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Abstract: In this paper, we introduce the notion of an equivalence graph based
on equivalence relation defined on a group. Furthermore, restricting ourselves to
conjugacy relation, a special type of equivalence graph called a conjugacy graph is
also defined. In addition, a graph theoretical expression for the class equation is
established followed by related results.
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1. Introduction
Recall that a group G is a set together with a binary operation ∗ defined on

it such that it satisfies closure property, associativity, the existence of an identity
element, and the existence of the inverse. In order to avoid ambiguity we denote
the identity element of the group by iG. The order of a group, denoted by o(G), is
the total number of elements present in the group. Let H be a non-empty subset
of G. Then, for any a ∈ G, the set aH = {ah : h ∈ H} is called a left coset of H in
G and the set Ha = {ha : h ∈ H} is called a right coset of H in G. The center of
a group G, denoted by Z(G), is the set of elements in G that commute with every
element in G. The normalizer of an element a ∈ G, denoted by N(a), is the set of
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those elements in the group G that commute with a. For terms and definitions in
group theory, we refer to [13, 16].

A graph is a discrete structure consisting of vertices and edges, which can be
used to represent any binary relation. For the terminology in graph theory, we
refer to [21]. In this discussion, we denote a group by G and the corresponding
graph by ΓG. The graph may be denoted by Γ if the context is clear.

For a graph Γ, its subgraph Γ′ is said to be an induced subgraph if Γ′ is a graph
such that V (Γ′) ⊆ V (Γ) and E(Γ′) is the set of all edges in Γ whose end vertices
are in Γ′. A singleton component of a graph is a component of the graph consisting
of exactly one vertex in it. A non-singleton component of a graph is a component
consisting of two or more vertices in it.

The terms like isomorphism, homomorphism and automorphism are not re-
stricted to algebraic structures but to graphs as well. This ignites an intuitive
thought that there can be a relation between graphs and algebraic structures as
both of them are structure-oriented concepts.

Many graphs like Cayley graphs, circulant graphs, transitive graphs, etc. (see
[12]) lay the foundation for algebraic graph theory as a separate field of study. An
insight into other such studies includes graphs associated with conjugacy classes
of groups (see [6-17, 17, 19, 20]), inverse graphs on finite groups (see [23]), non-
commuting graphs (see [1]), order sum graphs (see [5]), prime graphs (see [22]),
non-inverse graphs (see [4]) and the list keeps on increasing. The approach in these
studies gives a beautiful structural insight into the constructed graphs and a de-
tailed study of different parameters of coloring, domination, connectivity and many
other structural aspects related to the constructed graph. The spectral analysis of
some algebraic graphs can be viewed in [2, 3, 14, 15, 18].

2. Equivalence Graphs of Groups
Recall that an equivalence relation defined on a set A is a relation that is

reflexive, symmetric and transitive. Based on an equivalence relation defined on a
group G, the notion of an equivalence graph is defined as follows:

Definition 2.1. Let (G, ∗) be a finite group with an equivalence relation R defined
on G. The equivalence graph of G, denoted by π(G), with respect to R is the graph
such that

(i) V (π(G)) = G.

(ii) For u, v ∈ V (π(G)), uv ∈ E(π(G)) if and only if u ∗ v ∈ R.

The following theorem is a generalisation for partitioning the vertices of an
equivalence graph in terms of cliques.
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Theorem 2.2. Let R be an equivalence relation defined on a group G and E be the
collection of equivalence classes Ei of G with respect to R. Then, the equivalence
graph π(G) is a disjoint union of cliques.
Proof. Consider an equivalence class Ei of G with respect to the relation R.
Because of the symmetry of R, any two elements in Ei are related to each other,
implying any two elements belonging to Ei are adjacent to each other. Thus,
each Ei of G induces a clique, say Q(Ei) in π(G). Moreover, R partitions G into
mutually disjoint equivalence classes, the corresponding partition makes π(G) a
disjoint union of corresponding cliques. Thus, V (π(G)) =

⋃
Ei∈E

V (Q(Ei)). This

completes the proof.
It is to be noted that any arbitrary vertex belonging to a particular component

can be treated as a representative vertex of that component. The following theorem
provides an alternate graph theoretical proof for Lagrange’s theorem.

Theorem 2.3. [Lagrange’s Theorem] Let (G, ∗) be a finite group and (H, ∗) be a
subgroup of G. Then, o(H)|o(G).
Proof. Let ∼H denote the equivalence relation on G such that a ∼H b if and only
if a−1b ∈ H, where a, b ∈ G. Let GH = {a1H, a2H, . . . , anH : ai ∈ G} denote the
set of all distinct left cosets of H in G.

Let C(G) be a graph defined as follows:

(i) V (C(G)) = G.

(ii) For g, h ∈ V (C(G)), gh ∈ E(C(G)) if and only if , g ∼H h in G.

By Theorem 2.2, each equivalence class aiH in G induces a clique, say ⟨aiH⟩ in
C(G), and C(G) is a disjoint union of cliques ⟨aiH⟩. Hence, for 1 ≤ i ̸= j ≤ n, ⟨aiH⟩
and ⟨ajH⟩ are disjoint components in C(G).

Since, aiH induces a clique and |aiH| = |H| for any i, we have |⟨V (aiH)⟩| =
|⟨V (ajH)⟩| = |⟨V (H)⟩| and hence C(G) is a regular graph.

Therefore, |V (C(G)| = |
..⋃

ai∈C(G),i∈[n]
V (⟨aiH⟩)| =

∑ ⋃
ai∈C(G)i∈[n]

|⟨V (aiH)⟩| =

q|⟨V (H)⟩|, where n = o(G) = |V (C(G))|. Therefore, as q is an integer, we have
|⟨V ((H)⟩| divides |V (C(G))|. By the definition of C(G), V (C(G)) = G and ⟨H⟩
corresponds to the subgroup H in G. Thus, the result holds true for group (G, ∗)
with its subgroup (H, ∗). That is, o(H) divides o(G).

The following corollary is an immediate consequence of Theorem 2.3 as the
elements in the vertex set of the graph is same as that of the group and the
elements in the vertex set of the subgraph is same as that in the subgroup.
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Corollary 2.4. Let ΓG be a graph with V (ΓG) = G and H ′ be its subgraph with
V (H ′) = H, then |V (H ′)| divides |V (ΓG)|.
3. Graphs on Conjugacy Classes of Finite Groups

Let G be a finite group and a, b ∈ G. Then, b is said to be conjugate of a if
there exists an element c ∈ G such that b = c−1ac and it is denoted by b ∼ a. The
relation ‘∼’ is termed as conjugacy relation. For an element a in the group G, the
conjugate class of a is denoted by C(a) and defined as C(a) = {b ∈ G : b ∼ a}. It
can be observed that the conjugacy relation is an equivalence relation.

Owing to the concepts of conjugacy relation and conjugate classes defined on
a finite group, a new class of algebraic graphs, namely conjugacy graph, is defined
as follows:

Definition 3.1. Let (G, ∗) be a finite group with the conjugacy relation R defined
on G. The conjugacy graph of G, denoted by Γ(G), with respect to R is the graph
such that

(i) V (Γ(G)) = G.

(ii) For a, b ∈ V (Γ(G)), ab ∈ E(Γ(G)) if and only if a ∼ b.

Theorem 3.2. [Structure Theorem] The following results hold true for the conju-
gacy graph Γ of a finite group G.

(i) The vertex iG is always an isolated vertex contributing to a singleton compo-
nent in Γ.

(ii) Γ is a disconnected graph with C(a) being its component, where a is a repre-
sentative vertex from each component.

(iii) Let F be the family of disjoint conjugate classes in the group G. Then,

V (Γ) =
..⋃

C(ai)∈F

V (C(ai)), where ai is a representative vertex of the component

C(ai).

(iv) Each component induced by C(a) is a clique with |C(a)| vertices in it.

(v) Let d(a) denote the degree of a ∈ V (Γ) in C(a), then d(a) + 1 = |C(a)|.

(vi) The elements belonging to the center of a group Z(G) are isolated vertices in
Γ. Hence elements of Z(G) always result in singleton components in Γ.
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Proof. For any group G with identity element iG, C(iG) = {iG}. Thus, C(iG)
induces singleton component in Γ. In other words, iG is always an isolated vertex
in Γ. Since ∼ is an equivalence relation, it will result in a partition of elements.
This implies that any two conjugate classes in the group G are either identical or
disjoint and also we have iG to be an isolated vertex. Thus, Γ has at least two
components.

Since the disjoint conjugate classes form a partition of the elements, they will
also induce distinct components and partition of the vertices in Γ. Therefore, V (Γ)
is a disjoint union of vertices of components C(a).Consider a conjugate class of an
element a. All the elements in C(a) are conjugate to each other implying that they
are adjacent to each other in the component induced by C(a) in Γ. Thus, inducing
a clique with its order equal to the order of C(a).

Let d(a) denote the degree of the representative vertex a in the component in-
duced by C(a). Since C(a) induces a complete graph, d(a) counts all the elements
of C(a) except a. Therefore, d(a) + 1 = |C(a)|. The center Z(G) consists of all
the elements that commute with every element in G. If x ∈ Z(G), then c−1xc = x
for any c ∈ G, implying that C(x) = {x}. Hence, conjugate class of elements
belonging to Z(G) always induce singleton components in Γ and thus are always
isolated vertices in Γ, completing the proof.

Theorem 3.3. [Class Equation for graph] For any conjugacy graph Γ of a group
G, |V (Γ)| = ℓ +

∑
a∈C(a), |C(a)|>1

(d(a) + 1), where summation runs over one repre-

sentative vertex a from each non-singleton component and ℓ denotes the number of
isolated vertices in Γ.
Proof. By Theorem 3.2, we know that Γ is a disconnected graph consisting of
singleton components and non-singleton components. Hence, counting all the ver-
tices in the components would give us the order of the graph. Let ℓ denote the
total number of distinct singleton components in Γ. The number of vertices in each
non-singleton component is d(a)+1, where a is a representative vertex chosen from
each non-singleton component. Thus,

∑
a∈C(a), |C(a)|>1

(d(a) + 1) gives the total num-

ber of vertices in non-singleton components in Γ. Summing up the total number
of vertices in singleton and non-singleton components gives us the order the graph
Γ. Therefore, |V (Γ)| = ℓ+

∑
a∈C(a), |C(a)|>1

(d(a) + 1).

Proposition 3.4. The size of Γ is given by m(Γ) =
∑

a∈C(a)

(d(a)+1)d(a)
2

, where the

sum runs over one representative vertex a from each component.
Proof. Consider the conjugacy graph Γ, the singleton components are edgeless
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and hence do not contribute any edge. By Theorem 3.2, we have that the non-
singleton components are complete graphs and we known that, |E(Kn)| = n(n−1)

2
.

Also, we can have more than one non-singleton component each of order d(a) + 1.
Thus, the total number of edges in each non-singleton component is equal to
(d(a)+1)d(a)

2
. Summing up all the edges from each non-singleton component, we

get m(Γ) =
∑

a∈C(a)

(d(a)+1)d(a)
2

.
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Figure 1: Conjugacy graph of symmetric group S4

4. Applications of Structure Theorem

Theorem 4.1. [16] If o(G) = pn, where p is a prime number, then the center Z(G)
has at least one non-identity element in it.

Theorem 4.2. For a conjugacy graph Γ of a group G, if |V (Γ)| = pn, then ℓ ≥ 2,
where ℓ denotes the number of isolated vertices in Γ.
Proof. Consider the class equation |V (Γ)| = ℓ +

∑
a∈C(a),|C(a)|>1

(d(a) + 1), where

summation runs over one arbitrary representative vertex a from each non-singleton
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component, where ℓ denotes the number of isolated vertices in Γ. By the hypothesis,
we have |V (Γ)| = pn, where p is a prime number. We need to prove that ℓ ≥ 2.
Further, it suffices to prove that p | (V (Γ) −

∑
a∈C(a)

(d(a) + 1)). We know that,

|G| = |C(a)| |N(a)|, this implies that |G|
|C(a)| = |N(a)|. Since |N(a)| is an integer,

|C(a)| must divide |G| = pn. Thus, |C(a)| = pk, where k is a positive integer
and k ≤ n. By Theorem 3.2, we have |C(a)| = d(a) + 1 = pk. This implies
that

∑
a∈C(a)

(d(a) + 1) = k1p
k, where k1 is some positive integer. Thus, we have

pn = ℓ+ k1p
k, implying (pn− k1p

k) = ℓ. Considering the term (pn− k1p
k) we have,

p | pn and p | pk which implies p | k1pk. Therefore p | (pn − k1p
k). Thus, p must

divide ℓ. Hence, ℓ ≥ 2.

Recall the following result, which is a consequence of Theorem 4.1.

Corollary 4.3. [16] If o(G) = p2, where p is a prime number, then G is Abelian.

In view of the result mentioned above, we have the following result.

Theorem 4.4. For a conjugacy graph Γ, if |V (Γ)| = p2, where p is a prime
number, then ℓ = V (Γ), where ℓ denotes the number of isolated vertices in Γ.
Proof. Let H = C(a) denote the component corresponding to the conjugate
class of a in the graph Γ = Γ(GH). Consider the class equation |V (Γ(GH))| =
ℓ+

∑
a∈C(a)

(d(a) + 1). By Theorem 3.2, we have that ℓ = |Z(G)|, where Z(G) is the

center of the group G. By Corollary 2.4, ℓ = |Z(G)| must divide |V (Γ(GH))| = p2.
Therefore, ℓ = |Z(G)| must be either 1 or p or p2. Now, since each non-singleton
component H also induces a subgraph in Γ(GH), |H| = d(a) + 1 must divide
|V (Γ(GH))| = p2. Therefore, d(a) + 1 must be 1 or p or p2.
Case 1: Let d(a) + 1 = 1. This implies d(a) = 0, and thus all the vertices in
Γ(GH) are isolated vertices. Therefore, ℓ = |V (Γ(GH))|. The case becomes trivial.
Case 2: Let d(a) + 1 = p2. This implies that d(a) + 1 = |V (Γ(GH))|. Thus, ℓ = 0
is a contradiction to Theorem 4.2. Hence, this case is not possible.
Case 3: Let d(a)+1 = p. Let us consider a vertex a such that a is not an isolated
vertex in Γ(GH). This implies that a /∈ Z(G). We also have Z(G) ⊂ N(a) ⊂ G
as a /∈ Z(G), where N(a) is a normalizer of an element a ∈ G. Now, in the
graph Γ(GH), Z(G) induces a proper subgraph of the subgraph induced by N(a)
in Γ(GH). Thus, by the corollary of Theorem 2.3, ℓ = |Z(G)|must divide |V (N(a)|.
Hence, |V (N(a))| is either p or p2, but since a is not an isolated vertex, |V (N(a))|
must be greater than ℓ(= p). Moreover, we have, |G| = |C(a)| |N(a)|; that is,

|V (Γ(GH))| = |V (C(a))| |V (N(a))|. Thus, we have |V (Γ(GH))|
|V (C(a))| = |V (N(a))|, which
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is p2

d(a)+1
= |V (N(a))|. Hence, d(a) + 1 = p is not possible. This completes the

proof.

5. Conclusion
In this paper, we have defined a particular graph called the equivalence graph

derived from groups using the terminology of equivalence relation. We have also
constructed the conjugacy graphs as a special case of equivalence graphs based on
conjugacy relation and related observations. Further, we have also given graph
theoretical expression and proof for class equation and related results. As a further
scope of the study, the isomorphism of introduced graphs with any existing graphs
can be investigated. Representing the graphs introduced in the paper as inter-
section graphs and related study in structural aspects would be promising. The
applications of the class equation in group theory can be investigated in graph-
theoretical aspects.
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