South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 3 (2024), pp. 369-384 DOI: 10.56827/SEAJMMS.2024.2003.28 ISSN (Onlin

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

A NOVEL CLASS OF CONTINUITY VIA $(\Lambda, \delta S)$ -CLOSED SETS

S. L. Rathika and K. Sivakamasundari

Department of Mathematics Avinashilingam Institute for Home science and Higher Education for Women, Coimbatore - 641043, Tamil Nadu, INDIA

E-mail : slrathikaphd@gmail.com, sivakamasundari_mat@avinuty.ac.in

(Received: Aug. 09, 2024 Accepted: Dec. 29, 2024 Published: Dec. 30, 2024)

Abstract: In this paper, we introduce the $(\Lambda, \delta S)$ - continuity via $(\Lambda, \delta S)$ - closed sets and the theorems based on them are discussed with counterexamples. Moreover, we entitle the Quasi $(\Lambda, \delta S)$ continuity, Perfect $(\Lambda, \delta S)$ - continuity, Totally $(\Lambda, \delta S)$ - continuity, Strongly $(\Lambda, \delta S)$ - continuity, Contra $(\Lambda, \delta S)$ - continuity by applying $(\Lambda, \delta S)$ - closed sets.

Keywords and Phrases: $(\Lambda, \delta S)$ -closed set, $(\Lambda, \delta S)$ - continuity, Quasi $(\Lambda, \delta S)$ continuity, Perfect $(\Lambda, \delta S)$ - continuity, Totally $(\Lambda, \delta S)$ - continuity, Strongly $(\Lambda, \delta S)$ - continuity, Contra $(\Lambda, \delta S)$ - continuity.

2020 Mathematics Subject Classification: 54A35.

1. Introduction

In topology and its applications, the concept of a closed set is fundamental. Many researchers have defined classes of closed sets (see [1, 2, 5, 10, 11]); through them, new definitions of compactness and continuity have been found, see [10, 13]. From this point of view, we have defined a new class of open sets, namely $(\Lambda, \delta S)$ closed sets. Park. et al. (1997) introduce the notion of δ – semi-open sets, which are stronger than semi-open sets but weaker than δ – open sets. Georgiou (2004) developed the theory on generalization of δ – closed sets which is named as (Λ, δ) – closed sets using Λ – operator in terms of δ . In 2014, Binod Chandra Tripathy introduced the concept of generalized b-closed sets with respect to an ideal in bitopological spaces, which is the extension of the concepts of generalized b-closed sets. In 2013, Binod Chandra Tripathy et. al, introduced the concept of weakly b-continuous functions in bitopological spaces as a generalization of b-continuous functions and studied several properties of these functions. In 2011, Binod Chandra Tripathy et. al introduced the notion of b-locally open sets, bLO_* sets, bLO_* sets in bitopological spaces and obtain several characterizations and some properties of these sets.

Similarly we have introduced the concept of $(\Lambda, \delta S)$ -closed sets were introduced in [13]. By using $(\Lambda, \delta S)$ - closed sets in this article we introduced $(\Lambda, \delta S)$ continuity (resp., $(\Lambda, \delta S)$ – irresoluteness, Quasi $(\Lambda, \delta S)$ – irresoluteness, Completely $(\Lambda, \delta S)$ – irresoluteness) concepts are defined using $(\Lambda, \delta S)$ – closed and some of their properties are analyzed, and we extend various results, properties concerning these concepts.

2. Preliminary

Throughout this paper $(P,\sigma),(Q,\tau)$ and (R,η) (simply P,Q,R) always mean topological space. The closure (resp., interior) will be denoted by Cl(R) (resp., Int(R)). Let R be a subset of P.

Definition 1. A subset R of a topological space (P, σ) is called δ -open if R is the union of regular open sets. The complement of δ -open is called δ -closed.

Lemma 1. The intersection of arbitrary collection of δ - semiclosed sets in (P,σ) is δ - semiclosed.

Definition 2. Let R be a subset of a topological space $(P.\sigma)$. Then $\Lambda_{\delta S}(R)$ [also called $Ker_{\delta S}(R)$] is defined as follows:

$$\Lambda_{\delta S}(\mathbf{R}) = \cap \{ \mathbf{U} \in \delta \mathrm{SO}(\mathbf{P}, \sigma) / \mathbf{R} \subseteq \mathbf{U} \}.$$

Definition 3. A subset R a topological space (P,σ) is known as $(\Lambda,\delta S)$ - set if $R = \Lambda_{\delta S}(R)$.

Definition 4. A subset R of a topological space (P,σ) is called $\lambda_g^{\delta S}$ - closed sets if $sCl_{\delta}(R) \subseteq U$ whenever $R \subseteq U$ and U is $(\Lambda, \delta S)$ -open in P. The family of all $\lambda_g^{\delta S}$ - closed sets of (P,σ) is denoted by $\lambda_g^{\delta S} C(P,\sigma)$.

Definition 5. Continuous : If $f^{-1}(V)$ is a closed set in (P,σ) for every closed set V in (Q,τ) .

Definition 6. Semi - continuous : If $f^{-1}(V)$ is a semi - closed set in (P,σ) for every closed set V in (Q,τ) .

Definition 7. δ - continuous : If $f^{-1}(V)$ in (P,σ) for every δ - closed set V in

 $(Q,\tau).$

Definition 8. δ - semi continuous : if $f^{-1}(V)$ is a δ -semi closed set in (P,σ) for every closed set V in (Q,τ) .

Definition 9. δgs - continuous : if $f^{-1}(V)$ is a δgs -closed set in (P,σ) for every closed set V in (Q,τ) .

Definition 10. $g\delta s$ - continuous : if $f^{-1}(V)$ is a $g\delta s$ -closed set in (P,σ) for every closed set V in (Q,τ) .

Definition 11. sg - continuous : if $f^{-1}(V)$ is a sg-closed set in (P,σ) for every closed set V in (Q,τ) .

Definition 12. gs - continuous : if $f^{-1}(V)$ is a gs-closed set in (P,σ) for every closed set V in (Q,τ) .

Definition 13. δg - continuous : if $f^{-1}(V)$ is a δg -closed set in (P,σ) for every closed set V in (Q,τ) .

Definition 14. λ_g^{δ} - continuous : A function $f: (P,\sigma) \to (Q,\tau)$ is said to be λ_g^{δ} - continuous if the inverse image of every open set in (Q,τ) is λ_g^{δ} - open in (P,σ) .

Definition 15. Super - continuous : if $f^{-1}(V)$ is a δ -closed set of (P,σ) for every closed set V of (Q,τ) .

Definition 16. Contra - continuous : if $f^{-1}(V)$ is a δ -closed set of (P,σ) for every closed set V of (Q,τ) .

Definition 17. Strongly - continuous : if $f^{-1}(V)$ is a closed in (P,σ) for every open subset V in (Q,τ) .

Definition 18. Totally - continuous : if $f^{-1}(V)$ is a clopen in (P,σ) for every open subset V in (Q,τ) .

Definition 19. α - continuous : if $f^{-1}(V)$ is a α - closed set in (P,σ) for every closed set V in (Q,τ) .

Lemma 2. In a topological space (P,σ) the following properties hold.

a) Every δ -semiclosed set is $(\Lambda, \delta S)$ -closed set.

- b) Every δ -open set is δ -semiopen set.
- c) Every δ -semiclosed set is $\lambda_a^{\delta S}$ closed set.
- d) Every δ -closed set is $\lambda_a^{\delta S}$ closed set.

- e) Every regular closed set is $\lambda_q^{\delta S}$ closed set.
- f) Every $\lambda_q^{\delta S}$ closed set is δgs -closed set.
- g) Every $\lambda_a^{\delta S}$ closed set is $g\delta s$ -closed set.

3. $(\Lambda, \delta \mathbf{S})$ -continuous function

Definition 20. A map $f : (P, \sigma)(Q, \tau)$ is called $(\Lambda, \delta S)$ -continuous function if the inverse image (V) of each open set V in (Q, τ) is $(\Lambda, \delta S)$ -open in (P, σ) .

Theorem 1.

a) Every δ -semicontinuous function is $(\Lambda, \delta S)$ continuous function.

b) Every super continuous function is $(\Lambda, \delta S)$ continuous function.

Proof. a) Let $f: (P,\sigma) \to (Q,\tau)$ be δ -semicontinuous. Then for $V \in \tau$, $f^{-1}(V)$ is δ -semiopen. But by Lemma 1(a), V is $(\Lambda, \delta S)$ – open. Therefore f is $(\Lambda, \delta S)$ – continuous.

b) Let $f: (P,\sigma) \to (Q,\tau)$ be super continuous. Then for $V \in \tau$, $f^{-1}(V)$ is δ -open. But by Lemma 1(b), $f^{-1}(V)$ is δ -semicopen. Therefore f is δ -semicontinuous. By(a), f is $(\Lambda, \delta S)$ continuous.

Example 1. a) Let $P = Q = \{p, q, r, s\}$ and $\sigma \{P, \emptyset, \{p\}, \{r\}, \{p, q\}, \{p, r\}, \{p, q, r\}, \{p, q, r\}, \{p, r, s\}\}, \tau = \{Q, \emptyset, \{p, q, r\}\}$. Let a function $f : (P,\sigma) \rightarrow (Q,\tau)$ be defined by f(p) = f(q) = f(r) = s, f(s) = r. Then f is $(\Lambda, \delta S)$ continuous but not a δ -semicontinuous function.

b) Let $P = Q = \{p,q,r,s\}$ and $\sigma = \{P,\emptyset,\{p\},\{q\},\{p,q\}\}, \tau = \{Q,\emptyset,\{p\},\{q\},\{p,q\},\{p,r\}\}$. Let a function $f : (P,\sigma) \to (Q,\tau)$ defined be an identity. Then f is $(\Lambda,\delta S)$ continuous but not a super continuous function.

Definition 21. A function $f: (P,\sigma) \to (Q,\tau)$ is called $(\Lambda,\delta S) - irresolute \text{ if } f^{-1}(V) \text{ is a } (\Lambda,\delta S) - open \text{ subset of } P \text{ for every } (\Lambda,\delta S) - open \text{ subset } V \text{ of } Q.$

Quasi - $(\Lambda, \delta S)$ - *irresolute* if $f^{-1}(V)$ is a $(\Lambda, \delta S)$ - open subset of P for every δ -semiopen subset of Q.

Theorem 2. For a function $f : (P,\sigma) \to (Q,\tau)$, the following statements are equivalent:

- a) f is $(\Lambda, \delta S)$ irresolute;
- b) $f^{-1}(B)$ is a $(\Lambda, \delta S)$ closed subset of P for every $(\Lambda, \delta S)$ closed subset B of Q;

c) For each $x \in P$ and for each $(\Lambda, \delta S)$ – open set V of Q containing f(x) there exists a $(\Lambda, \delta S)$ – open set U of P containing x and $f(U) \subseteq V$;

d)
$$f((\Lambda, \delta S)Cl(A)) \subset [f((\Lambda, \delta S)Cl(A))]$$
 for each subset A of P;

e) $[f^{-1}(\Lambda, \delta S)Cl(A)] \subset f^{-1}(\Lambda, \delta S)Cl(A)$ for each subset B of Q;

Proof. Claim (a) \Leftrightarrow (b)

Assume that f is $(\Lambda, \delta S)$ – irresolute. Let W be any $(\Lambda, \delta S)$ -closed subset of Q. Then Q – W is $(\Lambda, \delta S)$ -open. Since f is $(\Lambda, \delta S)$ – irresolute, $f^{-1}(Q - W)$ is $(\Lambda, \delta S)$ -open But $f^{-1}(Q - W) = f^{-1}(Q) - f^{-1}(W) = P - f^{-1}(W)$ is $(\Lambda, \delta S)$ – open. therefore $f^{-1}(W)$ is $(\Lambda, \delta S)$ – closed. Conversely, Let us assume W be a $(\Lambda, \delta S)$ – open set of Q. Then Q – W is $(\Lambda, \delta S)$ – closed in Q. Since f is $(\Lambda, \delta S)$ – irresolute inverse image of each $(\Lambda, \delta S)$ – closed set in Q is $(\Lambda, \delta S)$ – closed in P, then $f^{-1}(Q - W)$ is $(\Lambda, \delta S)$ – closed in P (i.e) $f^{-1}(Q) - f^{-1}(W)$ is $(\Lambda, \delta S)$ – closed in P (i.e) P - $f^{-1}(W)$ is $(\Lambda, \delta S)$ – closed in P. Hence $f^{-1}(W)$ is $(\Lambda, \delta S)$ – open in P. \Rightarrow f is $(\Lambda, \delta S)$ – irresolute. Claim (b) \Leftrightarrow (c)

Let $x \in P$ and V be any $(\Lambda, \delta S)$ – open set of Q such that $f(x) \in V$. Then Q – V is $(\Lambda, \delta S)$ – closed set and $f^{-1}(Q - V)$ is $(\Lambda, \delta S)$ – closed in P. As $f(x) \notin Q - V$, $x \notin f^{-1}(Q - V) = P - f^{-1}(V) \Rightarrow x \in f^{-1}(V)$ which is $(\Lambda, \delta S)$ open in P. Let $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subseteq V$ Thus U is the required $(\Lambda, \delta S)$ – open set such that $x \in U$ and $f(U) \subseteq V$. Which implies (C) Conversely, Let W be $(\Lambda, \delta S)$ closed in Q. Thus let V = Q - W then V be a $(\Lambda, \delta S)$ -open set of Q and $x \in f^{-1}(V)$. Then $f(x) \in v$ By condition (c) there exists a $(\Lambda, \delta S)$ – open set U_x in P such that $x \in U_x$ and $f(U_x) \subseteq V$ therefore $x \in U_x \subseteq f^{-1}(V)$ Hence $f^{-1}(V) = \bigcup U_x / x \in f^{-1}(V)$. we have $f^{-1}(V)$ is $(\Lambda, \delta S)$ – open in P Hence P - $f^{-1}(V) = f^{-1}(Q - V) = f^{-1}(W)$. Which implies (b).

Claim (b)⇔(d)

Let A be any subset of P. Since $((\Lambda, \delta S)Cl(f(A)))$ is $(\Lambda, \delta S) - \text{closed}$ in Q. Then by using (b) $f^{-1}((\Lambda, \delta S)Cl(f(A)))$ is $(\Lambda, \delta S) - \text{closed}$ in P. Now $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}((\Lambda, \delta S)Cl(f(A)))$ Now $f((\Lambda, \delta S)Cl(A)) \subseteq f(f^{-1}((\Lambda, \delta S)(Cl(f(A))))) \subseteq (\Lambda, \delta S)Cl(f(A))$ therefore $f((\Lambda, \delta S)Cl(A)) \subseteq (\Lambda, \delta S)Cl(f(A))$ Conversely, Let V be a $(\Lambda, \delta S)$ -Closed subset of Q. Then $f^{-1}(V) \subseteq P$. By (d), $f((\Lambda, \delta S)Cl(f^{-1}))) \subseteq (\Lambda, \delta S)Cl(f(f^{-1}(V)))$ $\subseteq (\Lambda, \delta S)Cl(V) = V f^{-1}(f((\Lambda, \delta S)Cl(f^{-1}(V)))) \subseteq f^{-1}(V) \Rightarrow (\Lambda, \delta S)Cl(f^{-1}(V)) \subseteq f^{-1}(V) f^{-1}(V) \subseteq ((\Lambda, \delta S)Clf^{-1}(V)) \Rightarrow f^{-1}(V) = (\Lambda, \delta S)Cl(f^{-1})$ Hence $f^{-1}(V)$ is a $(\Lambda, \delta S)$ closed subset of P for every $(\Lambda, \delta S)$ closed subset of Q.

Claim (d)⇔(e)

Let B be a subset of Q. Then $f^{-1}(B)$ is a subset of P. By (d) $f((\Lambda, \delta S)Cl(f^{-1}(B))) \subseteq (\Lambda, \delta S)Cl(f(f^{-1}(B))) \subseteq (\Lambda, \delta S)Cl(B)$ Hence $(\Lambda, \delta S)Cl(f^{-1}(B)) \subseteq f^{-1}((\Lambda, \delta S)Cl(B))$

Conversely, Let A be a subset of Q. Take $B = f(A) By(e) (\Lambda, \delta S)Cl(A) \subseteq f^{-1}(\Lambda, \delta S)$ Cl(f(A)). Hence $f((\Lambda, \delta S)Cl(A)) \subseteq (\Lambda, \delta S)Cl(f(A))$ Hence the proof.

Theorem 3. For a function $f : (P,\sigma) \to (Q,\tau)$, the following statements are equivalent:

- a) f is quasi- $(\Lambda, \delta S)$ -irresolute:
- b) $f^{-1}(B)$ is a $(\Lambda, \delta S)$ closed subset of P for every δ -semiclosed subset B of Q.
- c) for each $x \in P$ and for each δ semiopen set V of Q containing f(x) there exists a $(\Lambda, \delta S)$ – open set U of P containing x and $f(U) \subseteq V$.

Proof. Obvious.

Theorem 4. For a function $f: (P,\sigma) \to (Q,\tau)$, the following statements are true

- a) If the map f is $(\Lambda, \delta S)$ irresolute, then the map f is quasi $(\Lambda, \delta S)$ irresolute.
- b) If the map f is δ semicontinuous, then then map f is $(\Lambda, \delta S)$ continuous.

c) If the map f is δ – semiclosed, then the map f is $(\Lambda, \delta S)$ – irresolute.

Proof. a) Let V be any δ – semiclosed subset of Q.

By Lemma 1, we get V is $(\Lambda, \delta S)$ – closed subset of Q. Since f is $(\Lambda, \delta S)$ – irresolute, $f^{-1}(V)$ is $(\Lambda, \delta S)$ – closed in P. \Rightarrow f is quasi $(\Lambda, \delta S)$ – irresolute.

b) Let V be any closed subset of Q. Since f is δ – semicontinuous, $f^{-1}(V)$ is δ – semiclosed in P. we have $f^{-1}(V)$ is $(\Lambda, \delta S)$ – closed in P. therefore f is $(\Lambda, \delta S)$ – continuous.

c) Let V be a δ – semiclosed subset of Q. Since f is δ – semi-irresolute, $f^{-1}(V)$ is δ – semiclosed in P. we have, $f^{-1}(V)$ is $(\Lambda, \delta S)$ – closed in P. therefore f is quasi $(\Lambda, \delta S)$ – irresolute.

Remark 1. Composition of two $(\Lambda, \delta S)$ – continuous functions need not be $(\Lambda, \delta S)$ – continuous as shown by the following example.

Example 2. Let $P = Q = \{p,q,r,s\}$, and $R = \{p,q,r\}$. then $\sigma = \{P, \emptyset, \{p\}, \{q\}, \{p,q\}, \{p,r\}\} Q = \{Q, \emptyset, \{p\}, \{q\}, \{p,q\}\} \}$ and $R = \{R, \emptyset, \{r\}\}$. Let the function $f : (P,\sigma) \rightarrow (Q,\tau)$ and $g : (Q,\tau) \rightarrow (R,\eta)$ be defined by f(p) = s, f(q) = r, f(r) = p, f(s) = q and g(p) = p, g(q) = q, g(r) = r, g(s) = s then Composition $(\Lambda,\delta S)$ – continuous functions need not be $(\Lambda,\delta S)$ – continuous.

Theorem 5. Let $f: (P,\sigma) \to (Q,\tau)$ and $g: (Q,\tau) \to (R,\eta)$ be two function hold:

- a) If f is $(\Lambda, \delta S)$ continuous and g is continuous then $g_{\circ}f: (P, \sigma) \to (R, \eta)$ is $(\Lambda, \delta S)$ continuous.
- b) If f is quasi $(\Lambda, \delta S)$ irresolute and g is δ semicontinuous then, $g_{\circ}f$: $(P, \sigma) \rightarrow (R, \eta)$ is $(\Lambda, \delta S)$ continuous.
- c) If f is $(\Lambda, \delta S)$ irresolute and g is super continuous then, $g_{\circ}f: (P, \sigma) \to (R, \eta)$ is $(\Lambda, \delta S)$ – continuous.
- d) If f is $(\Lambda, \delta S)$ irresolute and g is completely continuous, then $g_{\circ}f: (P, \sigma) \rightarrow (R, \eta)$ is $(\Lambda, \delta S)$ continuous.
- e) If f is $(\Lambda, \delta S)$ irresolute and g is $(\Lambda, \delta S)$ continuous, then, $g_{\circ}f: (P, \sigma) \rightarrow (R, \eta)$ is $(\Lambda, \delta S)$ continuous.

Proof. a) Let V be any closed subset of R. Since g is continuous, $g^{-1}(V)$ is closed subset of Q. Since f is $(\Lambda, \delta S)$ – continuous,

 $f^{-1}(g^{-1}(\mathbf{V})) = (g_{\circ}f)^{-1}(\mathbf{V})$ is a ($\Lambda, \delta \mathbf{S}$)-closed in P.

therefore $g_{\circ}f$ is $(\Lambda, \delta S)$ – continuous.

b) Let V be any closed subset of R. Since g is δ - semicontinuous, $g^{-1}(V)$ is δ - semiclosed subset of Q. Since f is quasi - $(\Lambda, \delta S)$ - continuous,

 $f^{-1}(g^{-1}(\mathbf{V})) = (g_{\circ}f)^{-1}(\mathbf{V})$ is a $(\Lambda, \delta \mathbf{S})$ -closed in P.

therefore $g_{\circ}f$ is $(\Lambda, \delta S)$ – continuous.

c) Since every super continuous function is $(\Lambda, \delta S)$ – continuous, therefore we have g is $(\Lambda, \delta S)$ -continuous. Let V be any closed subset of R. Since g is $(\Lambda, \delta S)$ – continuous, $g^{-1}(V)$ is $(\Lambda, \delta S)$ – closed subset of Q. Since f is $(\Lambda, \delta S)$ – irresolute. $f^{-1}(g^{-1}(V)) = (g_{\circ}f)^{-1}(V)$ is a $(\Lambda, \delta S)$ – closed in P. therefore $g_{\circ}f$ is $(\Lambda, \delta S)$ – continuous.

d) Since every completely continuous function is super – continuous

Therefore we have g is super – continuous. Hence from (c), the result follows.

e) Let V be closed subset of R. Since g is $(\Lambda, \delta S)$ - continuous, $g^{-1}(V)$ is $(\Lambda, \delta S)$ - closed subset of Q. Since f is $(\Lambda, \delta S)$ – irresolute,

 $f^{-1}(g^{-1}(\mathbf{V})) = (g_{\circ}f)^{-1}(\mathbf{V})$ is a $(\Lambda, \delta \mathbf{S})$ -closed in P therefore $g_{\circ}f$ is $(\Lambda, \delta \mathbf{S})$ – irresolute.

Theorem 6. Let $f: (P,\sigma) \to (Q,\tau)$ and $g: (Q,\tau) \to (R,\eta)$ be two functions. Then the following hold:

a) If f is $(\Lambda, \delta S)$ – irresolute and g is $(\Lambda, \delta S)$ – irresolute, then $g_{\circ}f: (P, \sigma) \to (R, \eta)$ is $(\Lambda, \delta S)$ – irresolute.

- b) If f is quasi $(\Lambda, \delta S)$ irresolute and g is δ semi-irresolute, then $g_{\circ}f$: $(P, \sigma) \rightarrow (R, \eta)$ is quasi- $(\Lambda, \delta S)$ irresolute.
- c) If f is $(\Lambda, \delta S)$ irresolute and g is quasi- $(\Lambda, \delta S)$ irresolute, then $g_{\circ}f: (P, \sigma) \rightarrow (R, \eta)$ is quasi- $(\Lambda, \delta S)$ irresolute.

Proof. a) Let V be a $(\Lambda, \delta S)$ – closed subset of R. Since g is $(\Lambda, \delta S)$ – irresolute, $g^{-1}(V)$ is $(\Lambda, \delta S)$ – closed subset of Q. Since f is $(\Lambda, \delta S)$ – irresolute, $f^{-1}(g^{-1}(V)) = (g_{\circ}f)^{-1}(V)$ is a $(\Lambda, \delta S)$ -closed in P. $g_{\circ}f$ is $(\Lambda, \delta S)$ – irresolute. b) Let V be a δ – semiclosed subset of R. Since g is δ – semi-irresolute, $g^{-1}(V)$ is δ – semiclosed subset of Q. Since f is quasi - $(\Lambda, \delta S)$ – irresolute, $f^{-1}(g^{-1}(V)) = (g_{\circ}f)^{-1}(V)$ is a $(\Lambda, \delta S)$ -closed in P. $g_{\circ}f$ is quasi $(\Lambda, \delta S)$ – irresolute. c) Let V be a δ – semiclosed subset of R. Since g is quasi - $(\Lambda, \delta S)$ – irresolute, $g^{-1}(V)$ is $(\Lambda, \delta S)$ – closed subset of Q. Since f is $(\Lambda, \delta S)$ – irresolute, $f^{-1}(g^{-1}(V)) = (g_{\circ}f)^{-1}(V)$ is a $(\Lambda, \delta S)$ -closed in P. $g_{\circ}f$ is quasi - $(\Lambda, \delta S)$ – closed subset of Q. Since f is $(\Lambda, \delta S)$ – irresolute, $f^{-1}(g^{-1}(V)) = (g_{\circ}f)^{-1}(V)$ is a $(\Lambda, \delta S)$ -closed in P. $q_{\circ}f$ is quasi - $(\Lambda, \delta S)$ – closed subset of Q. Since f is $(\Lambda, \delta S)$ – irresolute, $g_{\circ}f$ is quasi - $(\Lambda, \delta S)$ – closed subset of Q. Since f is $(\Lambda, \delta S)$ – irresolute, $f^{-1}(g^{-1}(V)) = (g_{\circ}f)^{-1}(V)$ is a $(\Lambda, \delta S)$ -closed in P.

Definition 22. A function $f: (P,\sigma) \to (Q,\tau)$ is said to be a completely $(\Lambda,\delta S)$ – irresolute function if the inverse image of every $(\Lambda,\delta S)$ – open subset of Q is regular open in P.

Example 3. Let $P = \{p,q,r,s\}$, $Q = \{p,q,r\}$ and $\sigma = \{P,\emptyset,\{p\},\{q,r\}\}$, $\tau = \{Q,\emptyset,\{p\},\{q\},\{p,q\},\{p,r\}\}$. Let a function $f : (P,\sigma) \to (Q,\tau)$ be defined by f(p) = q, f(q) = p, f(r) = r. Then f is $(\Lambda,\delta S)$ continuous but not a δ -semicontinuous function.

Theorem 7. Let $f: (P,\sigma) \to (Q,\tau)$

a) f is completely $(\Lambda, \delta S)$ – irresolute.

b) The inverse image of every $(\Lambda, \delta S)$ – closed subset of Y is regular closed in P.

Proof. Obvious.

Remark 2. It is clear that every strongly continuous function is completely $(\Lambda, \delta S)$ – irresolute. However the converse is not true by the following example.

Example 4. Same as Example 4.

Theorem 8. Every Completely $(\Lambda, \delta S)$ – irresolute function is

a) $(\Lambda, \delta S)$ – irresolute.

- b) δ semi-irresolute.
- c) Quasi $(\Lambda, \delta S)$ irresolute.
- d) R map.
- e) Almost δ continuous.

Proof: a) The result follows from the fact that every regular open set is $(\Lambda, \delta S)$ – open.

b) Let $f: (P,\sigma) \to (Q,\tau)$ be a completely $(\Lambda,\delta S)$ – irresolute function and V be an δ - semiopen in Q. By Lemma 1, we have V is be $(\Lambda,\delta S)$ – open in Q. Since f is completely be $(\Lambda,\delta S)$ – irresolute, $f^{-1}(V)$ is regular open in P. Since every regular open set is δ -semiopen, $f^{-1}(V)$ is δS -open in P. \Rightarrow f is δ - semiirresolute.

c) Let $f: (P,\sigma) \to (Q,\tau)$ be a completely $(\Lambda,\delta S)$ – irresolute function and V be an δ – semiopen in P. By Lemma 1, V is $(\Lambda,\delta S)$ – open in Q. Since f is completely $(\Lambda,\delta S)$ – irresolute, $f^{-1}(V)$ is regular open in P. Since every regular open set is δ – semiopen, $f^{-1}(V)$ is δ – semiopen in P. By Lemma 1, $f^{-1}(V)$ is $(\Lambda,\delta S)$ – open in P. \Rightarrow f is quasi $(\Lambda,\delta S)$ – irresolute.

d) Let $f: (P,\sigma) \to (Q,\tau)$ be a completely $(\Lambda,\delta S)$ – irresolute function and V be a regular open set in Q. Since every regular open set is δ – semiopen. V is δ – semiopen in Q. By Lemma 1, V is $(\Lambda,\delta S)$ open in Q. Since f is completely $(\Lambda,\delta S)$ – irresolute, f^{-1} (V) is regular open in P. \Rightarrow f is R – map.

e) Let $f: (P,\sigma) \to (Q,\tau)$ be a completely $(\Lambda,\delta S)$ – irresolute function and V be a regular open set in Q. Since every regular open set is δ – semiopen. V is δ – semiopen in Q. By Lemma 1, V is $(\Lambda,\delta S)$ open in Q. Since f is completely $(\Lambda,\delta S)$ – irresolute, f^{-1} (V) is regular open in P. $\Rightarrow f^{-1}$ (V) is δ – semiopen in P. Hence f is almost $(\Lambda,\delta S)$ – continuous.

Remark 3. The converse of the above theorem is not true as shown by the following examples.

Example 5.

- a) Let $P = \{p,q,r,s\}$, $Q = \{p,q,r,s\}$ and $\sigma = \{X, \emptyset, \{p\}, \{r\}, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,r,s\}\}, \tau = \{X, \emptyset, \{p\}, \{r\}, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,r,s\}\}$. Let a function $f : (P,\sigma) \rightarrow (Q,\tau)$ be defined an identity function. Then f is $(\Lambda,\delta S)$ continuous but not a δ -semicontinuous function.
- b) Same as (a)

- c) Let $P = \{p,q,r,s\}$, $Q = \{p,q,r,s\}$ and $\sigma = \{X, \emptyset, \{p\}, \{r\}, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,q,r\}, \{p,r,s\}\}$, $\tau = \{X, \emptyset, \{p\}, \{r\}, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,r,s\}\}$. Let a function f : $(P,\sigma) \rightarrow (Q,\tau)$ be defined by f(p) = q, f(q) = p, f(r) = r, f(s) = r. Then f is $(\Lambda,\delta S)$ irresolute but not a Complete $(\Lambda,\delta S)$ irresolute
- d) Same as (c).

Definition 23. A space (P,σ) is said to be (Λ,δ) – space if every (Λ,δ) – closed subset of P is δ – semiclosed in P.

Theorem 9. Let $f: (P,\sigma) \to (Q,\tau)$ be a completely α – irresolute function where Q is a $(\Lambda, \delta S)$ – space then f is completely $(\Lambda, \delta S)$ – irresolute.

Proof. Let V be a $(\Lambda, \delta S)$ – closed subset of Q. Since Q is a $(\Lambda, \delta S)$ – space, V is δ – semiclosed, V is α – closed in Q. Since every δ – semiclosed set is α – closed, V is α – closed in Q. Now f being completely α – irresolute implies $f^{-1}(V)$ is regular closed in P. therefore f is completely $(\Lambda, \delta S)$ – irresolute.

Theorem 10. Let $f : (P,\sigma) \to (Q,\tau)$ and $g : (Q,\tau) \to (R,\eta)$ be two functions. Then the following hold:

- a) If f is completely $(\Lambda, \delta S)$ irresolute and g is $(\Lambda, \delta S)$ continuous, then $g_{\circ}f$ is completely continuous.
- b) If f is completely $(\Lambda, \delta S)$ irresolute and g is $(\Lambda, \delta S)$ irresolute, then $g_{\circ}f$ is completely $(\Lambda, \delta S)$ irresolute.
- c) If f is almost δ semi-continuous and g is completely $(\Lambda, \delta S)$ irresolute, then $g_{\circ}f$ is $(\Lambda, \delta S)$ irresolute.
- d) If f is completely continuous and g is completely $(\Lambda, \delta S)$ irresolute, then $g_{\circ}f$ is completely $(\Lambda, \delta S)$ irresolute.
- e) If f is a R map and g is completely $(\Lambda, \delta S)$ irresolute, then $g_{\circ}f$ completely $(\Lambda, \delta S)$ irresolute.
- f) If f is completely $(\Lambda, \delta S)$ irresolute and g is a R map, then $g_{\circ}f$ is almost δ semi-continuous
- g) If f is almost δ semi-continuous and g is completely $(\Lambda, \delta S)$ irresolute, then $g_{\circ}f$ is δ semi-irresolute.

Proof. a) Let V be an open set in R. Since g is $(\Lambda, \delta S)$ – continuous. $g^{-1}(V)$ is $(\Lambda, \delta S)$ – open in Q. Since f is completely $(\Lambda, \delta S)$ – irresolute. $f^{-1}(g^{-1}(V)) =$

 $g_{\circ}f^{-1}(V)$ is regular open in P. Hence $g_{\circ}f$ is completely continuous.

b) Let V be an $(\Lambda, \delta S)$ – open set in R. Since g is $(\Lambda, \delta S)$ – irresolute, $g^{-1}(V)$ is $(\Lambda, \delta S)$ – open in Q. Since f is completely $(\Lambda, \delta S)$ – irresolute. $f^{-1}(g^{-1}(V)) = g_{\circ}f^{-1}(V)$ is regular open in P. Hence $g_{\circ}f$ is completely $(\Lambda, \delta S)$ – irresolute.

c) Let V be a $(\Lambda, \delta S)$ - open set in R. Since g is completely $(\Lambda, \delta S)$ – irresolute, $g^{-1}(V)$ is regular open in Q. Since f is almost δ – semi continuous, $f^{-1}(g^{-1}(V)) = g_{\circ}f^{-1}(V)$ is δ – semiopen in P. By Lemma 1, $g_{\circ}f^{-1}(V)$ is $(\Lambda, \delta S)$ – open in P \Rightarrow $g_{\circ}f$ is $(\Lambda, \delta S)$ – irresolute.

d) Let V be an $(\Lambda, \delta S)$ – open set in R. Since g is completely $(\Lambda, \delta S)$ – irresolute, $g^{-1}(V)$ is regular open in Q. Since every regular open is open we have $g^{-1}(V)$ is open in P. Since f is completely continuous. $f^{-1}(g^{-1}(V)) = g_{\circ}f^{-1}(V)$ is regular open in P. $\Rightarrow g_{\circ}f$ is completely $(\Lambda, \delta S)$ – irresolute.

e) Let V be an $(\Lambda, \delta S)$ – open in R. Since g is completely $(\Lambda, \delta S)$ – irresolute, $g^{-1}(V)$ is regular open in Q. Since f is a R – map, $f^{-1}(g^{-1}(V)) = g_{\circ}f^{-1}(V)$ is regular open in P. Hence $g_{\circ}f$ is completely $(\Lambda, \delta S)$ – irresolute.

f) Let V be an regular open set in Q. Since g is a R-map, $g^{-1}(V)$ is regular open in Q. Since every regular open is δ -semiopen, $g^{-1}(V)$ is δ -semiopen. Using Lemma 1, $g^{-1}(V)$ is $(\Lambda, \delta S)$ – open Since f is completely $(\Lambda, \delta S)$ – irresolute, $f^{-1}(g^{-1}(V))$ = $g_{\circ}f^{-1}(V)$ is regular open in P. $g_{\circ}f^{-1}(V)$ is δ -semiopen in P. $\Rightarrow g_{\circ}f$ is almost δ -semicontinuous.

g) Let V be a δ – semi open set in R. Using Lemma 1, V is $(\Lambda, \delta S)$ -open set. Since g is completely $(\Lambda, \delta S)$ – irresolute, $g^{-1}(V)$ is regular open in Q. Since f is almost δ – semi continuous, $f^{-1}(g^{-1}(V)) = g_{\circ}f^{-1}(V)$ is δ – semiopen in P. Hence $g_{\circ}f$ is δ – semi irresolute.

Theorem 11. If $f: (P,\sigma) \to (Q,\tau)$ is a surjective, δ^* - semiclosed function and g: $(Q,\tau) \to (R,\eta)$ is a function such that $g_\circ f: (P,\sigma) \to (R,\eta)$ is completely $(\Lambda,\delta S)$ - irresolute, then g is $(\Lambda,\delta S)$ - irresolute.

Proof. Let V be a $(\Lambda, \delta S)$ – closed set in R. Since $g_{\circ}f$ is completely $(\Lambda, \delta S)$ – irresolute. $g_{\circ}f^{-1}(V) = f^{-1}(g^{-1}(V))$ is regular closed in P. Since every regular closed set is δ – semiclosed, $f^{-1}(g^{-1}(V))$ is δ – semiclosed in P. Now f is δ^* semiclosed and surjective implies $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is a $(\Lambda, \delta S)$ – closed in Q. Thus g is a $(\Lambda, \delta S)$ – irresolute.

Theorem 12. From the above result we have the following diagram where $A \rightarrow B$ represents A implies but not conversely.

- a) Completely $(\Lambda, \delta S)$ irresolute
- b) Almost δ semi-continuous

- c) δ semi-irresolute
- d) Quasi $(\Lambda, \delta S)$ irresolute
- e) $(\Lambda, \delta S)$ irresolute
- f) Strongly continuous

Lemma 3. Let S be an open subset of a topological space (P,σ) . Then the following hold:

- a) If U is regular open in P, then so is $U \cap S$ in the subspace (S, σ_S) .
- b) If $B \subset S$ is regular open in (S, σ_S) there exists a regular open set U in (P, σ) such that $B = U \cap S$.

Theorem 13. If $f: (P,\sigma) \to (Q,\tau)$ is completely $(\Lambda,\delta S)$ – irresolute and A is any open subset in P, then the restriction $f|_A : A \to Q$ is completely $(\Lambda,\delta S)$ – irresolute. **Proof.** Let V be any $(\Lambda,\delta S)$ – open subset of Q. Since f is completely $(\Lambda,\delta S)$ – irresolute, $f^{-1}(V)$ is regular open in P. Since A is open in P, by Lemma 1. $(f|_A)^{-1}(V)$ $= A \cap f^{-1}(V)$ is regular open in A. And so $f|_A$ is completely $(\Lambda,\delta S)$ – irresolute.

Lemma 4. Let Q be a preopen subset of a topological space (P,σ) . Then $Q \cap C$ is regular open in Q for every open subset U of P.

Theorem 14. If $f : (P,\sigma) \to (Q,\tau)$ is completely $(\Lambda,\delta S)$ – irresolute and A is any preopen subset in P, then the restriction $f|_A : A \to Q$ is completely $(\Lambda,\delta S)$ – irresolute.

Proof. Let V be any $(\Lambda, \delta S)$ – open subset of Q. Since f is completely $(\Lambda, \delta S)$ – irresolute, $f^{-1}(V)$ is regular open in P. Since A is preopen in P, and by using Lemma 1 $(f|_A)^{-1}(V) = A \cap f^{-1}(V)$ is regular open in A And so $f|_A$ is completely $(\Lambda, \delta S)$ – irresolute.

Theorem 15. A topological space (P,σ) is connected if every completely $(\Lambda,\delta S)$ – irresolute function from a space P into any T_0 – space Y is constant.

Proof. Suppose P is not connected and every completely $(\Lambda, \delta S)$ – irresolute function from a space P into Q is constant. Since P is not connected, there exist a proper non empty clopen subset A of P. Let $Q = \{p,q\}$ and $\tau = \{Q,\emptyset,\{p\},\{q\}\}$ be a topology for Q. Let f: $P \to Q$ be a function such that $f(A) = \{p\}$ and $f(P - A) = \{q\}$. Then f is non-constant completely $(\Lambda, \delta S)$ – irresolute function such that Q is T_0 , which is a contradiction. Hence P must be connected.

Definition 24. A topological space (P,σ) is said to be

380

- a) $(\Lambda, \delta S)$ connected if P cannot be written as a disjoint union of two nonempty $(\Lambda, \delta S)$ open subsets in P.
- b) r connected if P cannot be written as a disjoint union of two nonempty regular open subsets in P.
- c) hyperconnected if every open subset of P is dense.

Theorem 16. If $f: (P,\sigma) \to (Q,\tau)$ is completely $(\Lambda,\delta S)$ – irresolute surjection and P is r-connected, then Q is $(\Lambda,\delta S)$ – connected.

Proof. Suppose Q is not $(\Lambda, \delta S)$ – connected. Then $Q = A \cup B$ where A and B are disjoint nonempty $(\Lambda, \delta S)$ – open subsets in Q. Since f is completely $(\Lambda, \delta S)$ – irresolute surjection, $f^{-1}(A)$ and $f^{-1}(B)$ are regular open sets in P such that $X = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B) = \emptyset$ which shows that P is not r-connected. Which is a contradiction. Hence Q is $(\Lambda, \delta S)$ – connected.

Theorem 17. Completely $(\Lambda, \delta S)$ -connected image of hyperconnected space is $(\Lambda, \delta S)$ -connected.

Proof. Let $f: (P,\sigma) \to (Q,\tau)$ be completely $(\Lambda,\delta S)$ -irresolute function such that P is hyperconnected. Assume that B is proper $(\Lambda,\delta S)$ -clopen subset of Q. Then $A = f^{-1}(B)$ is both regular open and regular closed set in P as f is completely $(\Lambda,\delta S)$ - irresolute. Therefore $A^- \neq P$. This clearly contradicts the fact that P is hyperconnected. Thus Q is $(\Lambda,\delta S)$ – connected.

Definition 24. A topological space (P,σ) is said to be

- a) $(\Lambda, \delta S)$ T_1 if every pair of distinct points x and y, there exists $(\Lambda, \delta S)$ open sets G and H containing x and y respectively such that $y \notin U$ and $x \notin V$.
- b) $(\Lambda, \delta S)$ T_2 if for every pair of distinct points x and y there exists joint $(\Lambda, \delta S)$ - open sets G and H containing x and y respectively.
- c) $r T_1$ if for every pair of disjoint points x and y, there exists r-open sets G and H connecting x and y respectively such that $x \notin H$ and $y \notin G$.

Theorem 18. If $f: (P,\sigma) \to (Q,\tau)$ be completely $(\Lambda,\delta S)$ -irresolute injective function and Q is $(\Lambda,\delta S)$ - T_1 , then P is $r - T_1$.

Proof. Since Q is $(\Lambda, \delta S) - T_1$, for $p \neq q$ in P, there exist $(\Lambda, \delta S)$ – open sets V and W such that $f(q) \notin V$, $f(P) \notin W$. Since f is completely $(\Lambda, \delta S)$ – irresolute, f^{-1} (V) and f^{-1} (W) are regular open sets in P such that $p \in f^{-1}$ (V), $q \in f^{-1}$ (W), $p \notin f^{-1}$ (W), $q \notin f^{-1}$ (V). This shows that P is r - T_1 .

Theorem 19. If $f: (P,\sigma) \to (Q,\tau)$ be completely $(\Lambda,\delta S)$ -irresolute injective function and Q is $(\Lambda,\delta S)$ - T_2 , then P is $r - T_2$.

Proof. Since f is injective, $f(x) \neq f(y)$ for $x, y \in P$ and $x \neq y$. Since Q is $(\Lambda, \delta S) - T_2$ there exists $(\Lambda, \delta S)$ – open sets G and H in Q such that $f(x) \in G$, $f(y) \in H$ and $G \cap H = \emptyset$. Let $U = f^{-1}$ (G) and $V = f^{-1}$ (H). Since f is completely $(\Lambda, \delta S)$ – irresolute, U and V are regular open in P. Also $x \in f^{-1}$ (G) = U, $y \in f^{-1}$ (H) = V and $U \cap V = f^{-1}$ (G) $\cap f^{-1}$ (H) = f^{-1} (G $\cap H$) = \emptyset Hence P is $(\Lambda, \delta S) - T_2$.

4. Conclusion

In this paper, we have displayed the notions of $(\Lambda, \delta S)$ -open sets and $(\Lambda, \delta S)$ closed sets and discussed their master properties. Then, we introduced some continuous function of $(\Lambda, \delta S)$ -open sets. In addition, we have defined the so-called Quasi $(\Lambda, \delta S)$ continuity, Perfect $(\Lambda, \delta S)$ - continuity, Totally $(\Lambda, \delta S)$ - continuity, Strongly $(\Lambda, \delta S)$ - continuity, Contra $(\Lambda, \delta S)$ - continuity via $(\Lambda, \delta S)$ -open sets and the theorems based on them are discussed with counterexamples.

In future we will intruducing our set in Fuzzy topological space using fuzzy δ which introduced by Tripathy B.C. [15, 16, 21].

Acknowledgements

The author would like to thank the editor and reviewer.

References

- [1] Andrijevic, D., Semi-pre-open sets, Bull. Mat. Vesn., 38 (1986), 2432–2442.
- [2] Abd EL-Monsef, M. E., EL-Deeb, S. N., Mahmoud, R. A., β-open set and β-continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [3] Bhattacharyya, P. and Lahiri, B. K., Semi-generalized closed sets in topology, Ind. Jr. Math., 29(3) (1987), 375-382.
- [4] Caldas, M., Georgiou, D. N., Jafari, S., and Noiri, T., More on δ -semiopen sets, Note di Matematica, 22(2) (2003).
- [5] Dorsett, C., Semi compactness, Semi separation axioms and Product spaces, Bull. Malays. Math. Soc., 4 (1982), 21–28.
- [6] Georgiou, D. N., Jafari, S., and Noiri, T., Properties of (Λ, δ)-closed sets in topological spaces, Bollettino dell'Unione Matematica Italiana, Vol. 7-B (3), (2004), 745-756.
- [7] Geethagnanaselvi, B. and Sivakamasundari, K., ON δsg^* Closed Sets in Topological Spaces, Int. J. Adv. Res. 4(10) (2016), 2320-5407.

- [8] Jin Han Park, Dae Seob Song and Saadati, R., On generalized δ -semiclosed sets in topological spaces, Choas, Soliton Fractals, 33 (2007), 1329-1338.
- [9] Jin Han Park, Dae Seob Song and Bu Young Lee., On δ gs -closed sets and almost weakly hausdorffspaces, Honam Mathematical J., 29(4) (2007), 597-615.
- [10] Levine, N., Semi Open sets and Semi Continuity in topological spaces, Am. Math. Mon., 70 (1963), 36–41.
- [11] Levine, N., Mashhour, A. S., Abd El-Monsef, M. E., El-Deeb, S. N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [12] Raja Mohammad Latif., δ open sets and δ continuous functions, International Journal of Pure Mathematics, Vol. 8 (2021).
- [13] Rathika S. L., Sivakamasundari K., and S. Jafari., Study on $(\Lambda, \delta S)$ Closed sets I, Proyecciones, 43(6) (2024), 1331-1346.
- [14] Rathika S. L., Sivakamasundari K., and S. Jafari., Study on $(\Lambda, \delta S)$ Closed sets II Properties related to separation axioms on δ semi open sets, Proyecciones, 43(6) (2024), 1297-1316.
- [15] Ray G. C. and B. C. Tripathy, On fuzzy δ_* -almost continuous and fuzzy δ_* -continuous functions in mixed fuzzy topological spaces, Proyecciones J. Math., 39(2) (2020), 435-449.
- [16] Sarma D. J. and Tripathy B. C., Fuzzy semi-pre quasi neighborhood structure, Afrika Matematika, 30(1-2) (2019), 217-221.
- [17] Salih, K. M. M. T., C-Compact Space, Master's Thesis, College of Education, Al-Mustaqbal University, Babylon, Iraq, 2002.
- [18] Tripathy B. C. and Sarma D. J., On b-locally open sets in bitopological spaces, Kyungpook Math. Journal, 51(4) (2011), 429-433.
- [19] Tripathy B. C. and Sarma D. J., On weakly b-continuous functions in bitopological spaces, Acta Scientiarum Technology, 35(3) (2013), 521-525.
- [20] Tripathy B. C. and Sarma D. J., Generalized b-closed sets in Ideal bitopological spaces, Proyectiones J. Math., 33(3) (2014), 315-324.

- [21] Tripathy B. C. and G. C. Ray, Fuzzy δ -I-continuity in mixed fuzzy ideal topological spaces, Journal of Applied Analysis, 24(2) (2018), 233-239.
- [22] Vaishnavy V. and Sivakamasundari K., Special properties and Continuity aspects on $\lambda_g^{\delta S}$ continuity, Globel Journal of Pure and Applied Mathematics, Special Issue, 1 (2017), 56-61.