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Abstract: This paper deals with the introduction of the concept of ideal con-
vergence of sequences in generalized metric spaces. Since the investigation in the
G-metric space deals with two sequences, so the ideal considered is that of NxN.
We have investigated some basic properties of the introduced notion.
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1. Introduction

In this section, we present some basic definitions and results on /-convergence,
statistical I-convergence in G-metric spaces. The concept of statistical convergence
was introduced in the year 1951 by Fast [6] and Steinhaus [17] independently and
established a relation with summability. It was further investigated from sequence
space point of view by Fridy [7], Salat [18], and many others. Applications of
statistical convergence in number theory and mathematical analysis can be found
in the works due to [1, 3, 5, 6, 7, 13, 14, 17, 18, 19, 20].
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A generalization of statistical convergence is [-convergence which was intro-
duced by Kostyrko et. al. [14]. An ideal I of the set N was used to define this
concept from the topology. For details of the article we refer [5, 12, 19, 20].

The notion of statistical convergence is based on the definition of natural density
of a set A C N such that 6(A) = lim, l‘i”l where A, = {k € A: k <n} and
|A,| gives the cardinality of A,,.

We procure the following well known definitions from the literature.

Definition 1.1. A sequence (xy) is statistically convergent to L provided that for
everye >0, d ({k <n:|xy — L| >¢€}) =0. It is denoted by st — limxy = L.

Definition 1.2. Let X is a non-empty set. A family of subsets I C P(X) is called
an ideal on X if and only if
(a) for each A, B € I implies AUB € I;
(b) for each A € I and B C A implies B € 1.

An ideal I is called non-trivial if [ # () and X ¢ I. A non-trivial ideal I C P(X)
is called an admissible ideal in X if and only if I D {{z} : 2 € X}.

The concept of the distance is a very important concept in different branches
of science and engineering. A metric is a distance function. But now a days, due
to the availability of very large and complex data sets, the definition of metric has
been generalised from different aspects. Keeping this in mind many studies have
been carried out by different researcher, one may refer to the works due to [2, 4, 6,
8,9, 10, 11, 14,15, 16].

Definition 1.3. Let X be a non-empty set. A function D : X x X x X —
Rt satisfying the following conditions:
D1) D(z,y,z) >0 for all z,y,z € X.

D2) D(x,y,2) =0 if and only if v =y = z.

D3) D(z,y,2) = D(x,z,y) = D(y, z,x) = - -+ (symmetry in all three variables)
Dj) D(x,y,z) < D(z,y,t) + D(x,t,z) + D(t,y,2) for all x,y,z,t € X (rectangle
inequality)

It is called a D-metric on X and (X, D) is called a D-metric space.

Subsequently in Dhang [4] attempted to develop topological structures in these
spaces. These developments inspired many researcher to define a more appropriate
generalized metric space called G-metric. Which is defined as follows:

Definition 1.6. Let X be a non-empty set. A function G : X x X x X —
Rt satisfying the following properties is called generalized metric or G-metric on
X.

(G1) G(x,y,2) =0 if and only if v =y = z for all x,y,z € X
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(G2) 0 < G(x,y,2), for all x,y,z € X with x #y

(G3) G(x,z,y) < G(x,y,2) for all z,y,z € X, with z #y

(G4) G(z,y,2) = G(x,z,y) = Gy, z,x) = - -+ (symmetry in all three variables)
(G5) G(z,y,z) < G(x,a,a) + G(a,y, z), for all x,y,z,a € X (rectangle inequality)

The pair (X, G) is called by a G-metric space.

These properties are satisfied when G(z,y, ) is the perimeter of a triangle with
vertices at x,y and z in R2. Also taking a in the interior of the triangle shows that
(G5) is best possible. G-metric function is a distance function which generalizes
the concept of distance between three points.

Later, Abazani [1] defined statistical convergence in g-metric spaces where g-
metric is a distance function defined between (n + 1) points.

2. Statistical Convergence in G-Metric Space

In this section we procure some known definitions.
Definition 2.1. Let A C N? and A(n) = {i1,is <n: (i1,12) € A}, then pi(A) =
lim, o0 =5 |A(n)| is called 2-dimensional asymptotic (or natural) density of the set

A.

Definition 2.2. Let (x;) be a sequence in a G-metric space (X,G). For every
>0, if

7}1_)11010% {(i1,i9) € A:i1,i0 < n,G (z,2;,,15,) > €} =0,
thegs(xi) statistically converges to x in X. It is denoted by GS — limx; = x or
T; —> .
Definition 2.3. Let (z;) be a sequence in a G-metric space (X, G). For every
e >0, f

.2 o o
lim = {(i1,12) € A :ir,ia < n, G (Tp, 74y, 24,) >} =0,

n—oo

then (z;) statistically Cauchy in X .

3. Main Results

In this section we introduce the following definitions and main results. Let
(X, G) be a fixed G-metric space and I denotes a non-trivial admissible ideal of
subsets of N. Now we introduce some definitions.

Definition 3.1. A sequence (x;) of elements of a G-metric space (X, G) is said to
be I-convergent to x € X if and only if for each ¢ > 0, the set

A(e) = {(i1,i2) e N*: G (2,34, 2,) > £} belongs to .



26 South FEast Asian J. of Mathematics and Mathematical Sciences

The element x is called I-limit of the sequence (x;). We write I —limz; = x.

Definition 3.2. A sequence (x;) of elements of a G-metric space (X, G) is said to
be I[-null if x = 0. We write I —limx; = 0.

Definition 3.3. Let I be an strongly admissible ideal of N. A sequence (x;) € X
1s said to be I-Cauchy if for each € > 0, there exists n. € N, such that the set
{(il,iQ) S N2 . ’il,ig S Ne, G (xil,xh,xna) 2 5} belongs to 1.

Definition 3.4. A sequence (x;) € X is said to be I-bounded if there exists a non-
negative real number M such that the set

{(7:1,7;2) e N?: G(l‘i,l’z‘l,l’ig) > M} belongs to I.

Definition 3.5. A sequence (z;) € X is said to be I-statistically convergent to
x € X if for everye > 0 and 6 > 0, the set

2
{n eN: = {(i1,72) € A:ir,ia <n,G (v, 24, 3:,) >} > (5} belongs to I.

This situation is denoted by GS; — limxz; = x. The set of all statistically
convergent sequences in X is denoted by GS;.

Example 3.1. Let X = R and G be the metric defined as follows:

G: R — R*
G(2,y,z) = max{|z —yl, |y — 2|, |z — 2}.

Consider the sequences I} = N — {1,4,9,16,25, ...} and
I, =N—{1,8,27,64,125,...}. Consider the sequence (x,,) defined by
xn:%, ifnely or Is.
=n, otherwise.
Then it can be easily verified that G(z,xiy,x;,) = 0 for n € I or I,. So

GSr — limz,, = 0.

Definition 3.6. A sequence (x;) € X is said to be G-statistically Cauchy tox € X,
if for every e >0 and 0 > 0, the set

2 o o
{n <N: = {(i1,i2) € A :ir,io < n, G (Tp, T4y, T4) > €} > 5} belongs to 1.

Theorem 3.1. In a G-metric space every convergent sequence is statistically con-
vergent.
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Proof. Let (z;) be a sequence in a G-metric space (X, G) which converges to .
Then for every € > 0 there exists ng € N such that for all i1,i5 > ny,

G(x,z;,2) < €.

Let,
A(n) = {(’il,’iQ) € N2,’i1,’i2 <n: G(x,.l’il,l’i?) < 5} .

Then,

Therefore, lim,, o, =5 > lim,,,

Thus, we have GS — limx; = .
The following example shows that the converse of the above theorem is not
true.

Example 3.2. Let X = R and G be the metric defined as follows:
G:R®—R"
G(;U,y,Z) = max{\x - y‘v |y - Z|7 |Z - SL’|}
Consider the sequence () defined by

S k, if k is a square
7o, otherwise

Then, it can be verified that (xy) is statistically convergent, but it is not convergent.

Theorem 3.2. Let (x;) be a sequence in a G-metric space (X, G) such that x; LR

Lo

x and x; G, y. Then x =y.
Proof. Let, ¢ > 0 be given and 0 > 0. Let

2
Al = {(il,ig) c N2 : 7:1,’i2 S n,—2
n

N >

{(@1,12) LG (2, Ty, 14,) > ZH >
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ber

and

2
Ay = {(Z&Jé) €N? iy, iy <m,—

n2

N

{(i17i2) G (Y, iy, Tiy) > ZH >

Let, C = A; U A,. Then, it follows that C' € I.
Suppose (i1,i3) € C° then we have

+ G (y, xi,, xi,)

=G (x, 24, 2i) + G (y,y, ) + G (i, 23y, Y)
+ G (Y, Tiy, Tiy)

<G (z,2iy, Tip) + G (Y, iy, i) + G (Tiy, Tiy, Y)

+ G (y, iy, i)
=2G (x, x4, xiy) + 2G (y, 2y, T4,)
<€
Since, ¢ is arbitrary, we have G(z,y,y) = 0.
This shows that z = y.

Theorem 3.3. For any sequence (x;), st —lim x; = x implies that GS;—lim x; = x.
Proof. Let st —limx; = . Then for each € > 0, the set
A(e) = {(i1,i2) € N*: G (x, 24, 75,) > €} has natural density zero, i.e.,
lim,, o0 %|A(s)| =0.
Therefore, for every ¢ > 0 and ¢ > 0, the set
{(ir,i2) € N? tiy,dp <, 5 [{(i1,i2) : G (x, 3, 25,) > €}| >} is finite set and be-
longs to I since I is an admissible ideal.
Hence, GS; — limx; = z.
Theorem 3.4. If (x;), be a sequence, then I — limx; = x implies that GS;—
limzx; = .
Proof. I —lim x; = z shows that for every ¢ > 0, the set
A(e) = {(i1,i2) € N? : G (z, 24y, m;,) > e} € L.
But for a given § > 0, the set

2
{(il,i2> - N2 : ?:l,iQ < n, E |{(Zl,22> : G(m,xil,xig) > €}| > 5} C A(Ef)



On I-Statistical Convergence in G-Metric Spaces 29

This shows that G'S;, — limx; = « since I is admissible ideal.

Theorem 3.5. If each subsequence of (z;) is I-statistically convergent to x then
(x;) is I-statistically convergent to x.
Proof. Suppose, the sequence (z;) is no I-statistically convergent to x, then there
exists € > 0 and 6 > 0 such that
B={(k,l)eN?: kil <n2n | (k]):G(x,zp, 1)) >} |>0} ¢ 1.
Since, I is admissible ideal so B must be an infinite set.
Let, B = {(l{ll,ll) < (k’g,lg) < (1{53,13) <.. }
Let y; = x4, or x;, for j € N. Then (y;) is a subsequence of (z;) which is not
I-statistically convergent to . Thus we have a contradiction.

Thus, the result is established.

Theorem 3.6. Let (x;) and (y;) be two sequences,

(i) if GS; — limxx; = x and GS; — limy; = y then GS; — lim (z; + y;) =z + y.
(i) If GS; — limx; = x and ¢ € R, then GS; — limex; = cx.

Proof. (i) Let

and
Ay={(l,m)eN*:Im<n, Z|{(,m): Gy, y.ym) = 5} <3} ¢ 1
Clearly, A1 N Ay # (). Therefore for all n € A; N Ay we have,

2
ﬁ {(l7m>G(‘r+y7~rl+yl7$m+ym) 25}‘

2
< 2
= e
O 0
<§+§—(5

{(l,m) (G (x, 2, xm) > g}‘ +%

{(l,m)iG(y,yz,ym) > g}‘

Hence, we have,
9 2
(lam) €N lamgnaﬁH(l:m) : G(x—i_yvml_'_yl;xm"i_ym) 26}‘ <9 ¢[
Therefore, GS; — lim (x; +y;) =z +y

(7)) If ¢ = 0, then it is obvious.
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Let, ¢ # 0, then we have % |[{(I,m) : ,m < n,G (cx, cxy, cx,,) > €},

2
2 {(,m) : I,m <mn,|c|G (z, 2, T,) > e}

2
< =
n2

{(l,m):l,mgn,G(:p,xl,xm) > i}‘ < 0.

c]
Hence, GSr—lim cx; = cx.

4. Conclusion

We have considered the generalized metric space and investigated the I-statistical
convergence of sequences in G-metric space. Looking at the nature the ideal that
we have considered is on the class of subsets of NxN. We have established some
results. It is hoped that the work done will be applied by many for further inves-
tigations and applications.
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