ as center and dĵ as radius.

Theorem 2.4. (Schauder [1]) A continuous mapping T̂ : D̄ → D̄ possess at least
one fixed point in D̄ where D̄ is a bounded, nonempty, compact and convex subset
(BNCCS) of a Banach space Θ.

Theorem 2.5. (Darbo [6]) Consider D̄ is a BNCCS of a Banach space Θ. A
continuous mapping T̂ : D̄ → D̄ has a fixed point if a constant κ̂ ∈ [0, 1) exists and
satisfying the condition

�(T̂ Q) ≤ κ̂�(Q), Q ⊆ D̄.

3. Fixed Point Theorem
Here, we mentioned some definitions and results that will help us to prove the

main theorems.

Definition 3.1. Suppose T̂m is the collection of all functions m : R+ → [1,+∞)
which fulfill the condition lim

n→+∞
m(vn) = 1 implies that lim

n→+∞
vn = 0 for all vn ∈

R+.

Definition 3.2. [13] Let T̂j represents the set of all class of functions j : R+×R+ →
R+ which satisfies all the following conditions
i) max{µ1, µ2} ≤ j(µ1, µ2) for µ1, µ2 ≥ 0
ii) j is continuous and non decreasing
iii) j(µ1 + ν1, µ2 + ν2) ≤ j(µ1, µ2) + j(ν1, ν2).

For example if j(µ+ ν) = µ+ ν then j ∈ T̂j.

Theorem 3.3. If B is a BNCCS of a Banach space Θ and a continuous function
T̂ : B → B fulfill the condition

m[j(�(T̂ V), f(�(T̂ V)))] ≤ [m{j(�V , f(�V))}]k̂,
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where ∅ ≠ V ⊂ B, j ∈ T̂j,m ∈ T̂m and 0 ≤ k̂ < 1 and f : R+ → R+, such that f

is a continuous function, and � is an arbitrary MNC. Then T̂ possess at least one
fixed point.
Proof. First we develop a sequence (Vn) where V1 = V and Vn+1 = Con(T̂ Vn) for
n ≥ 1. Then T̂ V1 = T̂ V ⊆ V = V1,V2 = Con(T̂ V1) ⊆ V = V1 and moving in the
same way we obtain V1 ⊇ V2 ⊇ V3 ⊇ ...... ⊇ Vn ⊇ Vn+1 ⊇ ....
If there exist n̂i ∈ N such that �(Vn̂i

) = 0 then the theorem is proved. Let
�(Vn) > 0 for all n ∈ N, then the sequence {�Vn} is a non negative, decreasing
and bounded below sequence.
Now

m[j(�(Vn+1), f(�(Vn+1)))] = m[j(�(Con(T Vn)), f(�(Con(T Vn)))]

= m[j(�(T̂ Vn), f(�(T̂ Vn)))]

≤ [m{j(�(Vn), f(�(Vn)))}]k̂

≤ [m{j(�(Vn−1), f(�(Vn−1)))}]k̂
2

.

.

.

≤ [m{j(�(V1), f(�(V1)))}]k̂
n

.

It is obvious from the above that as n → +∞, then m[j(�(T̂ Vn), f(�(T̂ Vn)))] = 1.
Then by the definition of m we have

lim
n→+∞

j(�(Vn), f(�(Vn))) = 0.

implies that

lim
n→+∞

�(Vn) = 0 = lim
n→+∞

f(�(Vn)).

Now Vn ⊇ Vn+1 and by the definition of � we infer that V+∞ =
⋂+∞

n=1 Vn is

nonempty, closed and convex subset of V and also under T̂ , V+∞ is invariant. So
applying Schauder’s theorem it brings to the conclusion that T̂ possess at least one
fixed point in V+∞ ⊆ V .
Corollary 3.4. Let T̂ : B → B be an operator, m ∈ T̂m, then T̂ has at least one
fixed point if

m[�(T̂ V) + f(�(T̂ V))] = [m(�V + f(�V))]k̂.
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Proof. In Theorem 3.3 by putting j(µ1, µ2) = µ1 + µ2 we obtain our required
result.

Corollary 3.5. Let T̂ : B → B be an operator, m ∈ T̂m, then T̂ has at least one
fixed point if

�(T̂ V) + f(�(T̂ V)) = k̂(�V + f(�V)).

Proof. Putting m(t) = et in the Corollary 3.4 we obtain our required result.

Remark 3.6. Darbo’s theorem can be obtained by putting f(t) = 0 in Corollary
3.5.

4. Applications
Fractional calculus provides a powerful framework in modeling various problems

in the field of heat transfer, signal analysis, fluid mechanics and control theory.
Recently Das et al. [7] investigated the existence result of the system (4.1) in the
space m(θ)β of tempered sequence. In our study we did not find much literature
related to the existence result of fractional hybrid differential equation in tempered
sequence spaces. Which motivate us to examined the existence result of system
(4.1) in the tempered sequence space ℓαp with initial conditions by converting it
to integral equation (4.2). In this present study we will examine the solvability
of equation (4.1) in the tempered sequence space ℓαp via Darbo’s theorem. The
tempered sequence space ℓαp is a Banach space and was introduced in [20]. The
norm on the Banach space ℓαp is define as

∥ u ∥ℓαp=
( ∞∑

n=1

αp
n|un|p

) 1
p

,

where u = (un) is a real(or complex) sequence. α = (αn) is non-increasing real
sequence which is fixed, αn > 0, for all n ∈ N and p ∈ [0,+∞). The Hausdorff
Measure of noncompacteness χ in the space ℓαp is define as

χℓαp (D̂) = lim
n→∞

[
sup
u∈D̂

(∑
k̂≥n

αp

k̂
|uk̂|

p

) 1
p
]
, D̂ ∈ Mℓαp .

We shall now recall some of the basic definition of fractional calculus.
For a function h : R+ → R, the order λ Riemann-Liouville fractional integral is
expressed as

Iah(t) =
1

Γ(λ)

∫ t

0

(t− ω)λ−1h(ω)dω,
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where λ > 0, provided that the integral exists. The Riemann-Liouville fractional
derivative of order λ can similarly be expressed as

Dλh(t) =
1

Γ(ϖ − λ)

(
d

dt

)ϖ ∫ t

0

1

(t− ω)a−ϖ+1
h(ω)dω,

where ϖ = [λ] + 1. I and D obeys the following relations for λ1, λ2 > 0.

Iλ1+λ2h(t) = Iλ1Iλ2h(t), Dλ1Iλ2h(t) = h(t).

Let us consider the infinite system of fractional hybrid differential equations with
initial conditions and involving Riemann-Liouville fractional differential operator
of order 0 < ρ < 1

Dρ[zn(ϑ)− ŝn(ϑ, zn(ϑ))] = ĝn(ϑ, zn(ϑ)), ϑ ∈ [0, a], (4.1)

with zn(ϑ0) = 0, where z(ϑ) = (zn(ϑ))
∞
n=1, ĝn, ŝn ∈ C(I × R,R) and zn(ϑ) ∈

C(I,R), n ∈ N.
The equation (4.1) can be prove that it is equivalent to the infinite system of

nonlinear hybrid integral equations which is

zn(ϑ) = −ŝn(ϑ0, 0) + ŝn(ϑ, zn(ϑ)) +
1

Γ(ρ)

∫ ϑ

0

(ϑ− w)ρ−1ĝn(w, zn(w))dw, (4.2)

where n ∈ N and ϑ ∈ I.

4.1. Solvability in tempered sequence space ℓαp
Let us consider the following assumptions

(T.1) The functions Gn are well defined as

Gn : I × C(I, ℓαp ) → R, n ∈ N

and the operator G : C(I, ℓαp ) → C(I, ℓαp ) is defined as

(ϑ, z(ϑ)) → (Gz)(ϑ) = (Gn(ϑ, z(ϑ)))n∈N,

where

Gn(ϑ, z(ϑ)) = ŝn(ϑ, zn(ϑ)) +
1

Γ(q)

∫ ϑ

0

(ϑ− w)ρ−1ĝn(w, zn(w))dw.

Moreover for all points in the space C(I, ℓαp ) the family ((Gz)(ϑ))ϑ∈I is equicon-
tinuous.
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(T.2) ŝn, ĝn : I × R are continuous. Also

|ŝn(ϑ, zn(ϑ))|p ≤ mn(ϑ)|zn(ϑ)|p,

where mn(ϑ) : I → R is continuous for all n ∈ N such that the sequence
(mn(ϑ)) is equibounded on the whole I and let

M̄ = sup
n∈N,ϑ∈I

mn(ϑ).

Also
|ĝn(ϑ, zn(ϑ))|p ≤ an(ϑ) + bn(ϑ)|zn(ϑ)|p,

where the functions an(ϑ), bn(ϑ) : I → R+ such that
∑
n≥1

αp
n|an(ϑ)| converges

uniformly on I = [0, ϑ]. Moreover, we write

M̄ = sup
n∈N,ϑ∈I

mn(ϑ), Ā(ϑ) =
∑
n≥1

αp
nan(ϑ), A = sup

ϑ∈I
Ā(ϑ),

B = sup
n∈N,ϑ∈I

bn(ϑ).

Moreover,

0 < 2pM̄p +
Bapρ2p

(pρ− p+ 1)(Γ(ρ))p
< 1,where pρ− p+ 1 ̸= 0.

Theorem 4.1. The tempered sequence space ℓαp contains a solution for the equation
(4.1) if all the given above assumptions are fulfilled.
Proof. Consider the operator T̂ : ℓαp → ℓαp define as

(T̂ z)(ϑ) = {(T̂nz)(ϑ)}+∞
n=1 = {Gn(ϑ, z(ϑ))}+∞

n=1.

Then

(T̂nzn)(ϑ) = ŝn(ϑ, zn(ϑ)) +
1

Γ(ρ)

∫ ϑ

0

(ϑ− w)ρ−1ĝn(w, zn(w))dw.

∥ T̂ (z) ∥pℓαp =

( ∞∑
n=1

αp
n|T̂ (zn)(ϑ)|p

)
=
∑
n≥1

αp
n

[∣∣∣∣ŝn(ϑ, zn(ϑ)) + 1

Γ(ρ)

∫ ϑ

0

(ϑ− w)ρ−1ĝn(w, zn(w))dw

∣∣∣∣p]

≤ 2p
∑
n≥1

αp
n

∣∣ŝn(ϑ, zn(ϑ))∣∣p + 2p
∑
n≥1

αp
n

∣∣∣∣ 1

Γ(ρ)

∫ ϑ

0

(ϑ− w)ρ−1ĝn(w, zn(w))dw

∣∣∣∣p
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≤ 2p
∑
n≥1

αp
n(mn(ϑ))

p|zn(ϑ)|p +
ϑp−12p

(Γ(ρ))p

∑
n≥1

αp
n

∫ ϑ

0

(ϑ− w)pρ−p|ĝn(w, zn(w))|pdw

≤ 2pM̄p ∥ zn(ϑ) ∥pℓαp +
ϑp−12pϑpρ−p+1

(pρ− p+ 1)(Γ(ρ))p

∑
n≥1

αp
n|ĝn(w, zn(w)|p

≤ 2pM̄p ∥ zn(ϑ) ∥pℓαp +
ϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

∑
n≥1

αp
n(an(ϑ) + bn(ϑ)|zn(ϑ)|p)

≤ 2pM̄p ∥ zn(ϑ) ∥pℓαp +
Aϑpρ2p

(pρ− p+ 1)(Γ(ρ))p
+

Bϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

∑
n≥1

αp
n|zn(ϑ)|p

≤ 2pM̄p ∥ zn(ϑ) ∥pℓαp +
Aϑpρ2p

(pρ− p+ 1)(Γ(ρ))p
+

Bϑpρ2p

(pρ− p+ 1)(Γ(ρ))p
∥ zn(ϑ) ∥pℓαp

=
Aϑpρ2p

(pρ− p+ 1)(Γ(ρ))p
+

(
2pM̄p +

Bϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

)
∥ zn(ϑ) ∥pℓαp .

This suggests that the operator T̂ is bounded for all p > 1. Also (T̂nz)(0) = 0
which implies that (T̂nz)(ϑ) satisfies the initial condition.
Now if we take the set Q ⊂ ℓαp , where Q is define as

Q = {z ∈ ℓαp :∥ z ∥≤ r}.

Then the set Q is bounded, closed and convex. Also the constant r satisfies the
condition

Aϑpρ2p

(pρ− p+ 1)(Γ(ρ))p
+

(
2pM̄p +

Bϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

)
∥ zn(ϑ) ∥pℓαp≤ rp.

By assumption (T.1) we conclude that T̂ is continuous and bounded operator on
C(I, ℓαp ).

Now

χℓαp (T̂ (Q)) = lim
n→∞

sup
z∈Q

(
2pM̄p

∑
k≥n

αp
k|zk(ϑ)|

p

+
ϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

∑
k≥n

αp
k(ak(ϑ) + bk(ϑ)|zk(ϑ)|p)

)

≤ lim
n→∞

sup
z∈Q

(
2pM̄p

∑
k≥n

αp
k|zk(ϑ)|

p +
Bϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

∑
k≥n

αp
k|zk(ϑ)|

p)

)
≤
(
2pM̄p +

Bϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

)
lim
n→∞

sup
z∈Q

(∑
k≥n

αp
k|zk(ϑ)|

p)

)
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=

(
2pM̄p +

Bϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

)
χℓαp (Q).

This implies that

χC(I,ℓαp )(T̂ (Q)) ≤
(
2pM̄p +

Bϑpρ2p

(pρ− p+ 1)(Γ(ρ))p

)
χC(I,ℓαp )(Q).

i.e., χC(I,ℓαp )(T̂ (Q)) ≤
(
2pM̄p + Bapρ2p

(pρ−p+1)(Γ(ρ))p

)
χC(I,ℓαp )(Q).

Since 2pM̄p + Bapρ2p

(pρ−p+1)(Γ(ρ))p
< 1 and T̂ fulfill all the assumptions of Theorem

2.5, which implies that T̂ has a solution in Q. Consequently there exists a solution
for (4.1) in C(I, ℓαp ).

Example 4.2. Let us consider the following numerical problem

D
3
4

[
zn(ϑ)−

eϑzn(ϑ)

5 + n2

]
=

ϑ sin(nϑ)

n3
+
∑
i≥n

zn(ϑ) ln(1 + ϑ)

(4 + ϑ)2i2
, (4.3)

where zn(0) = 0.

Here ŝn(ϑ, zn(ϑ)) = eϑzn(ϑ)
5+n2 , ĝn(ϑ, zn(ϑ)) = ϑ sin(nϑ)

n3 +
∑
i≥n

zn(ϑ) ln(1+ϑ)
(2+ϑ)2i2

, n ∈ N , ϑ ∈

I = [0, 1]. We have

|ŝn(ϑ, zn(ϑ))| =
∣∣∣∣eϑzn(ϑ)5 + n2

∣∣∣∣
≤
∣∣∣∣ eϑ

5 + n2

∣∣∣∣|zn(ϑ)|.
This gives

|ŝn(ϑ, zn(ϑ))|2 ≤
∣∣∣∣ eϑ

5 + n2

∣∣∣∣2|zn(ϑ)|2
and

|ĝn(ϑ, zn(ϑ))| =
∣∣∣∣ϑ sin(nϑ)n3

+
∑
i≥n

zn(ϑ) ln(1 + ϑ)

(4 + ϑ)2i2

∣∣∣∣
⇒ |ĝn(ϑ, zn(ϑ))|2 ≤ 2

∣∣∣∣ϑ sin(nϑ)n3

∣∣∣∣2 + 2

∣∣∣∣∑
i≥n

zn(ϑ) ln(1 + ϑ)

(4 + ϑ)2i2

∣∣∣∣2
≤ 2|ϑ|2

n6
+

| ln(1 + ϑ)|2|zn(ϑ)|2π4

288
.
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Here mn(ϑ) =

∣∣∣∣ eϑ

5+n2

∣∣∣∣ therefore we have M = .02718, an(ϑ) = 2|ϑ|2
n6 , bn(ϑ) =

|ln(1+ϑ)|2π4

288
implies that B = | ln(2)|2π4

288
.

Therefore 2pM̄p + Bapq2p

(pq−p+1)(Γ(q))p
= 22(.02718)2 + 0.86472 ≈ 0.86767.

Thus the system (4.3) satisfies all the hypothesis of Theorem 4.1. Thus we conclude
that there exist a solution for system (4.3) in the space C(I, ℓα2 ).

5. Conclusion
This study discussed many further modified Darbo-type fixed point findings for

the concept of a family of contraction operators applying various control functions
in Banach spaces. The measure of noncompactness has proven to be an indis-
pensable tool in the study of fractional hybrid differential equations in tempered
sequence spaces. Using the Darbo-type fixed point theorems, we could establish
solutions under various conditions, significantly advancing our understanding of
these fractional hybrid differential equations.
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[9] Das A., Paunović M., Parvaneh V., Mursaleen M., Bagheri Z., Existence of
a solution to an infinite system of weighted fractional integral equations of a
function with respect to another function via a measure of noncompactness,
Demonstratio Mathematica, 56(1) (2023), 20220192.

[10] Deuri B. C., Das A., Solvability of fractional integral equations via Darbo’s
fixed point theorem, Journal of Pseudo-Differential Operators and Applica-
tions, 13(3) (2022), 26.

[11] Deuri B. C., Das A., The existence of a solution to more general proportional
forms of fractional integrals via a measure of noncompactness, International
Journal of Nonlinear Analysis and Applications, 14(10) (2023), 117-125.

[12] Guran L., Mitrović Z. D., Reddy G. S. M., Belhenniche A., Radenović A., Ap-
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