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structure and allow for greater uncertain modeling. They are significant in areas
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fuzzy topological spaces.
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1. Introduction
In the field of set theory, Zadeh L. A. [23] introduced fuzzy set(FS) in 1965 that

constitutes an important breakthrough. These fuzzy sets can resolve imperfection
and ambiguity that classical binary sets find challenging to tackle. Each element in
a fuzzy set has a membership function, varying from 0 to 1, that specifies proportion
of a belongingness. This method greatly replicates the real-life circumstances where
the boundaries are often unclear and ambiguous.

In many real-world scenarios, simply determining whether an element belongs
to a set or not is insufficient. Intuitionistic fuzzy set(IFS) introduced by Atanassov
K. T. [4] extends the concept of fuzzy set by incorporating a degree of uncertainty
alongside the degrees of association value(AV) and non-association value(NAV)
whose value vary from 0 to 1 with the sum of AV and NAV lies between 0 and 1.
While fuzzy sets have transformed how we approach uncertainty and imprecision,
intuitionistic fuzzy sets take this a step further by acknowledging the complexity
of human reasoning and the subtleties of real-world scenarios.

Yager R. R. [22] coined Pythagorean fuzzy set(PFS) that can deal uncertainty
even more better than IFS by taking the values for AV and NAV between 0 and
1 individually with sum of squares of them lie between 0 and 1. To extend the
range for AV and NAV, Senapati T. [17] introduced Fermatean fuzzy set(FFS) in
which sum of cubes of AV and NAV lies between 0 and 1. Farid H. M. A. et al.
[9] applied FF CODAS approach for selection of sustainable supplier. Revathy A.
[16] used FFS in MCDM.

Chang C. L. [5] and Coker D. [7] studied the topological structures of FS, Olgun
M. [14] investigated Pythagorean fuzzy topological spaces(PFTS), Ibrahim H. Z.
[12] introduced Fermatean fuzzy topological space(FTS), and Turkarslan, E. [21]
established q-Rung orthopair fuzzy topological spaces.

Lowen R. [13] and Coker D. [8] studied the compactness of FS in FTSs and
IFTS. Ajmal N [2], Chaudhuri, A. K. [6], Turanli N. [20], Ozcag S. [15], Haydar,
A. [11] investigated connectedness in FTS, IFTS, special IFTS, and PFTS. Singal
M. K. [18] studied fuzzy α- sets, Ajay D. [1] investigated Pythagorean fuzzy α-
continuity, and Revathy A. [3] investigated the generalisations of FF sets. Ghanim
M. H. [10], and Srivastava R [19] studied seperation axioms in FTS and IFTS.

In this study we introduce and investigate FF α-separation axioms, FF α-
connectedness, and FF α-compactness.

The contribution of this article is as follows

� Preliminaries are given in Section 2.

� In Section 3, FF α-separation axioms are discussed.
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� In Section 4 FF α-compactness is defined and explored .

� Section 5 deals with FF α-connectedness.

� Section 6 ends up with conclusion.

The acronyms used in the current research are listed below.

Acronyms Expansion
AV Association value
NAV Non association value
FS Fuzzy set
FTS fuzzy topological space
IFS Intutionistic fuzzy Set
IFTS intutionistic fuzzy topological space
PFS Pythagorean fuzzy set
PFTS Pythagorean fuzzy topological space
FFS Fermatean fuzzy set
FF Fermatean fuzzy
FFTS Fermatean fuzzy topological space
FFSB Fermatean fuzzy sub base
FFOS Fermatean fuzzy open set
FFαOS Fermatean fuzzy α-open set
FFP Fermatean fuzzy point
FFαC Fermatean fuzzy α continuous function
FFαI Fermatean fuzzy α irresolute function
e− C e-continuous
e

′ − C e
′
-continuous

2. Preliminaries
This section conveys some of the essential concepts utilised in this study.

Definition 2.1. [17] A set S = {⟨a, µS(a), νS(a)⟩ : a ∈ A} in the universe A is
called FFs if 0 ≤ (µS (a))

3 + (νS (a))
3 ≤ 1 where µS (a) : A → [0, 1] , νS (a) : A →

[0, 1] and π = 3

√
1− (µS (a))

3 − (νS (a))
3 are degree of AV, NAV and indeterminacy

of a in S and its complement is Sc = {⟨a, νS(a), µS(a)⟩ : a ∈ A}.
Definition 2.1. [12] A FF topological space (FFTS) ia s pair (A, τA) if

1. 1A ∈ τA

2. 0A ∈ τA

3. arbitrary union of the elements of any sub-collection of τA is in τA.

4. finite intersections of elements of of τA is in τA.
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The members of τA and τ cA are called FF open set(FFOS) and FF closed set(FFCS).
FF interior of A (int A) is the union of all FFOSs contained in A and FF closure
of A(cl A) is the intersection of all FFCSs containing A.

Definition 2.3. [3] A FFS S = {⟨a, µS(a), νS(a)⟩ : a ∈ A} of a FFTS (A, τA) is

1. a Fermatean fuzzy semi open set(FFSOS) if S ⊆ cl (int (S)) .

2. a Fermatean fuzzy pre open set(FFPOS) if S ⊆ int (cl (S)) .

3. a Fermatean fuzzy α-open set(FFαOS) if S ⊆ int (cl (int (S))) .

Their complements are Fermatean fuzzy semi closed set(FFSCS), Fermatean fuzzy
pre closed set(FFPCS) and Fermatean fuzzy α-closed set(FFαCS) respectively.
The FF α-closure of S(clα (S)) is the intersection of all FF α-closed super sets of
S and the FF α-interior of S(intα (S)) is the union of all FF α-open subsets of S.
Definition 2.4. A Fermatean fuzzy point (FFP ) denoted by P(λ, µ) is a FFS
defined by

P(λ,µ) =

{
(λ, µ) if x = p

(0, 1) otherwise.
(2.1)

A FFP P(λ, µ) ∈ F if λ ≤ αF (x) and µ ≥ βF (x).

Proposition 2.1. A FFS in A is the union of all FFP belonging to A.

Definition 2.5. Let (A, τA) be a FFTS and B ⊆ A. Then (B, τB) is called a FF
subspace of (A, τA).

Definition 2.6. Let (A, τA) and (B, τB) be FFTSs. A function f : (A, τA) →
(B, τB) is a Fermatean fuzzy α-continuous function(FFαC) if the inverse image
of each FFOS in (B, τB) is a FFαOS in (A, τA).

3. Fermatean Fuzzy α-Separation Axioms

Definition 3.1. A FFTS (A, τA) is a FFαT0 if for every pair of FFP s x =
a1(λ1, µ1) and y = a2(λ2, µ2) with different supports there exists a FFαOS, U such
that x ∈ U and y /∈ U or y ∈ U and x /∈ U .

Theorem 3.1. A FFTS (A, τA) is a FFαT0 if and only if any two FFP s with
different support have disjoint FFα-closure.
Proof. Let (A, τA) be a FFαT0 and x = a1(λ1, µ1) and y = a2(λ2, µ2) be two FFP s
with supports a1 and a2 respectively with a1 ̸= a2. Since (A, τA) is a FFαT0 there
exists a FFαOS, U such that either x ∈ U , y /∈ U or y ∈ U , x /∈ U . If x ∈ U
and y /∈ U then y /∈ clα (y) also clα (y) ⊈ U . Since x /∈ U c, x /∈ (clα (y))

c. But
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x ∈ clα (x). Therefore clα (x) ̸= clα (y).
Conversely, let x and y be two FFP s with different supports a1 and a2 respectively.
Let x1 and y1 be FFP s such that x1 (a1) = y1 (a2) = 1. By assumption Clα (x1) ̸=
Clα (y1) . But x ≤ x1 implies xc ≥ xc

1 ≥ (Clα (x1))
c . Thus (Clα (x1))

c is a FFαOS
such that y ⊈ Clα (x1) , x ⊆ Clα (x1) . Hence (A, τA) is a FFαT0.

Theorem 3.2. Let f be a FF injective FFαI, f : (A, τA) → (B, τB) . If (B, τB)
is a FFαT0 space then (A, τA) is a FFαT0.
Proof. Let x = a1(λ1, µ1) and y = a2(λ2, µ2) be two FFP s with different supports
a1 and a2 in (A, τA), then f (x) and f (y) are two FFP s with different supports
in (B, τB) . Since (B, τB) is a FFαT0 space then there exists a FFαOS, U such
that f (x) ⊆ U, f (y) ⊈ U or f (y) ⊆ U, f (x) ⊈ U. If f (x) ⊆ U, f (y) ⊈ U then
x ⊆ f−1 (U) , y ⊈ f−1 (U) where f−1 (U) is a FFαOS in (A, τA). Therefore (A, τA)
is a FFαT0 space.

Theorem 3.3. If f : (A, τA) → (B, τB) is a FF injective FFαC and (B, τB) is a
FFαT0 space then (A, τA) is a FFαT0 space.
Proof. Let x = a1(λ1, µ1) and y = a2(λ2, µ2) are two FFP s with different supports
a1 and a2 in (A, τA), then f (x) and f (y) are two FFP s with different supports
in (B, τB) . Since (B, τB) is a FFαT0 space then there exists a FFOS, U such
that f (x) ⊆ U, f (y) ⊈ U or f (y) ⊆ U, f (x) ⊈ U. If f (x) ⊆ U, f (y) ⊈ U then
x ⊆ f−1 (U) , y ⊈ f−1 (U) where f−1 (U) is a FFαOS in (A, τA). Therefore (A, τA)
is a FFαT0 space.

Theorem 3.4. If f : (A, τA) → (B, τB) is a FF injective FFα∗C and (B, τB) is
a FFαT0 space then (A, τA) is a FFT0 space.
Proof. Let x = a1(λ1, µ1) and y = a2(λ2, µ2) are two FFP s with different supports
a1 and a2 in (A, τA), then f (x) and f (y) are two FFP s with different supports
in (B, τB) . Since (B, τB) is a FFαT0 space then there exists a FFOS, U such
that f (x) ⊆ U, f (y) ⊈ U or f (y) ⊆ U, f (x) ⊈ U. If f (y) ⊆ U, f (x) ⊈ U then
y ⊆ f−1 (U) , x ⊈ f−1 (U) where f−1 (U) is a FFOS in (A, τA). Therefore (A, τA)
is a FFT0 space.

Definition 3.2. A FFTS (A, τA) is FFαT1 if for every pair of FFP s x = a1(λ1, µ1)

and y = a2(λ2, µ2) with different supports there exists FFαOSs, U and V such that
x ∈ U and y /∈ U or y ∈ V and x /∈ V .

Theorem 3.5. A FFTS (A, τA) is a FFαT1 space if and only if every FFP is a
FFαCS.
Proof. Let (A, τA) be a FFαT1 space and x0 = a0(λ0, µ0) be a FFP with support
a0. For any FFP x = a(λ, µ) with support a in (A, τA) such that a ̸= a0, there
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exists a FFαOSs, U and V such that x0 ⊆ U, x ⊈ U and x ⊆ V, x0 ⊈ V . Since
x0 ⊈ V , xc

0 =
⋃
(x⊆xc

0)
V and xc

0 is a FFαOS. Therefore x0 is a FFαCS.

Conversely, let x1 = a1(λ1, µ1) and x2 = a2(λ2, µ2) be two FFP s with different sup-
ports a1 and a2 respectively, such that y1 (a1) = y2 (a2) = 1. The FFSs yc1 and yc2
are FFαOSs and satisfy x1 ⊆ yc2 and x2 ⊈ yc2 and x2 ⊆ yc2,x1 ⊈ yc1. Hence (A, τA)
is a FFαT1 space.

Remark 3.1. Every FFαT1 space is FFαT0 space but the converse need not be
true as seen from the following example.

Example 3.1. Let A = {a1, a2} and A1, A2 be FFSs on A defined as A1 =
{⟨A : (a1, 0.1, 0.8) , (a2, 0.1, 0.8)⟩} and A2 = {⟨A : (a2, 0.8, 0.1) , (a2, 0.8, 0.1)⟩}. Let
τA = {0A, 1A, A1, A2}. Then the space (A, τA) is a FFαT0 space but not FFαT1.

Theorem 3.6. Let f : (A, τA) → (B, τB) be FF injective FFαI. If (B, τB) is a
FFαT1 space then (A, τA) is also a FFαT1 space.
Proof. Let x = a1(λ1, µ1) and y = a2(λ2, µ2) be two FFP s with different supports
a1 and a2 in (A, τA), then f (x) and f (y) are two FFP s with different supports
in (B, τB) . Since (B, τB) is a FFαT1 space then there exists a FFαOS U and V
such that f (x) ⊆ U, f (y) ⊈ U and f (y) ⊆ V, f (x) ⊈ V. If f (x) ⊆ U, f (y) ⊈ U
then x ⊆ f−1 (U) , y ⊈ f−1 (U) and y ⊆ f−1 (V ) , x ⊈ f−1 (V ) where f−1 (U) and
f−1 (V ) are FFαOS in (A, τA). Therefore (A, τA) is a FFαT1 space.

Theorem 3.7. Let f : (A, τA) → (B, τB) be FF injective FFαC. If (B, τB) is a
FFαT1 space then (A, τA) is also a FFαT1 space.
Proof. Proof is similar to the proof of theorem 3.7.

Theorem 3.8. If f : (A, τA) → (B, τB) is a FF injective, FFα∗C and (B, τB) is
a FFαT1 space then (A, τA) is a FFαT1.
Proof. Proof is similar to the proof of theorem 3.7.

Definition 3.3. A FFTS (A, τA) is a FFα-Hausdorff(FFαT2) if for every pair of
FFPs, x = a1(λ1, µ1), y = a2(λ2, µ2) with different supports, there exists two FFαOS,
U and V such that x ⊆ U , y ⊈ U , y ⊆ V , x ⊈ V and U ⊈ V .

Example 3.2. Let A = {a1, a2} and A1 be FFS on A defined as A1 = {⟨A :
(a1, 1, 0) , (a2, 0, 1)⟩}. Let τA = {0A, 1A, A1}. Then the space (A, τA) is a FFαT0,
FFαT1 and FFαT2.

Remark 3.2. Every subspace of a FFαT2 is FFαT2 space.

Theorem 3.9. A FFTS (A, τA) is a FFαT2 space if for every pair of FFP s
x = a1(λ1, µ1) and y = a2(λ2, µ2) with different supports, there exists a FFαOS, U
such that x ⊆ U ⊆ clα (U) ⊆ yc.
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Proof. Let x = a1(λ1, µ1) and y = a2(λ2, µ2) are two FFP s with different supports.
Since (A, τA) is a FFαT2 space then there exists FFαOSs, U and V such that
x ⊆ U, y ⊈ U and y ⊆ V, x ⊈ V with U ⊈ V . Then x ⊆ U ⊆ clα (U) , y ⊈ clα (U).
Thus intα (clα (U)) ⊆ clα (U). Let X = intα (clα (U)) is a FFαOS. Hence x ⊆
X ⊆ clα (X) ⊆ yc.

Theorem 3.10. Let f : (A, τA) → (B, τB) be FF injective, FFαI. If (B, τB) is a
FFαT2 space then (A, τA) is also a FFαT2 space.
Proof. Let x = a1(λ1, µ1) and y = a2(λ2, µ2) are two FFP s with different supports
a1 and a2 in (A, τA), then f (x) and f (y) are two FFP s with different supports
in (B, τB) . Since (B, τB) is a FFαT2 space then there exists FFαOSs, U and
V such that f (x) ⊆ U, f (y) ⊈ U , f (y) ⊆ V, f (x) ⊈ V and U ⊈ V . Then
x ⊆ f−1 (U) , y ⊈ f−1 (U), y ⊆ f−1 (V ) , x ⊈ f−1 (V ) and f−1 (U) ⊈ f−1 (V ) where
f−1 (U) and f−1 (V ) are FFαOS in (A, τA). Therefore (A, τA) is a FFαT2 space.

Theorem 3.11. Let f : (A, τA) → (B, τB) be FF injective FFαC. If (B, τB) is a
FFαT2 space then (A, τA) is also a FFαT2 space.
Proof. Proof is similar to the proof of theorem 3.10.

Theorem 3.12. If f : (A, τA) → (B, τB) is a FF injective, FFα∗C and (B, τB)
is a FFαT2 space then (A, τA) is a FFαT2.
Proof. Proof is similar to the proof of theorem 3.10.

4. Fermatean Fuzzy α-Compactness

In this section we introduce and study the concept of Fermatean Fuzzy α-
compactness.

Definition 4.1. In a FFTS (A, τA), a family C of FF subsets of A, is called a
FFα-covering of A if and only if C covers A and C ⊂ FFα(A), where FFα(A)
is the collection of FF α-open sets of A.

Definition 4.2. A FFTS (A, τA) is said to be FFα-compact if every FFα-cover
of A has a finite FF sub cover.

Definition 4.3. Let (A, τA) and (B, τB) be FFTSs and let τAe be a FFT on A that
has FFα(A) as a Fermatean fuzzy sub base(FFSB). A mapping p : A → B is said
to be FF e-continuous(FFeC) if p : (A, τAe) → (B, τB) is FFC and p is said to be
FF e

′
-continuous (FFe

′
C) if p : (A, τAe) → (B, τBe) is FFC.

Theorem 4.1. Let (A, τA) and (B, τB) be FFTSs and let τAe be a FFT on A that
has FFα(A) as a FFSB. If p : (A, τA) → (B, τB) is FFαC, then p is FFeC.
Proof. Let U ∈ τB. If p is FFαC then p−1 (U) ∈ FFα(A) will imply p−1 (U) ∈
τAe . Hence p is FFeC.
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Theorem 4.2. Let (A, τA) and (B, τB) be FFTSs. Let τAe and τBe be respectively
the FFTSs on A and B that haveFFα(A) and FFα(B) as FFSBs. If p : (A, τA) →
(B, τB) is FFα-irresolute then p is FFe

′
C.

Proof. Let U ∈ τBe and p be FFα-irresolute. Then

U =
⋃
n

(
k⋂

n=1

Bn

)
where Bn ∈ FFα(B)

p−1 (U) = p−1

(⋃
n

(
k⋂

n=1

Bn

))

=
⋃
n

(
k⋂

n=1

p−1 (Bn)

)

since p is FFα-irresolute, p−1 (Bn) ∈ FFα(A). Therefore p−1 (U) ∈ τAe . Hence p
is FFe

′
C.

Remark 4.1. A FFTS A is FFα-compact iff every family of FFα-closed subsets
of A with finite intersection property has non empty intersection.

Theorem 4.3. Let (A, τA) be FFTS and τAe be a FFT on A that has FFα(A) as
FFSB. Then (A, τA) is FFα-compact iff (A, τAe) is FF compact.
Proof. Let (A, τAe) be FF compact. Since FFα(A) ⊂ τAe , (A, τA) is FFα-
compact.

Theorem 4.4. Let (A, τA) be FFTS which is FFα-compact. Then every FF τAe

closed set of A is FFα-compact.
Proof. Let U be FF τAe closed set in A. Let VKj

: Kj ∈ J be a FF τAe open
cover of U . Since U c is FF τAe open, VKj

: Kj ∈ J
⋃
U c is a FF τAe open cover

of A. Since A is τAe-compact by here exists a finite FF subset J0 ⊂ J such that
A =

⋃
{VKj

: Kj ∈ J0} ∪ U c which implies U ⊂
⋃
{VKj

: Kj ∈ J0}. Therefore U is
FFα-compact.

Theorem 4.5. If a FFTS A is FFα-compact then every family of FFτAe-closed
subsets of A with finite intersection property has non empty intersection.
Proof. Let A be FFα-compact. Let U = {VKj

: Kj ∈ J} be family of FFτAe-
closed subsets of A with finite intersection property. If

⋂
{VKj

: Kj ∈ J} = ϕ then
{V c

Kj
: Kj ∈ J} is a FF τAe open cover A. So it must contain a FF finite subcover

{V c
Kjm

: Kjm ∈ m = 1, 2, 3, ...n} of A. This gives that {VKjm
: m = 1, 2, 3, ...n} = ϕ,

which is a contradiction to the assumption.

Theorem 4.6. Let (A, τA) and (B, τB) be FFTSs and let p : (A, τA) → (B, τB)
be FFe

′
C. If a FF subset H of A is FFα-compact relative to A then f (H) is



On Fermatean Fuzzy α-Separation Axioms 319

FFα-compact relative to B.
Proof. Let {VKj

: Kj ∈ J} be FF cover of f (H) by τBe open FFSs in B. Then
{p−1

(
VKj

)
: Kj ∈ J} be FF cover of H by τAe open FFSs in A. H is FFα-compact

relative to A. Then H is FF τAe compact. Thus there exists a finite FF subset
J0 ⊂ J such that H ⊂

⋃
{p−1{VKj

: Kj ∈ J0} and so p (H) ⊂ {{VKj
: Kj ∈ J0}.

Therefore f (H) is τBe-compact relative to B and hence f (H) is FFα-compact
relative to B.

Corollary 4.1. If p : (A, τA) → (B, τB) is a FFe
′
C subjective function and A is

FFα-compact then B is FFα-compact.

Corollary 4.2. If p : (A, τA) → (B, τB) is a FFα-irresolute surjective function
and A is FFα-compact then B is FFα-compact.

Theorem 4.7. Let G and H be FF subsets of a FFTS (A, τA) such that G is FFα-
compact relative to A and H is FF τAe closed in A. Then G ∩H is FFα-compact
relative to A.
Proof. Let {VKj

: Kj ∈ J} be FF cover of G ∩ H by τAe open FF subsets of A.
SinceHc is a τAe open FF subset, {VKj

: Kj ∈ J}∪Hc is a FF cover ofG. G is FFα-
compact and so τAe-compact relative to A. Therefore there exists a finite FF subset
J0 ⊂ J such that G ⊂ {VKj

: Kj ∈ J}∪Hc. Therefore G∩H ⊂
⋃
{VKj

: Kj ∈ J0}.
Hence G ∩H is FF τAe-compact. Therefore G ∩H is FFα-compact relative to A.

5. Fermatean Fuzzy α-Connectedness

Definition 5.1. Two non empty FF subsets M and N of a FFTS (A, τA) is
FFα-separated if M and N neither contain α-limit point of the other. i.e., M ∩
FFclα (N) = FFclα (M) ∩N = ϕ.

Definition 5.2. A FF subset S of a FFTS (A, τA) is said to be FFα-connected
space in A if S is not the union of two FFα-separated sets in A.

Definition 5.3. Let (A, τA) be a FFTS. A FFα-separation on A is a pair of non
empty proper FFαOSs, M and N such that M ∩ N = ϕ and M ∪ N = A. The
FFTS (A, τA) is said to be FFα-disconnected space if it has FFα-separation.

Theorem 5.1. If a FFTS is FFα-connected space between FFS M and N then
M ̸= ϕ ̸= N .
Proof. If any FF subset M = ϕ then ϕ being FFα-clopen over A, (A, τA) can-
not be FFα-connected space between M and N , which is a contradiction to the
assumption. Hence the proof.
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Example 5.1.

1. If (A, τA) is discrete FFTS on A then (A, τA) is not FFα-connected space.

2. If (A, τA) is in discrete FFTS on A then (A, τA) is always FFα-connected
space.

Definition 5.4. A FF subspace (B, τB) of FFTS (A, τA) is said to be FFα-
open(resp FFα-closed) subspace if M ∈ FFαOS(A)(resp M ∈ FFαCS(A)) where
M is FFα-connected.

Proposition 5.1. Let (B, τB) be a FF semi connected subspace of FFTS (A, τA)
such that G ∩H ∈ FFSOS(A), G is FF subspace of B and N ∈ FFSOS(A). If
A has a FF semi separations M and N then either G ⊆ M or G ⊆ N .

Theorem 5.2. If (A, τA) is FFα-connected space and τB is FF coarser than τA
then (A, τB) is also FFα-connected space.
Proof. Let M and N be a FFα-separation on (A, τB). Then M,N ∈ τB and
τB ∈ τA imply M,N ∈ τA such that M,N is FFα-separation on (A, τA) which
is a contradiction with the FFα-connectedness of (A, τA). Hence (A, τB) is FFα-
connected space.

Theorem 5.3. A FF subspace (B, τB) of FFα-disconnected space (A, τA) is FFα-
disconnected if M ∩ N ∈ FFαOS(A) for every N ∈ FFαOS(A) and M is a FF
subset of B.
Proof. Let (B, τB) be a FFα-connected space. Since (A, τA) is FFα-disconnected
there exist FFα-separationM,N on (A, τA). By hypothesis, M∩H ∈ FFαOS(A),
N ∩H ∈ FFαOS(A) and [M ∩H] ∪ [M ∩H] = H, which is a contradiction with
the FFα-connectedness of (B, τB). Therefore (B, τB) is FFα-disconnected space.

Remark 5.1. FFα-disconnected property is not hereditary.

Theorem 5.4. Let (A, τA) and (B, τB) be FFTSs and f : (A, τA) → (B, τB) be a
FFα-irresolute surjective function. If (A, τA) is FFα-connected space then (B, τB)
is also FFα-connected space.
Proof. Let (B, τB) be a FFα-disconnected space. Then there exists M,N of
non-empty proper FFα-open sets of B such that M ∩N = ϕ and M ∪N = B. f
is FFα-irresolute function, then f−1 (M) and f−1 (N) are pair of non null proper
FFαO subsets of A such that f−1 (M) ∩ f−1 (N) = f−1 (M ∩N) = f−1 (ϕ) = ϕ
and f−1 (M)∪f−1 (N) = f−1 (M ∪N) = f−1 (A) = A imply f−1 (M) and f−1 (N)
forms a FFα-separation of A, which is a contradiction with the FFα-connectedness
of (A, τA). Therefore (B, τB) is FFα-connected space.
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6. Conclusion and Future work: The adoption of the FF separation, FF con-
nectedness, and FFcompactness axioms in Fermatean fuzzy topology has many
advantages in various disciplines, enhancing the ability to develop, analyze, and
handle complex problems that entail apprehension. Such concepts can be used to
build trustworthy systems and structures which more precisely reflect the intricate
nature of the real world. In the future work FF compactness and FF connected-
ness will be applied to assure the system efficiency and dependability in uncertain
contexts by means of fuzzy controllers.
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