South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, No. 3 (2024), pp. 279-286 DOI: 10.56827/SEAJMMS.2024.2003.21 ISSN (Onli

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

2-WOVEN FRAMES IN 2-HILBERT SPACES

Chetna Mehra, Narendra Biswas and Mahesh C. Joshi

Department of Mathematics Kumaun University, Nainital - 263002, Uttarakhand, INDIA

E-mail : chetnamehra2992@gmail.com, narendrabiswas@yahoo.com, mcjoshi69@gmail.com

(Received: Dec. 02, 2023 Accepted: Dec. 12, 2024 Published: Dec. 30, 2024)

Abstract: In this paper, we introduce 2-woven frames in 2- Hilbert spaces and explore some of their properties. Also, 2-woven frame operators are defined and some related results for these operators are established in 2-Hilbert spaces.

Keywords and Phrases: 2-woven frame, 2-inner product, 2-Hilbert space, 2-woven frame operators.

2020 Mathematics Subject Classification: 42C15, 46C50.

1. Introduction

Frames in Hilbert space were introduced by Duffin and Schaeffer in their work on nonharmonic Fourier series [6], reintroduced by Daubechies et al. [4] in 1986 and since then work on frames is going on. Frame theory has left a distinct mark in applied mathematics and engineering and some properties of frames have made them an important part of functional analysis [7, 9].

The concept of 2-inner product space was first introduced by Diminnie et al. [5] and frames in 2-Hilbert space were introduced by Arefijamaal and Sadeghi [1].

The concept of woven frames was introduced to deal with some problems in wireless sensor networks and signal processing by Bemrose et al. [2] in 2015 and frame related operators for woven frames were recently defined by A. Rahimi et al. [8].

Throughout the paper, I denotes a finite or countably infinite index set, \mathbb{N} set of natural numbers and for $k \in \mathbb{N}, [k] = \{1, ..., k\}, [k]^c = \mathbb{N} \setminus [k] = \{k+1, k+2, ...\}.$

2. Preliminaries

Lemma 2.1. [1] Let $(X, \langle \cdot, \cdot | \cdot \rangle)$ be a 2-inner product space and $x, z \in X$. Then, $||x, z|| = \sup\{|\langle x, y|z\rangle|; y \in X, ||y, z|| = 1\}.$

Definition 2.1. [1] Let $(X\langle \cdot, \cdot | \cdot \rangle)$ be a 2- Hilbert space and $\eta \in X$. A sequence $\{x_i\}_{i \in I}$ of elements of X is called a 2-frame associated to η if there exist constants $0 < C \le D < \infty$ such that for all $x \in X$

$$C||x,\eta||^2 \le \sum_{i\in I} |\langle x, x_i|\eta\rangle|^2 \le D||x,\eta||^2.$$

The constants C and D are called the lower and upper 2-frame bounds. If C = D, then $\{x_i\}_{i \in I}$ is called a tight 2-frame.

Remark 1. A sequence $\{x_i\}_{i \in I}$ satisfying the upper 2-frame condition i.e., $\sum_{i \in I} |\langle x, x_i | \eta \rangle|^2 \leq D ||x, \eta||^2$, is called a 2-Bessel sequence with Bessel bound D.

Definition 2.2. [2] Let $F = \{f_{ij}\}_{i \in I}$ for $j \in [k]$ be a family of frames for the Hilbert space H. If there exists universal constants $0 < C \leq D < \infty$ such that for every partition $\{\sigma_j\}_{j \in [k]}$ of I, the family $\{f_{ij}\}_{i \in \sigma_j, j \in [k]}$ is a frame for H with same bounds C and D, then F is called a woven frame. For every $j \in [k]$, the frames $\{f_{ij}\}_{i \in \sigma_j, j \in [k]}$ are called weaving frames.

If C = D then $F = \{f_{ij}\}_{i \in I}$ for $j \in [k]$ is called a tight woven frame.

Remark 2. If for every partition $\{\sigma_j\}_{j \in [k]}$, the family $\{f_{ij}\}_{i \in \sigma_j, j \in [k]}$ is a Bessel sequence then the family $F = \{f_{ij}\}_{i \in I}$ for $j \in [k]$ is called a Bessel woven.

Proposition 2.1. [3] Let H be a Hilbert space and $T : H \to H$ be a operator satisfying $\|\mathcal{I}-T\| < 1$, then T is invertible operator, where \mathcal{I} is an identity operator.

3. Woven frames in 2-Hilbert space

In this section, 2-woven frame is introduced and some results are proved for 2-weaving families of vectors.

Definition 3.1. Let $(X, \langle \cdot, \cdot | \cdot \rangle)$ be a 2-Hilbert space and $F = \{f_{ij}\}_{i \in I, j \in [k]}$ be a family of 2-frames for X associated to η . Then, F is said to be a 2-woven frame if for universal constants C and D with $0 < C \leq D < \infty$, the family $\{f_{ij}\}_{i \in \sigma_j, j \in [k]}$ for every partition $\{\sigma_j\}_{j \in [k]}$ of I is a 2-frame for X.

The constants C and D are called lower and upper frame bounds respectively. Further, each family $\{f_{ij}\}_{i \in \sigma_j, j \in [k]}$ is called a 2-weaving frame.

Proposition 3.1. Let $F = \{f_{ij}\}_{i \in I, j \in [k]}$ be a woven frame for Hilbert space X. Then F is also a 2-woven frame for 2-Hilbert space with the standard 2-inner product associated to $\eta \in X$ ($\|\eta\| = 1$). **Proof.** Since $F = \{f_{ij}\}_{i \in I, j \in [k]}$ is a woven frame, therefore each family $\{f_{ij}\}_{i \in \sigma_j, j \in [k]}$ is a frame. From Proposition (2.3) of [1], every frame for a Hilbert space is a 2-frame for 2-Hilbert space. Therefore each family $\{f_{ij}\}_{i \in \sigma_j, j \in [k]}$ is a 2-frame for every partition $\{\sigma_j\}_{j \in [k]}$ of I. Hence F is a 2-woven frame.

The following example shows that the converse of the above proposition is not true.

Example 1. Let $\Phi = \{e_1 + e_2, e_2\}$ and $\Psi = \{e_2, e_1 + e_2\}$ be 2-frames associated to $\eta = e_1$, where e_1 and e_2 are mutually orthogonal vectors with unit norm. Then Φ and Ψ are 2-woven frame for 2-Hilbert space \mathbb{R}^2 with the standard 2-inner product. But Φ and Ψ are not woven frame for \mathbb{R}^2 . Because for index set $I = \{1, 2\}$, taking $\sigma = \{1\}, \sigma^c = \{2\}$ we get

$$\{\Phi_i\}_{i\in\sigma}\cup\{\Psi_i\}_{i\in\sigma^c}=\{e_1+e_2,e_1+e_2\}.$$

Which is not a frame for \mathbb{R}^2 .

Let X be a Hilbert space. For the subspace Y_{η} generated by a fixed element $\eta \in X$, Z_{η} denotes the orthogonal complement of Y_{η} .

Theorem 3.1. Let X be a Hilbert space and $(X, \langle \cdot, \cdot | \cdot \rangle)$ be a 2-Hilbert space. Then the family $F = \{f_{ij}\}_{i \in I, j \in [k]}$ is 2-woven associated to $\eta(||\eta|| = 1)$ if and only if it is a woven frame for the Hilbert space Z_{η} with same bounds.

Proof. Let $F = \{f_{ij}\}_{i \in I, j \in [k]}$ be a 2-woven frame associated to η with bounds C and D, i.e. for every partition $\{\sigma_j\}_{j \in [k]}$ of I and $x \in X$,

$$C \|x, \eta\|^2 \le \sum_{j=1}^k \sum_{i \in \sigma_j} |\langle x, f_{ij} | \eta \rangle|^2 \le D \|x, \eta\|^2.$$

By simple calculation, we get

$$C||x - \langle x, \eta \rangle \eta||^2 \le \sum_{j=1}^k \sum_{i \in \sigma_j} |\langle x - \langle x, \eta \rangle \eta, f_{ij} \rangle|^2 \le D||x - \langle x, \eta \rangle \eta||^2.$$

Since $x - \langle x, \eta \rangle \eta \in Z_{\eta}$. Therefore F is a woven frame for Z_{η} . Conversely. For any $x \in X$, $x - \langle x, \eta \rangle \eta \in Z_{\eta}$.

Since $F = \{f_{ij}\}_{i \in I, j \in [k]}$ be a woven frame with frame bounds C and D for Z_{η} , then

$$C\|x - \langle x, \eta \rangle \eta\|^2 \le \sum_{j=1}^k \sum_{i \in \sigma_j} |\langle x - \langle x, \eta \rangle \eta, f_{ij} \rangle|^2 \le D\|x - \langle x, \eta \rangle \eta\|^2$$

$$C\langle x, x | \eta \rangle \leq \sum_{j=1}^{k} \sum_{i \in \sigma_j} |\langle x, f_{ij} | \eta \rangle|^2 \leq D\langle x, x | \eta \rangle$$
$$C \|x, \eta\|^2 \leq \sum_{j=1}^{k} \sum_{i \in \sigma_j} |\langle x, f_{ij} | \eta \rangle|^2 \leq D \|x, \eta\|^2.$$

Hence $F = \{f_{ij}\}_{i \in I, j \in [k]}$ is a 2-woven frame for X associated to η .

4. Operators for 2-woven frames

Let $l^2(I)$ with inner product $\langle \cdot, \cdot \rangle$ /standard 2-inner product $\langle \cdot, \cdot | \cdot \rangle$ be a Hilbert/2-Hilbert space of square summable sequences.

Following [8], we construct 2-Hilbert space as:

For each family of subspaces $\{(l^2(I))_j\}_{j \in [k]}$ of $l^2(I)$, we have

$$(l^{2}(I))_{j} = \{\{a_{ij}\}_{i \in \sigma_{j}} \mid a_{ij} \in \mathbb{C}, \ \sigma_{j} \subset I, \sum_{i \in \sigma_{j}} |a_{ij}|^{2} < \infty\}, \ \forall j \in [k].$$

Now, taking

$$(\sum_{j \in [k]} \oplus (l^2(I))_j)_{l_2} = \{\{a_{ij}\}_{i \in I, j \in [k]} \mid \{a_{ij}\}_{i \in \sigma_j} \in (l^2(I))_j\}, \forall j \in [k]\}$$

and inner product

$$\begin{split} \langle \{x_{ij}\}_{i\in I, j\in [k]}, \{y_{ij}\}_{i\in I, j\in [k]} | \{z_{ij}\}_{i\in I, j\in [k]} \rangle &= \\ \det \begin{vmatrix} \langle \{x_{ij}\}_{i\in I, j\in [k]}, \{y_{ij}\}_{i\in I, j\in [k]} \rangle & \langle \{x_{ij}\}_{i\in I, j\in [k]}, \{z_{ij}\}_{i\in I, j\in [k]} \rangle \\ \langle \{z_{ij}\}_{i\in I, j\in [k]}, \{y_{ij}\}_{i\in I, j\in [k]} \rangle & \langle \{z_{ij}\}_{i\in I, j\in [k]}, \{z_{ij}\}_{i\in I, j\in [k]} \rangle \end{vmatrix} , \end{split}$$

we can easily prove that $(\sum_{j \in [k]} \oplus (l^2(I))_j)_{l_2}$ with above inner product is a 2-Hilbert space.

Throughout rest of the paper, we shall denote a 2-Hilbert space by X and 2-woven frame $\{f_{ij}\}_{i \in I, j \in [k]}$ by F.

Like 2-frames and its extensions, we can characterize a 2-woven frame in terms of its operators.

Theorem 4.1. Let X be a 2-Hilbert space and F be a 2-woven frame associated to η with frame bounds C and D. Then for F the 2-pre woven frame (synthesis) operator

$$T_{F\eta}: (\sum_{j \in [k]} \oplus (l^2(I))_j)_{l_2} \to X, where$$

282

$$T_{F\eta}\{a_{ij}\}_{i\in I, j\in [k]} = \sum_{i\in I, j\in [k]} a_{ij}f_{ij},$$

is well defined and bounded. **Proof.** Let $\{a_{ij}\}_{i \in I, j \in [k]} \in (\sum_{j \in [k]} \oplus (l^2(I))_j)_{l_2}$. By Lemma 2.1,

$$\begin{split} \|T_{F\eta}\{a_{ij}\}_{i\in I, j\in[k]}, \eta\|^2 &= \|\sum_{i\in I, j\in[k]} a_{ij}f_{ij}, \eta\|^2 \\ &= \sup\{|\langle \sum_{i\in I, j\in[k]} a_{ij}f_{ij}, y|\eta\rangle|^2, y \in X, \|y, \eta\| = 1\} \\ &\leq \sum_{i\in I, j\in[k]} |a_{ij}|^2 \sup\{\sum_{i\in I, j\in[k]} |\langle f_{ij}, y|\eta\rangle|^2, y \in X, \|y, \eta\| = 1\} \\ &\leq D\sum_{i\in I, j\in[k]} |a_{ij}|^2. \end{split}$$

Therefore $\sum_{i \in I, j \in [k]} a_{ij} f_{ij} \in X$ is well defined and $||T_{F\eta}, \eta|| \leq \sqrt{D}$ i.e. $T_{F\eta}$ is bounded.

Remark 3. The adjoint of $T_{F\eta}$ defined as

$$T_{F\eta}^* : X \to (\sum_{j \in [k]} \oplus (l^2(I))_j)_{l_2},$$
$$T_{F\eta}^* x = \{ \langle x, f_{ij} | \eta \rangle \}_{i \in I, j \in [k]}, \ \forall x \in X$$

is called analysis operator of F. Clearly, T_{Fn}^* is well defined and bounded operator.

Definition 4.1. Let F be a 2-woven frame associated to η for the 2-Hilbert space X. Then the operator $S_{F\eta} : X \to X$ is called 2-woven frame operator for F, defined as

$$S_{F\eta}x = T_{F\eta}T_{F\eta}^*x$$

= $T_{F\eta}\{\langle x, f_{ij}|\eta\rangle\}_{i\in I}$
= $\sum_{i\in I, j\in [k]} \langle x, f_{ij}|\eta\rangle f_{ij}.$

Clearly, $S_{F\eta} = T_{F\eta}T_{F\eta}^*$ is bounded. Moreover $||S_{F\eta}, \eta|| \leq D$. It can be proved easily that,

$$\langle S_{F\eta}x, x|\eta\rangle = \sum_{i\in I, j\in [k]} |\langle x, f_{ij}|\eta\rangle|^2, \ \forall x\in X.$$

Theorem 4.2. The 2-woven frame operator $S_{F\eta} : X \to X$ is self adjoint, positive and invertible. **Proof** Clearly $S_{-} = T_{-} T^{*}$ is self adjoint

Proof. Clearly $S_{F\eta} = T_{F\eta}T^*_{F\eta}$ is self adjoint. *F* is 2-woven frame, therefore

$$C\|x,\eta\|^{2} \leq \langle S_{F\eta}x,x|\eta\rangle \leq D\|x,\eta\|^{2}, \ \forall x \in X$$
$$C\mathcal{I} \leq S_{F\eta} \leq D\mathcal{I}.$$

Hence $S_{F\eta}$ is a positive operator.

Furthermore, by Proposition 2.1,

$$\begin{aligned} \|\mathcal{I} - D^{-1}S_{F\eta}, \eta\| &= \sup_{\substack{\|x,\eta\|=1}} |\langle (\mathcal{I} - D^{-1}S_{F\eta})x, x|\eta\rangle| \\ &\leq \frac{D-C}{D} < 1. \end{aligned}$$

Hence $S_{F\eta}$ is invertible operator.

Remark 4. Every $x \in X$ can be represented as

$$x = S_{F\eta} S_{F\eta}^{-1} x = \sum_{i \in I, j \in [k]} \langle S_{F\eta}^{-1} x, f_{ij} | \eta \rangle f_{ij}$$
$$= \sum_{i \in I, j \in [k]} \langle x, f_{ij} | \eta \rangle S_{F\eta}^{-1} f_{ij}.$$

Theorem 4.3. Let $F = \{f_{ij}\}_{i \in I, j \in [k]}$ be a finite family of 2-Bessel sequences in X associated to η , then the following conditions are equivalent:

- (i) F is 2-woven frame associated to η with universal bounds C and D.
- (ii) For the operator $S_{F\eta}x = \sum_{i \in I, j \in [k]} \langle x, f_{ij} | \eta \rangle f_{ij}$, we have

$$C\mathcal{I} \leq S_{F\eta} \leq D\mathcal{I},$$

where \mathcal{I} is the identity operator.

Proof. $(i) \Rightarrow (ii)$ Since for every $x \in X$,

$$\langle S_{F\eta}x, x|\eta\rangle = \sum_{i\in I, j\in [k]} |\langle x, f_{ij}|\eta\rangle|^2.$$

So,

$$C||x,\eta||^2 \le \langle S_{F\eta}x, x|\eta\rangle \le D||x,\eta||^2, \ \forall x \in X$$

Hence,

$$C\mathcal{I} \leq S_{F\eta} \leq D\mathcal{I}.$$

 $(ii) \Rightarrow (i)$

Let $T_{F\eta}$ be a 2-woven pre frame operator associated to η , then we have

$$\sum_{i \in I, j \in [k]} |\langle x, f_{ij} | \eta \rangle|^2 = \langle S_{F\eta} x, x | \eta \rangle = \langle T^*_{F\eta} x, T^*_{F\eta} x | \eta \rangle$$
$$= \|T^*_{F\eta} x, \eta\|^2$$
$$\leq \|T^*_{F\eta}, \eta\|^2 \|x, \eta\|^2 = \|S_{F\eta}, \eta\|^2 \|x, \eta\|^2$$
$$\leq D \|x, \eta\|^2.$$

Again, we have

$$\sum_{i \in I, j \in [k]} |\langle x, f_{ij} | \eta \rangle|^2 = \|S_{F\eta}^{\frac{1}{2}} x, \eta\|^2$$
$$\geq C \|x, \eta\|^2, \quad \forall x \in X.$$

Hence, F is a 2-woven frame.

Theorem 4.4. Let F be 2-woven frame for X and $S_{F\eta}$ be 2-woven frame operator of F. If the positive square root of $S_{F\eta}^{-1}$ is denoted as $S_{F\eta}^{-\frac{1}{2}}$, then $\{S_{F\eta}^{-\frac{1}{2}}f_{ij}\}_{i\in I,j\in[k]}$ is a tight 2-woven frame. **Proof.** For $x \in X$,

$$S_{F\eta}x = \sum_{i \in I, j \in [k]} \langle x, f_{ij} | \eta \rangle f_{ij}.$$

Substituting $x = S_{F\eta}^{-\frac{1}{2}}x$, we get

$$S_{F\eta}^{\frac{1}{2}}x = \sum_{i \in I, j \in [k]} \langle S_{F\eta}^{-\frac{1}{2}}x, f_{ij} | \eta \rangle f_{ij}$$

Hence,

$$x = S^{-\frac{1}{2}} \left(\sum_{i \in I, j \in [k]} \langle x, S_{F\eta}^{-\frac{1}{2}} f_{ij} | \eta \rangle f_{ij} \right)$$

=
$$\sum_{i \in I, j \in [k]} \langle x, S_{F\eta}^{-\frac{1}{2}} f_{ij} | \eta \rangle S^{-\frac{1}{2}} f_{ij}.$$

Now,

$$\begin{split} \|x,\eta\|^2 &= \langle x,x|\eta\rangle \\ &= \langle \sum_{i\in I,j\in [k]} \langle x,S_{F\eta}^{-\frac{1}{2}}f_{ij}|\eta\rangle S^{-\frac{1}{2}}f_{ij},x|\eta\rangle \\ &= \sum_{i\in I,j\in [k]} \langle x,S_{F\eta}^{-\frac{1}{2}}f_{ij}|\eta\rangle \langle S_{F\eta}^{-\frac{1}{2}}f_{ij},x,|\eta\rangle \\ &= \sum_{i\in I,j\in [k]} |\langle x,S_{F\eta}^{-\frac{1}{2}}f_{ij}|\eta\rangle|^2. \end{split}$$

So $\{S_{F\eta}^{-\frac{1}{2}}f_{ij}\}_{i\in I,j\in[k]}$ is tight 2-woven frame.

References

- Arefijamaal A. A. and Sadeghi Ghadir, Frames in 2-inner Product Spaces, Iran. J. Math. Sci. Inform., Vol. 8, No. 2 (2013), 123-130.
- [2] Bemrose T., Casazza P. G., Grochenig K., Lammers M. C., and Lynch R. G., Weaving Frames, Oper. Matrices, Vol. 10, No. 4 (2016), 1093-1116.
- [3] Casazza P. G., The art of frame theory, Taiwan. J. Math., Vol. 4, No. 2 (2000), 129-201.
- [4] Daubechies I., Grossmann A. and Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., Vol. 27, No. 5 (1986), 1271-1283.
- [5] Diminnie C., Gähler S. and White A., 2-Inner Product Spaces, Demonstr. Math., Vol. 6 (1973), 525-536.
- [6] Duffin R. J. and Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Am. Math. Soc., Vol. 72, No. 2 (1952), 341-366.
- [7] Han D., Frame representations and Parseval duals with applications to Gabor frames, Trans. Am. Math. Soc., Vol. 360, No. 6 (2008), 3307-3326.
- [8] Rahimi A., Samadzadeh Z. and Daraby B., Frames related operators for woven frames, Int. J. Wavel. Multiresolut. Inf. Process, Vol. 17, No. 3 (2019), 1950010.
- [9] Sun Q. and Tang W., Nonlinear frames and sparse reconstructions in Banach spaces, J. Fourier Anal. Appl., Vol. 23 (2017), 1118-1152.