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1. Introduction
Geometry and analysis are built upon the foundation of general topology.

Topology saw great advancement in the early 20th century. The significance of
open and closed sets in topological spaces has been examined by numerous aca-
demicians. Soon-Mo Jung [11] analyzed a few features of interior and closure. The
significance of topological spaces is explained by the continuities, connectedness,
and separation axioms in a variety of domains. Additionally, Al-Shami [2] intro-
duced the notions of somewhere dense sets and T1 spaces, delving into aspects of
somewhere dense continuity [3], compactness, and CS-dense sets [4] in collaboration
with Noiri.These investigations collectively fortify the theoretical underpinnings of
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topology. Furthermore, this work presents a novel type of open sets known as sober
open sets. Additionally, a sober closed set—the complement of a sober open set—is
introduced, and some of its characteristics are examined. Additionally, we define
sober continuity, separation, and connectivity and demonstrate their fundamental
properties.It is demonstrated that, under certain circumstances, a sober continu-
ity can transform into a strong continuity by comparing it to strong continuity.
Moreover, sober connectedness is contrasted with connectedness, and it has been
demonstrated by a counterexample that connectedness does not always entail sober
connectedness.

2. Preliminaries
In this section we recall some basic definitions which help to shape this article.

Definition 2.1. [5, 6, 7] A topology on a set X is a collection τ of subsets of X
having the following properties:

1. ϕ and X are in τ

2. Arbitrary union of elements of τ belongs to τ

3. Finite intersection of elements of τ belongs to τ .

A set X together with the topology τ is known as topological space and the elements
of τ are called the open sets. The topological space is denoted by (X, τ).

Definition 2.2. [6] Let (X, τ) be a topological space. If Y is a subset of X, the
collection τY = {Y ∩ U ∈ τ} is a topology on Y called the subspace topology and Y
is called the subspace of X.

Definition 2.3. [1] For any set A in (X, τ), the interior and closure are defined
by

int(A) =
⋃

{K/K is an open set in X &K ⊆ A}
cl(A) =

⋂
{L/L is a closed set in X &A ⊆ L}

Definition 2.4. [9, 10] Let X and Y be topological spaces. A function f : X → Y
is said to be continuous if for each open subset V of Y , the set f−1(V ) is an open
subset of X.

Definition 2.5. [8] A mapping f : X → Y is said to be strongly continuous if for
every subset A of X, f(cl(A)) ⊆ f(A).

Levine further established that ”f is strongly continuous if and only if each
subset’s inverse image is open (or closed)”. Thus, it is clear that a mapping is
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strongly continuous if and only if each subset’s inverse image is both open and
closed (i.e., clopen).

Definition 2.6. [6] Let X be a topological space. A separation of X is a pair U ,
V of disjoint non-empty open subsets of X whose union is X. The space X is said
to be connected if there exists no separation of X.

Definition 2.7. [6] A topological space is said to be Hausdorff if each pair x1, x2 of
distinct points of X, there exist neighborhoods U1 and U2 of x1 and x2 respectively,
that are disjoint.

Definition 2.8. [6] Suppose that one-point sets are closed in X. Then X is said
to be regular if for each pair consisting of a point x and a closed set B disjoint from
x, there exist disjoint open sets containing x and B respectively.

Definition 2.9. [6] Suppose that one-point sets are closed in X. Then X is said
to be normal if for each pair A, B of disjoint closed sets of X, there exist disjoint
open sets containing A and B, respectively.

3. Sober open sets
In this section the definitions of a new open set called sober open set and its

complement sober closed set in topological space are introduced and their basic
properties are discussed. Also a topological space called sober topological space is
introduced to study further sober open sets.

Definition 3.1. A non-empty set A ̸= X is said to be a sober open set in a
topological space (X, τ), if there exist two distinct non-empty open sets A1 ̸= X
and A2 ̸= X in X such that

1. A ∪ A1 is open and A ∪ A1 ̸= X

2. A ∩ A2 is open and A ∩ A2 ̸= ϕ

The complement Ac of a sober open set A is a sober closed set in (X, τ). The
collection of all sober open (sober closed) sets is denoted by Bo(X)(Bc(X)) and the
union of all sober open (sober closed) sets is denoted by Osober(Dsober) .

Example 3.2. Let X = {a, b, c, d} and τ = {ϕ, {a}, {c}, {a, b}, {a, c},
{a, b, c}, X}, then (X, τ) is a topological space. Let A = {b, c} be a non empty
subset of X. Then A is a sober open set in X, since there exist two distinct non-
empty open sets A1 = {a, c} and A2 = {c} such that A ∪ A1 = {a, b, c} ≠ X is
open and A ∩ A2 = {c} ≠ ϕ is open.
Here Bo(X) = {{a} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}}
It is to be noted that the empty set and the whole set of X are not sober open.
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Therefore sober open sets do not establish a topology.

Definition 3.3. The sober complement of a sober open (res. sober closed) set A
(res. C), denoted by c(A), is defined by c(A) = Osober - A (res. c(C) = Dsober -
C).

Remark 3.4. It is not necessary that the sober complement of a sober open set is
sober closed and the sober complement of a sober closed set is sober open in (X, τ).

Example 3.5. In Example 3.2, A = {b, c} is a sober open set. Then the sober
complement of A is c(A) = Osober − A = {a, b, c} − {b, c} = {a} is not a sober
closed set. The other way around is analogous.

Remark 3.6. Every open set in (X, τ) need not be sober open in general.

Example 3.7. Let X = {a, b} and τ = {ϕ, {a} , X}, then (X, τ) is a topological
space. Here {a} is an open set but not a sober open set, as there exist no non-empty
open sets A1 ̸= A2 ̸= X satisfying Definition 3.1.

Theorem 3.8. An open set A in (X, τ) is a sober open set if and only if it is
either a proper subset or a superset of a proper open set in (X, τ).
Proof.
Sufficiency: Let A be an open set in (X, τ) and A ⊂ B where B is a proper open
set in X. Then since A itself is open such that A ∪ A = A and A ∩ B = A which
are open in X, A is sober open in X.
If in the above case, A ⊃ B, then A∩B = B, which is also open and the conditions
to be a sober open set are satisfied.
Necessity: Let an open set A in X be sober open in X. Then there exist two
proper open sets say A itself and B with required conditions. Then obviously either
A ⊃ B or A ⊂ B.

Theorem 3.9. Any non-empty set A ̸= X is sober open if and only if it is a subset
of a non-trivial open set and a superset of a non-trivial open set in X.
Proof.
Sufficiency: Let A be a non-trivial subset of X and let A1, A2 be two non-trivial
open sets in τ such that A ⊆ A1 and A ⊇ A2. Then A∪A1 = A1 and A∩A2 = A2.
Hence A satisfies the definition of a sober open set and so A is sober open in X.
Necessity: Let A be sober open in X. Then by Definition 3.1, there exist two
non-empty open sets A1 ̸= A2 ̸= X such that A ∪ A1 and A ∩ A2 are open in X.
Obviously A ∪ A1 ⊇ A and A ∩ A2 ⊆ A.

Proposition 3.10. Any singleton set A = {x} in X is sober open if and only if

1. A ∈ τ
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2. A ⊂ A1, where A1 ∈ τ

Proof.
Necessity: Let A be sober open. Then by Definition 3.1 there exist two non-empty
open sets C ̸= D ̸= X such that A∪C ∈ τ and A∩D ∈ τ . These conditions imply
that respectively A ⊂ A ∪ C = A1 (say) in τ and A ∩D = {x} = A ∈ τ .
Sufficiency: Suppose A satisfies conditions (i) & (ii), then by Theorem 3.8, A is
sober open in X.

Remark 3.11. The union of two sober open sets need not be sober open in general.

Example 3.12. Let X = {a, b, c, d, e} and
τ = {ϕ, {e} , {a, e} , {c, e} , {a, c, e} , {a, b, c, e} , {a, c, d, e} , X}. Then (X, τ) is a
topological space. Let A = {b, c, e} and B = {c, d, e}. Then A is sober open as
there exist two distinct non-empty proper open sets A1 = {a, e} and A2 = {e} such
that A ∪ A1 = {a, b, c, e} ̸= X, is open and A ∩ A2 = {e} ̸= ϕ, is open. Also B
is sober open since there exist two non-empty proper open sets B1 = {a, e} and
B2 = {a, c, e} such that B ∪B1 = {a, c, d, e} ≠ X, is open and B ∩B2 = {c, e} ≠ ϕ
is open. Now A ∪ B = {b, c, d, e} is not sober open as there exist no non-empty
proper open sets which satisfy the conditions as in Definition 3.1.

Remark 3.13. The intersection of two sober open sets need not be sober open in
general.

Example 3.14. Let X = {a, b, c, d} and
τ = {ϕ, {b} , {c} , {a, b} , {b, c} , {c, d} , {a, b, c} , {b, c, d} , X}. Then (X, τ) is a topo-
logical space. Let A = {a, b} and B = {a, c}.Then A is sober open as it is open.
Also B is sober open since there exist two non-empty open sets B1 = {a, b} and
B2 = {b, c} such that B ∪ B1 = {a, b, c} ̸= X, is open and B ∩ B2 = {c} ̸= ϕ is
open. Now A ∩B = {a} /∈ τ and from Proposition 3.10, it is not sober open.

Remark 3.15. Sober open sets in a topological space (X, τ) exist only when τ
contains at least two proper open sets which are not disjoint.

Hereafter we consider only the topology which has at least two proper open
sets which are not disjoint. We call it as sober topology denoted by τsober and the
corresponding space as the sober topological space denoted by Xsober.

Definition 3.16. Let Xsober be a sober topological space with topology τsober. If Y
is a subset of X, the collection τY = {Y ∩ U/U ∈ τsober} on Y, is a topology called
the subspace topology. Then (Y, τY ) is called a subspace of Xsober. It is to be noted
that Y is also a sober topological space.

Proposition 3.17. In a sober topological space Xsober every proper open set is a
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sober open set.
Proof. As in a sober topological space, every proper open set is either a proper
subset or a super set of a proper open set, the Proposition holds good from Theorem
3.8.

Definition 3.18. Let (X, τsober) be a topological space. Then the sober - interior
and sober - closure of any proper set A in Xsober is defined by

sober − int(A) =
⋃

{K/K is a sober open set in X &K ⊆ A},
sober − cl(A) =

⋂
{K/K is a sober closed set in X &A ⊆ K} .

Remark 3.19. For any proper set A, sober − int(A) ⊆ A is true only when
sober − int(A) exists. Also A ⊆ B ⇒ sober − int(A) ⊆ sober − int(B) is true for
any two proper sets A and B only when sober − int(A) and sober − int(B) exist.

Example 3.20. Let X = {a, b, c, d} and
τsober = {ϕ, {b} , {c} , {a, b} , {b, c} , {c, d} , {a, b, c} , {b, c, d} , X}. Then (X, τsober)
is a topological space. Here the collection of sober open sets
Bo(X) = {{b} , {c} , {a, c} , {b, c} , {c, d} , {a, b} , {a, b, c} , {a, c, d} , {b, c, d}}.
Let A = {a} be a non-empty set. Then there exists no sober open set which is
contained in A.

Proposition 3.21. If A is sober open, then sober− int(A) = A but not conversely
in (X, τsober).
Proof. Let {Ai} be a collection of sober open sets contained in A where A is a
sober open set. Then ∪Ai ⊆ A and as A itself is a sober open set, sober− int(A) =
A ∪ (∪Ai) = A.

Example 3.22. In Example 3.12, Bo(X) = {{e}, {a, e}, {b, e}, {c, e}, {d, e},
{a, b, e}, {a, c, e}, {a, d, e}, {b, c, e}, {c, d, e}, {a, b, c, e}, {a, c, d, e}}
and sober−int(A) = A for A = {b, d, e}. But A is not a sober open set in (X, τsober).

Theorem 3.23. If A and B are sober open sets in a topological space Xsober, then
the following are satisfied:

1. sober − int(A ∪B) ⊆ sober − int(A) ∪ sober − int(B)

2. sober − int(A ∩B) ⊆ sober − int(A) ∩ sober − int(B)

3. A ⊆ B implies sober − int(A) ⊆ sober − int(B)

4. sober − int(sober − int(A)) = sober − int(A)
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Proof.

1. If A and B are sober open, then by Proposition 3.21, sober− int(A) = A and
sober − int(B) = B. Now sober − int(A ∪ B) ⊆ A ∪ B = sober − int(A) ∪
sober − int(B)

2. is similar to (1) and (3) & (4) are obvious.

Remark 3.24. For any proper set A in (X, τsober), if sober − int(A) exists, then
int(A) ⊆ sober − int(A).

Theorem 3.25. The following are true in a sober topological space (X, τsober) for
any two proper sets A and B whose sober - closure exist:

1. A ⊆ sober − cl(A) and sober − cl(A) ⊆ cl(A)

2. If A is sober closed, then A = sober − cl(A)

3. A ⊆ B ⇒ sober − cl(A) ⊆ sober − cl(B)

4. c(A) ̸= Ac in general and c(A) = Ac if and only if Osober = X or Dsober = X

Proof. Straightforward.

4. Sober continuous mappings and sober separation

In this section continuous mapping between two sober topological spaces has
been established and the properties are investigated. Separation and connected-
ness based on sober open sets are introduced (called as sober separation and sober
connected) and some results on sober connectedness are analyzed.

Definition 4.1. A mapping f : Xsober → Ysober is said to be sober continuous, if
f−1(A) is sober open in Xsober for every sober open set A in Ysober.

Example 4.2. Let (X, τsober) and (Y, σsober) be two sober topological spaces, where
X = {a, b, c} and Y = {a, b, c}, τsober = {ϕ, {a}, {b}, {a, b}, {a, c}, X} and σsober =
{ϕ, {a}, {b}, {a, b}, {b, c}, X}. Here Bo(Xsober) = {{a} , {b} , {a, b} , {a, c}} and
Bo(Ysober) = {{a} , {b} , {a, b} , {b, c}}.

Define a mapping f : Xsober → Ysober by f(a) = b, f(b) = a and f(c) = c. Then
f is a sober continuous mapping.

It is very important to note that the sober continuous mappings are different
from other continuous mappings as ϕ and X are not sober open sets. But a strongly
continuous mapping can be made into a sober continuous mapping under some
circumstance. Following proposition explains it for better understanding.
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Proposition 4.3. Every strongly continuous mapping f : Xsober → Ysober is sober
continuous if the inverse image of every subset of Y is a proper subset of X.
Proof. Let f : Xsober → Ysober be a strongly continuous mapping. Let A be a sober
open set in Y . Then by hypothesis, its inverse image f−1(A) is a proper clopen set
in X. That is f−1(A) is a proper open set in X and hence it is a sober open set in
X. This implies that f is a sober continuous mapping.

Example 4.4. Let (X, τsober) and (Y, σsober) be two sober topological spaces, where
X = {a, b, c} and Y = {a, b, c}, τsober = {ϕ, {a}, {a, b}, {a, c}, X} and σsober =
{ϕ, {b}, {a, b}, {b, c}, X}. Here Bo(Xsober) = {{a} , {a, b} , {a, c}} and Bo(Ysober) =
{{b} , {a, b} , {b, c}}.

Define a mapping f : Xsober → Ysober by f(a) = b, f(b) = a and f(c) = c. Then
f is a sober continuous mapping but it is not strongly continuous as, {a, c} is a
subset of Y , but f−1({a, c}) = {b, c} is not open in X.

Theorem 4.5. Let Xsober and Ysober be sober topological spaces and f : Xsober →
Ysober a mapping. Then the following are equivalent:

a. f is sober continuous

b. For every sober closed set B of Ysober, the set f−1(B) is sober closed in Xsober

Proof. (a) ⇔ (b) is obvious as f−1(Bc) = (f−1(B))c in Xsober.

Proposition 4.6. Let f : Xsober → Ysober be a mapping. Then the following are
true:

(a) For every sober closed set A of Xsober , f(sober − cl(A)) ⊂ sober − cl(f(A))

(b) For every sober open set A of Xsober , sober− int(f(A)) ⊂ f(sober− int(A))

Proof.

(a) Let A be a sober closed set of Xsober , then f(sober − cl(A)) = f(A) ⊆
sober − cl(f(A)).

(b) is obvious by taking complement in (a).

Proposition 4.7. Let f : Xsober → Ysober be a sober continuous mapping. Then
for each x ∈ X and each sober open set V containing f(x), there is a sober open
set U containing x such that f(U) ⊂ V .
Proof. Let V be a sober open set in Ysober such that f(x) ∈ V . Then since f
is sober continuous, f−1(V ) is a sober open set in Xsober and x ∈ f−1(V ). Let
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U = f−1(V ), then f(U) = f(f−1(V )) ⊆ V .

Definition 4.8. Let Xsober be a sober topological space. A sober separation of Xsober

is a pair A and B of disjoint sober open sets of Xsober such that Xsober = A ∪ B.
The space Xsober is said to be sober connected if there exist no sober separation of
Xsober.

It is not necessary to mention non-emptiness in the above Definition 4.8, as a
sober open set is always non-empty.

Example 4.9. Let (X, τsober) be a sober topological space where X = {a, b, c} and
τsober = {ϕ, {a} , {b} , {a, b} , X}.
Here Bo(Xsober) = {{a} , {b} , {a, b}}. Then Xsober is sober connected as there exist
no disjoint sober open sets A and B such that Xsober = A ∪B.

Theorem 4.10. A space Xsober is sober connected if and only if there exists no
proper subset of Xsober which is both sober open and sober closed in Xsober.
Proof. Assume Xsober is sober connected. Suppose A is a subset of Xsober such
that A is both sober open and sober closed. Then C = A and D = X − A are
disjoint sober open sets and Xsober = C ∪D. This implies that Xsober is not sober
connected. A contradiction to our hypothesis arises.

Conversely assume that Xsober is not sober connected. Then there exist two
disjoint sober open sets C and D such that Xsober = C ∪D where C is both sober
open and sober closed as C = X −D.

Theorem 4.11. The sober continuous image of a sober connected space is sober
connected.
Proof. Let f : Xsober → Ysober be a sober continuous map and let Xsober be sober
connected. Then it is to be proved that f(Xsober) is sober connected. Suppose
f(Xsober) is not sober connected, then there exist two disjoint sober open sets A
and B such that f(Xsober) = A ∪B. As f is sober continuous, f−1(A) and f−1(B)
are sober open in Xsober and Xsober = f−1(A) ∪ f−1(B) where both f−1(A) and
f−1(B) are disjoint. A contradiction arises to our assumption. Hence f(Xsober) is
sober connected.

Lemma 4.12. If two sets A and B form a separation of a sober topological space
Xsober and if Y is a sober connected subspace of Xsober, then either Y ⊂ A or
Y ⊂ B.
Proof. Let A and B form a separation of Xsober, then Xsober = A ∪ B where A
and B are non-empty disjoint open sets in Xsober and let Y be a sober connected
subspace of Xsober. Suppose yi ∈ A and yj ∈ B where yi, yj ∈ Y (i ̸= j&i, j ∈ I),
then Y = (Y ∩A) ∪ (Y ∩B) where Y ∩A and Y ∩B are disjoint non-empty open
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sets in Y . Since Y is a sober topological space, they are sober open sets in Y hence
form a sober separation of Y . A contradiction to our hypothesis arises. Therefore
Y must lie either in A or in B.

Proposition 4.13. Every sober connected space is connected but not conversely in
general.
Proof. Let Xsober be sober connected. Suppose it is not connected, then there
exist two non-empty disjoint open sets A and B such that Xsober = A ∪ B. As
every proper open set is sober open in Xsober, A and B are sober open in Xsober.
This implies Xsober is not sober connected. A contradiction arises. Hence Xsober is
connected.

Example 4.14. LetX = {a, b, c, d} and τsober = {ϕ, {a}, {c}, {a, c}, {c, d}, {a, b, c},
{a, c, d}, X}. Then (X, τ) is connected but it is not sober connected as Bo(Xsober) =
{{a}, {c}, {a, b}, {b, c}, {c, d}, {a, c}, {a, d}, {a, b, c}, {a, c, d}} and Xsober = {a, b} ∪
{c, d} which are disjoint sober open sets.

Theorem 4.15. Let A be a sober connected subspace of Xsober. If A ⊂ B ⊂
sober − cl(A), then B is connected.
Proof. Let A be sober connected and let A ⊂ B ⊂ sober− cl(A). By Proposition
4.13, A is connected and since sober− cl(A) ⊆ cl(A), B is obviously connected [6].
Theorem 4.16. Let A be a sober connected subspace of Xsober. If A ⊂ B ⊂ cl(A),
then B is connected.
Proof. Let A be sober connected and let A ⊂ B ⊂ cl(A). Suppose B is not con-
nected, then there exist two non-empty disjoint open sets C and D in B such that
B = C ∪D. Then by Lemma 4.10, A must lie either in C or in D. Suppose A ⊂ C,
then cl(A) ⊂ cl(C) where cl(C) and D are disjoint. Now as B ⊂ cl(A) ⊂ cl(C),
B ∩D ⊂ cl(C) ∩D = ϕ. That is B ∩D = ϕ and this contradicts the fact that D
is a non-empty subset of B. Hence B is connected.

Remark 4.17. A sober topological space Xsober with respect to sober open sets is
not a Hausdorff (= T2) space in general. But it may be a T2 space when τsober
contains some disjoint open sets together with at least two proper open sets which
are not disjoint.

Example 4.18. Let X = {a, b, c, d} and τsober = {ϕ, {b}, {c}, {d}, {a, b},
{b, c}, {c, d}, {b, d}, {a, b, d}, {a, b, c}, {b, c, d}, X}. HereBo(Xsober) = {{b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {c, d}, {a, b, d}, {a, b, c}, {a, c, d}, {b, c, d}}.
Then (X, τsober) is a T2 space with respect to sober open sets.

Proposition 4.19. The disjoint sober closed sets A and B are sober separated in
Xsober.
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Proof. Let A and B be disjoint sets. Then A ∩ B = ϕ. Since A and B are sober
closed sets, sober− cl(A) = A and sober− cl(B) = B. Hence sober− cl(A) ∩B =
A ∩B = ϕ and A ∩ sober − cl(B) = A ∩B = ϕ.

Proposition 4.20. The disjoint sober open sets A and B whose sober - closure
exist are sober separated in Xsober.
Proof. Let A and B be disjoint sober open sets whose sober - closure exist. Then
A∩B = ϕ. This implies that A ⊂ X−B and sober− cl(A) ⊂ sober− cl(X−B) =
X − B, as X − B is sober closed. We have sober − cl(A) ⊂ X − B and hence
sober − cl(A) ∩B = ϕ. Similarly A ∩ sober − cl(B) = ϕ.

Definition 4.21. Suppose that one-point sets are closed in Xsober. Then Xsober is
said to be sober regular if for each pair consisting of a point x and a sober closed
set B disjoint from x, there exist disjoint sober open sets containing x and B re-
spectively.

Proposition 4.22. If a sober topological space Xsober is sober regular, then given
a point x ∈ X and a sober open set U of x, there is a sober open set V of x such
that sober − int(V ) ⊂ U .
Proof. Assume that Xsober is sober regular and x ∈ X. Given that U is a sober
open set containing x. Let B = X − U , then B is sober closed which is disjoint
from x. By hypothesis, there exist disjoint sober open sets V and W such that
x ∈ V and B ⊂ W . We have V ∩ B = ϕ, since if y ∈ V ∩ B, then y ∈ V
and y ∈ B ⊂ W where V and W are disjoint, which is a contradiction. Hence
V ∩ (X − U) = sober − int(V ) ∩ (X − U) = ϕ and therefore sober − int(V ) ⊂ U .

Theorem 4.23. A sober topological space Xsober is sober regular, then for a given
point x ∈ X and a sober open set N of x, there is a sober open set M of x whose
sober - closure exists such that sober − cl(M) ⊂ N .
Proof. Let x ∈ X and N , a sober open set such that x ∈ N . Then X−N is sober
closed and x /∈ X −N . By hypothesis, there exist two disjoint sober open sets say
L and M such that X−N ⊂ L and x ∈ M . We have L∩M = ϕ. This implies that
M ⊂ X−L and sober−cl(M) ⊂ sober−cl(X−L) = (X−L), since X−L is sober
closed. Also X −N ⊂ L ⇒ X − L ⊂ N. Therefore sober − cl(M) ⊂ X − L ⊂ N .
That is sober − cl(M) ⊂ N .

Definition 4.24. Suppose that one-point sets are closed in Xsober. Then Xsober is
said to be sober normal if for each pair A, B of disjoint sober closed sets of Xsober,
there exist disjoint sober open sets containing A and B, respectively.

Proposition 4.25. If a sober topological space Xsober is sober normal, then given
a sober closed set A and a sober open set U ⊃ A, there is a sober open set V ⊃ A
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such that sober − int(V ) ⊂ U .
Proof. Assume that Xsober is sober normal and given that U is a sober open set
containing A where A is sober closed in Xsober. Then B = X − A is sober closed
and it is not containing A. By hypothesis, there exist two disjoint sober open
sets say V and W such that A ⊂ V and B ⊂ W . We have V ∩ B = ϕ, since if
y ∈ V ∩ B, then y ∈ V and y ∈ B ⊂ W where V and W are disjoint, which is a
contradiction. Hence V ∩ (X − U) = sober − int(V ) ∩ (X − U) = ϕ and therefore
sober − int(V ) ⊂ U .
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