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Abstract: Analytical and numerical research is done to determine how carbon
nanotubes (CNT’s) nanofluid affects natural convection close to an endless ver-
tically heated plate. The corresponding system of non-linear partial differential
equations is solved analytically. The Kamal transform is used to compute the ex-
plicit approximate analytical solutions for characteristics of nanofluid flow, such
as the velocity and the temperature profile. The analytical expressions for the ve-
locity and the temperature distributions are given in explicit form. The outcomes
are next compared with the numerical solution with the help of numerical inver-
sion formula, which demonstrates a good agreement. The average absolute error
percentage is calculated for both the velocity and the temperature profile to show
the effectiveness of this present approach. Also, the 3D view of non-dimensional
temperature and velocity are plotted. The approximate analytical expression for
the Nusselt number is consequently derived. Graphical representations are given
for the numerous effects of significant physical parameters.
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1. Introduction

Currently, researchers are fascinated by the important role of nanofluids in
many applications. There are many applications for nanofluids, such as fuel cells,
hybrid-motors, domestic refrigerators, heat exchangers, electronics, biomedical and
food products. One application is described in Elnaqeeb et al. [17], who examined
the behavior of carbon nanotubes (CNTs) nanofluids with Prabhakar-like heat
transport on natural convection, close to an endless vertical heated plate. Eastman
et al. [16] highlight several characteristics of nanofluid behavior in their article [16].
According to Lee et al. [26], particle size is also thought to have a significant role
in enhancing the nanofluids thermal conductivity.

Recent empirical studies have revealed that improvements in the heat transmis-
sion of conventional fluids was received a lot of interest. Common approaches to
improving heat transfer using solid nanoparticles dispersed in a liquid have great
potential for improving heat transfer from the base fluid. A fluid with suspended
solid particles can transmit heat more effectively than a fluid without them and
a range of materials might be utilized to create nanofluids [9, 14, 27, 34, 35, 38,
39]. Xie et al. [36] spoke about the specific components regarding nanoparticles
in addition to the thermal conductivity for fluids. Das et al. [12] reported that
improved thermal conductivity at high temperatures for nanofluid. Murshed et
al. [28] found that a 5 percent volume addition of TiO2 nanoparticles to water
increased the maximum percentage of thermal conductivity.

Kim et al. [25] reported on the thermoelectric power and thermal efficiency
of a single CNT. Choi et al.’s [11] preparation of oil-based nanofluids, including
CNTs, revealed that the conductivity of thermal measurement was non-linear when
nanotubes were loaded. Cu nanoparticles directly distributed over ethylene glycol
have used to create nanofluids, and Eastman et al. [15] evaluated the energy
conductivity of these fluids. An aqueous solution of multi-walled carbon nanotube
passing through a horizontal tube was the subject of a study by Ding et al. [13]
to determine its heat transfer characteristics. According to Hwang et al. [23], the
properties of the conventional fluid and the suspended nanoparticles have an effect
on the sustainability of the nanofluid.

Fractional calculus is being used in various scientific fields such as biophysics,
biology, electrical engineering and mechanics (Ahmed et al. [7]). The Prabhakar
derivative, the Atangana-Baleanu derivative, the Hadamard derivative, and several
other fractional derivative operators are regarded as generalizations of classical
derivatives [5, 6, 10, 19, 20, 21, 29].

To discover numerical approximations of the solutions to the differential equa-
tions, Stehfest [31, 32] introduced a numerical inversion approach to the Laplace
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transform (Jacquot et al. [24]). Abdeliah et al. [1, 2] discovered a new transforma-
tion, the Kamal transformation and the use of the Kamal transformation to solve
partial differential equations. Aggarwal et al. [4] present the Kamal transformation
error function and some applications in their study [3]. Furthermore, Fadhil [18]
explains the convolution of the Kamal transform.

For the intended purpose for resolving ordinary and even partial differential
equations that are both linear and non-linear, numerous analytical approximation
techniques have been developed recently. He [22] put out a number of workable
techniques, including the Variational iteration technique and Roshan et al. [8]’s
Parameter Perturbation Method (PPM). See Sweilam et al. [33], Xu et al. [37], and
Shou et al. [30] for further details and uses of PPM to tackle non-linear boundary
value problems arises in various fields.

In this article, the main objective is to estimate the approximate analytical
expression of the non-linear partial differential equation for carbon nanotube (CNT)
nanofluids influence on natural convection near an infinite vertical heated plate.
With the use of the Kamal transform and the parameter perturbation approach,
the model problem is analytically resolved. The results are then compared with the
numerical solution using numerical inversion formula. The outcomes are displayed
graphically to interpret the impacts of the physical parameters including Prandtl
number and Grashof number. Also, the physical quantities of interest like Nusselt
number is calculated and portrayed graphically.

2. Mathematical Formulation of the Problem
Let us consider a laminar flow across an endless vertical plate in the boundary

layer of an incompressible viscous fluid with CNT’s. The wall is maintained at a
temperature T∞ + (TW − T∞)f(t), T∞ being the ambient temperature and f(t) is
a piecewise continuous function of the exponential order to infinity with f(0) = 0;
the fluid is controlled by the thermal buoyancy force.

Fig.1 : A schematic illustration of the problem
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In this study, a system based on Cartesian coordinates is used, as in Fig.1,
where the x−axis is parallel to that same plate and the y−axis is taken normal to
the plate. We simply assume that the velocity as well as the temperature fields is
functions of y and t alone; so we find for fluid velocity v̄(y, t) = u(y, t)̄i wherēi is the
unite vector along x− direction. Under consideration of the absence ofa pressure
gradient depending on the path of the flow and Boussinesq’s approximation, the
governing set of partial differential equations reported in Awan et al. [10] and
Hajizadeh et al. [19] is as follows:
The momentum equation has the form:

ρnf
∂U(y, t)

∂y
= µnf

∂2U(y, t)

∂y2
+ g(ρβ)nf [T (y, t)− T∞] (1)

The energy balance equation is given by

(ρcp)nf
∂T (y, t)

∂t
= −∂q(y, t)

∂y
(2)

The Fourier’s law of thermal flux is given by

q(y, t) = −knf
∂T (y, t)

∂t
(3)

where g is the gravitational acceleration and q is the thermal flux of the nanofluid.
The thermo physical parameters of the considered nanofluid (Haq et al. [20, 21])
are given by ,

ρnf = (1− ϕ)ρf + ϕρCNT , (ρcp)nf = (1− ϕ)(ρcp)f + ϕ(ρcp)CNT , µnf =
µf

(1− ϕ)2.5

ρβnf = (1− ϕ)(ρβp)f + ϕ(ρβ)CNT ,
knf
kf

=
1− ϕ+ 2ϕ

(
k

knf−kf

)
In
(

kCNT+kf
2kf

)
1− ϕ+ 2ϕ

(
kf

kCNT−kf

)
In
(

kCNT+kf
2kf

)
(4)

where ρnf , µnf and (cp)nf are the density, viscosity and the specific heat of the
nanofluid. Also, the coefficient of nanofluid’s thermal expansion at constant pres-
sure and the nanofluid’s thermal conductivity are expressed by the parameters βnf

and knf respectively and ϕ is a parameter of the volume fraction.
We consider here about the following initial and boundary conditions that are
suitable for eqns. (1)-(3):

U(y, 0) = 0, T (y, 0) = T∞, y ≥ 0 (5)

U(0, t) = 0, T (0, t) = T∞ + [TW − T∞]f(t), t ≥ 0 (6)

U(y, t) → 0, T (y, t) → T∞ as y → ∞ (7)
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We exhibit the successive dimensionless variables to create the non-dimensional
problem:

y∗ =
v0y

vnf
, Unf =

µnf

ρnf
, t∗ =

v0t

vnf
, U∗ =

U

v0
, T ∗ =

T − T∞

TW − T∞
, q∗ =

q

q0
,

q0 =
knf (TW − T∞)v0

vnf
, P r =

(µcp)nf
knf

, Gr =
g(vβ)nf (TW − T∞)

v30
(8)

In the preceding equations, vnf denotes the kinematic viscosity, Pr is the Prandtl
number, Gr is a Grashof number and v0 > 0 is a characteristic velocity.
Substitute eqn. (8) into the eqns. (1)-(7); we obtain the dimensionless problem by
neglecting the star notations.

∂U(y, t)

∂t
=

∂2U(y, t)

∂t2
+Gr T (y, t) (9)

Pr
∂T (y, t)

∂t
= −∂q(y, t)

∂y
(10)

q(y, t) = −∂T (y, t)

∂y
(11)

U(y, 0) = 0, T (y, 0) = T∞, y ≥ 0 (12)

U(0, t) = 0, T (0, t) = f(t), t ≥ 0 (13)

U(y, t) → 0, T (y, t) → T∞ as y → ∞ (14)

3. Approximate Analytical Solution of a System of Partial Differential
Equation using the Kamal Transform and PPM

Abdelilah Kamal et al. [1] created a new integral transform known as the
Kamal transform. For the purpose of evaluating partial and ordinary differential
equations in the time domain, it is developed from the traditional Fourier integral.
One can use it to resolve both linear as well as non-linear differential equations.
The application of the Kamal transformation is clearly described in Aggarwal et
al. [3]. The basic definition and properties of Kamal transform are provided in
Appendix-A.

In order to resolve simultaneous differential equations, the parameter pertur-
bation method was initially proposed in 1999 by He et al. [22]. It is a sort of
effective technique for resolving non-linear problems that can converge to a rough
solution for a smooth simultaneous system. According to Roshan et al. [8], PPM
may be easily applied to various non-linear systems and is used to simulate the
non-linear elastic deformation of a beam. It has many applications in engineer-
ing and other scientific disciplines. The basic concept of parameter perturbation
method is provided in Appendix-B.
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The approximate analytical solutions for both the temperature and velocity
profiles obtained using the Kamal transform and PPM are described below. The
detailed derivations of approximate analytical solution for temperature and velocity
are provided in Appendix-C.

3.1. Solution of Temperature Distribution
We get the transformed problem of the temperature profile by simply applying

the Kamal transform technique to the eqns. (10), (11), (13)2, (14)2 and use the
initial condition in eqn. (12)2:

Pr

v
T̄ (y, v) = −∂q̄(y, v)

∂y
(15)

q̄(y, v) = −∂T̄ (y, v)

∂y
(16)

T̄ (0, v) = G(v), T̄ (y, v) → 0 as y → ∞ (17)

By substituting eqn. (16) into eqn. (17) and rearrangement, we obtain the following
(ordinary thermal transport) differential equation:

∂2T̄ (y, v)

∂y2
− Pr

v
T̄ (y, v) = 0 (18)

The solution of eqn. (18) under the conditions of eqn. (17) using PPM is given by

T̄ (y, v) = G(v) e−y
√

Pr
v (19)

Applying the inverse Kamal transform to the eqn. (19), we get the transformed
temperature is as follows:

T (y, t) = f ′(t) ∗ erfc

[
y
√
Pr

2
√
t

]
(20)

where f ′(t) = df(t)
dt

and erfc(·) is the complementary Gauss error function.

3.2. Solution of Fluid Velocity
We get the transformed problem of the velocity profile by simply applying

the Kamal transform technique to the eqns. (9), (13)1, (14)1 and use the initial
condition in eqn. (12)1:

1

v
Ū(y, v) =

∂2Ū(y, v)

∂y ∗ 2
+Gr T̄ (y, t) (21)

Ū(y, v) → 0 as y → ∞ (22)
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Substitute eqn. (19) into eqn. (21) and rearranging, we get the following (ordinary
thermal transport) differential equation:

∂2Ū(y, v)

∂y ∗ 2
− 1

v
Ū(y, v) = −Gr

[
G(v) e−y

√
Pr
v

]
(23)

The solution of eqn. (21) under the conditions of eqn. (22) using PPM is given by
the following equation:

Ū(y, v) =
v

1− Pr
Gr.G(v)

[
e−y

√
Pr
v − e−y

√
1
v

]
(24)

Applying the inverse Kamal transform to the eqn. (24), we obtain the transformed
velocity.

U(y, t) =
Gr

1− Pr
f(t) ∗

(
erfc

[
y
√
Pr

2
√
t

]
− erfc

[
y

2
√
t

])
: Pr ̸= 1 (25)

3.3. Particular case
In the particular case Pr = 1 , the temperature in the Kamal domain is

T̄ (y, v) = G(v) e−y
√

1
v =

(
1

v

)
G(v)

e−y
√

1
v(

1
v

) (26)

The effective inverse Kamal transform is calculated by

T (y, t) = f ′(t) ∗ erfc
[

y

2
√
t

]
(27)

In this instance, the modified velocity has a more straightforward form.

Ū(y, v) =
y

2
Gr.G(v)

[
e−y

√
1
v(

1
v

) ]
(28)

With the effective inverse Kamal transform is given by

U(y, t) =
y Gr

2
f(t) ∗

(
e(−

y
4t
)

√
πt

)
(29)
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3.4. Nusselt number
The following is the mathematical expression of the heat transfer rate:

Nu =
∂T (y, t)

∂y y=0

= −
{
∂T̄ (y, v)

∂y y=0

}
= K−1

{
G(v)

√
Pr

v

}
(30)

With the effective inverse Kamal transform is given by

Nu = f ′(t) ∗
√

Pr

πt
(31)

4. Numerical Inversion Formula
For the confirmation of our work, we use the Stehfest’s formula presented by

Stehfest et al. [31, 32] and Jacquot et al. [24] regarding numerical inversion
associated with the Laplace transform method to find the numerical solutions of
temperature and velocity fields.

Stehfest’s formula is expressed as:

T (y, t) ≈ In(2)

t

N∑
j=1

kjT̄

(
ϵ, j

In(2)

t

)
(32)

U(y, t) ≈ In(2)

t

N∑
j=1

kjŪ

(
r, j

In(2)

t

)
(33)

where kj = (−1)j+
N
2

∑min(j,N2 )
i=[ j+1

2
]

i
N
2 (2n)!

(N
2
−i)!i!(i−1)!(2i−j)!

, N is even and [r] stands for the

integer value function, also known as the bracket function. Here we take N = 2m =
an even number. The results are computed numerically using MAPLE software.

4. Results and Discussion
In this portion, the effects of physical insights on temperature distribution

and velocity field were addressed. For the analytical results, we consider the
functionf(t) = t, t > 0, for the heated wall. Fig. 1 shows a schematic diagram of
the issue.

For temperature: Figs. 2, 3, and 4 represent the assessment of the non-dimensional
temperature distribution with the dimensionless distance. Further from Fig. 2, it
shows that the temperature level at y = 2.4 becomes steady state. In Fig. 3, it is
displayed that raising the values of time t, causes the temperature to increase for
some fixed value of Pr and the change of the temperature distribution to be exhib-
ited. As seen in Fig. 4, by increasing the values of Pr, the temperature is raised
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for some fixed value of t and a slight variation of the temperature is displayed.

For velocity: Figs. 5, 6, 7 and 8 represent the dimensionless distance versus the
dimensionless fluid velocity. From Fig. 6, it can be seen that for some fixed values
of Pr and Gr, the velocity profile increases as the time value rises. According to
Fig. 7, increasing the values of Pr results in a drop in the velocity profile for some
fixed values of t and Gr. From Fig. 6, it is evident that for some fixed values of t
and Pr, the velocity profile is decreased by decreasing the value of Gr.

For Nusselt number: Figs. 9 and 10 depict the Nusselt number Nu using eqn.
(31). Fig. 9 illustrates that by increasing the amount of Prandtl number, Nu
raises. It is clear from Fig. 10 that the Nusselt number increases by raising t.
From these figures, it is evident that time and Prandtl number has a great impact
on Nu.

For 3D plots: Figs. 11 to 13 portray the 3D view of dimensionless temperature
and velocity against time t and distance y respectively. Fig. 11 is a 3D plot of
non-dimensional temperature using eqn. (20) for distinct amounts of Pr. Fig. 12
is a 3D graph of dimensionless velocity using eqn. (25) for different amounts of
Gr. Fig. 13 is a 3D view of non-dimensional velocity using eqn. (25) for various
amounts of Pr.

For table: From Table 1 the average error percentage was 0.03 for the tempera-
ture profile and 0.18 for the Velocity profile. It is obvious that our findings reach
a remarkable agreement as compared to numerical results.

Fig. 2: Dimensionless fluid temperature T (y, t) with dimensionless distance y.
For certain specified values of the non-dimensional parameter t and Pr , the curves
are constructed using the eqn. (20).
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Fig. 3: Dimensionless fluid temperature T (y, t) with dimensionless distance y.
The curves are drawn using the eqn. (20) for varying values of the non-dimensional
parameter t and in certain specified value of the non-dimensional parameter Pr.

Fig. 4: Dimensionless fluid temperature T (y, t) with dimensionless distance y.
The curves are drawn using the eqn. (20) for varying values of the non-dimensional
parameter Pr and in certain specified value of the non-dimensional parameter t.
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Fig. 5: Dimensionless fluid velocity U(y, t) with dimensionless distance y. The
curves are sketched using the eqn. (25) for certain specified values of the non-
dimensional parameter t,Pr and Gr.

Fig. 6: Dimensionless fluid velocity U(y, t) with dimensionless distance y. The
curves are sketched using the eqn. (25) for varying values of the non-dimensional
parameter t and in certain specified values of the non-dimensional parameter Pr
and Gr.

Fig. 7: Dimensionless fluid velocity U(y, t) with dimensionless distance y. The
lines are drawn using the eqn. (25) for varying values of the non-dimensional
parameter Pr and in certain specified values of the non-dimensional parameter t
and Gr.
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Fig. 8: Dimensionless fluid velocity U(y, t) with dimensionless distancey . The
plots are sketched using the eqn. (25) for varying values of the non-dimensional
parameter Gr and in certain specified values of the non-dimensional parameter t
and Pr.

Fig. 9: Nusselt number Nu with time t. The curves are sketched using eqn. (31)
for numerous amounts of the Prandtl number Pr.

Fig. 10: Nusselt number Nu with Prandtl number Pr. The lines are sketched
using the eqn. (31) for varying amounts of time t.
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Fig. 11: 3D plot of dimensionless temperature for numerous amount of Pr.

Fig. 12: 3D view of non-dimensional velocity for numerous amounts of Gr.

Fig. 13: 3D illustration of non-dimensional velocity for distinct amounts of Pr.
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Table 1: Comparison regarding the numerical solution using the eqns. (32) and
(33) and the analytical solution using the eqns. (20) and (25) for t = 1, P r =
2 and Gr = 3.

ρ
Dimensionless distributions

Temperature- T (y, t) Velocity- U(y, t)

Semi-
analytical
solution

Numerical
solution

Error %
Semi-

analytical
solution

Numerical
solution

Error %

0 1 1.00015 0.015 0 0 0

0.1 0.85015 0.85030 0.01764 0.07947 0.07955 0.10067

0.2 0.71872 0.71887 0.02087 0.13463 0.13478 0.11142

0.3 0.60412 0.60426 0.02317 0.17041 0.17063 0.12910

0.4 0.50480 0.50494 0.02773 0.19100 0.19128 0.14659

0.5 0.41927 0.41941 0.03339 0.19994 0.20028 0.17005

0.6 0.34609 0.34623 0.04045 0.20015 0.20054 0.19485

0.7 0.28389 0.28401 0.04226 0.19404 0.19449 0.23191

0.8 0.23137 0.23148 0.04754 0.18356 0.18406 0.27239

0.9 0.18734 0.18743 0.04804 0.17027 0.17081 0.31714

1 0.15067 0.15074 0.04645 0.15538 0.15597 0.37971

Average absolute error % 0.03296 0.18671

6. Conclusions
In this paper, we have looked at an analytical representation of the effects of

carbon nanotubes (CNT’s) nanofluid under natural convection close to an infinite
vertical heating plate. The characteristics of nanofluid flow are derived by solving
the governing partial differential equations analytically with the Kamal transform
and PPM. The particular cases are also discussed. The graphical results are inter-
lined to analyze the effects of different thermo physical factors on temperature and
velocity profiles. The findings lead to the following conclusions:

� Temperature increases as time and Prandtl number increases.
� Velocity rises with increasing values of time.
� Velocity falls with increasing values of the Prandtl number.
� As the values of the Grashof number decrease, the velocity decreases.
� Nusselt number enhances as the amount of time and Prandtl number increase.
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Appendices
Appendix A: Basic definition and properties of the Kamal transform
The Kamal Transform was first presented by Abdeliah Kamal. It is a mathematical
technique used to solve time-domain partial and ordinary differential equations.
We take into account the Kamal transform for exponential-order functions in the
collection A by

A =
{
f(t) : ∃M, λ1, λ2 > 0, f(t) < Me

t
λi , if t ∈ (−1)i × [0,∞), i = 1, 2

}
(A.1)

where M is a constant but finite number,λ1, λ2 are finite or infinite, the Kamal
transform of f(t) may be described as an integral equation:

K[f(t)] = G(v) =

∫ ∞

0

f(t)e
−t
v dt, t ≥ 0, λ1 ≤ v ≤ λ2 (A.2)

In the argument of the function f the variable t is factored by the variable v in the
Kamal Transform and K(·) denotes the Kamal Transform operator.
Kamal transform of elementary functions:
Let f(t) be any piecewise continuous function with exponential order for t ≥ 0.
i) f(t) = 1 =⇒ K[1] = v
ii) f(t) = t =⇒ K[t] = v2

iii) f(t) = tn =⇒ K[tn] = n!vn+1, n ≥ 0
iv) f(t) = eat =⇒ K[eat] = v

1−av

v) f(t) = e−at =⇒ K[eat] = v
1+av

Kamal transform of derivatives:
Theorem-1:
Let G(v) be the Kamal transform of f(t) then
i) K[f ′(t)] = 1

v
G(v)− f(0)

ii) K[f ′′(t)] = 1
v2
G(v)− 1

v
f(0)− f ′(0)

iii) K[fn(t)] = 1
vn
G(v)−

∑n−1
k=0 vk−n+1f

(k)(0)
Kamal transform of partial derivatives:

i) K
[
∂f(x,t)

∂t

]
= 1

v
G(x, v)− f(x, 0)

ii) K
[
∂2f(x,t)

∂t2

]
= 1

v2
G(x, v)− 1

v
f(x, 0)− ∂f(x,0)

∂t

iii)K
[
∂f(x,t)

∂x

]
= d

dx
(G(x, v))

iv) K
[
∂2f(x,t)

∂x2

]
= d2

dx2 (G(x, v))

v) K
[
∂nf(x,t)

∂xn

]
= dn

dxn (G(x, v))
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Convolution of two functions:
Convolution of two functions F (t) and H(t) is denoted by F (t)∗H(t) and is defined
by
F (t) ∗H(t) =

∫ t

0
F (x)H(t− x)dx =

∫ t

0
H(x)F (t− x)dx

Convolution theorem for Kamal transform:
If K[F (t)] = G(v) and K[H(t)] = I(v) then k[F (t) ∗ H(t)] = k[F (t)]K[H(t)] =
g(v)I(v)
Inverse Kamal transform:
If K[F (t)] = G(v) then F (t) is called the inverse Kamal transform of G(v) and
mathematically it is defined as F (t) = K−1[G(v)]
Kamal transform of error function and complementary error function:
The error and complementry error functions are defined as
erf(x) = 2√

π

∫ x

0
e−t2dt and erfc(x) = 2√

π

∫∞
x

e−t2dt
The Kamal transform of error and complementary error functions are defined as
K[erf(

√
t)] = v3/2√

(1+v)
and

K[erfc(
√
t)] = K[1− erf(

√
t)] = K[1]−K[erf(

√
t)] = v − v3/2√

(1+v)

Appendix B: Basic concept of parameter perturbation method (PPM)
It is a method of perturbation where the coefficients of an expression are specified
in terms of the power of an artificial parameter that may be applied to non-linear
systems.
Consider a general non-linear equation is as follows:

L(u) +N(u) = f(x), x ∈ Rd (B.1)

where L is a linear portion, N is a non-linear part and f(x) is a known analytical
function.
Correspondingly, expanding parameters are incorporated via linear transformation:

u(x) = ϵv(x) + b (B.2)

where ϵ is the perturbation variable; in order to eliminate the secular term from
the equation, we may get the unknown constant variable b by substituting the eqn.
(B.2) into the eqn.(B.1)
The solution is then extended to take the following form:

v =
n∑

i=0

ϵivi = v0 + ϵv1 + ϵ2v2 + ... (B.3)
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where ϵ is an artificial book keeping parameter. We keep v0(0) = v(0)and
∑

i vi(0) =
0
Appendix C: Approximate analytical solution using the Kamal trans-
form and the Parameter perturbation method (PPM)
To find the viable solution of transformed eqns. (9), (10) and (11) under the initial
and boundary conditions in eqns. (12), (13) and (14), we use the new technique
namely the Kamal transform.
By applying the Kamal transform to the eqns. (9)-(14), we get

K

[
∂U(y, t)

∂t

]
= K

[
∂2U(y, t)

∂y2
+Gr T (y, t)

]
K

[
Pr

∂T (y, t)

∂t

]
= K

[
−∂q

∂y

]
K[q(y, t)] = K

[
−∂T (y, t)

∂y

]
K[U(y, 0)] = 0 K[T (y, 0)] = 0 y ≥ 0

K[U(0, t)] = 0 K[T (0, t)] = K[f(t)] v ≥ 0

K[U(y, t)] → 0 K[T (0, t)] → 0 as y → ∞



(C.1)

=⇒ 1

v
Ū(y, v)− Ū(y, 0) =

∂2Ū(y, v)

∂y2
+Gr T̄ (y, v)

Pr

[
1

v
T̄ (y, v)− T̄ (y, 0)

]
= −∂q̄(y, v)

∂y

q̄(y, v) = −∂T̄ (y, v)

∂y

Ū(y, 0) = 0 T̄ (y, 0) = 0 y ≥ 0

Ū(0, v) = 0, T̄ (0, v) = G(v), v ≥ 0

Ū(y, v) → 0, T̄ (y, v) → 0 as y → ∞



(C.2)

=⇒ 1

v
Ū(y, v) =

∂2Ū(y, v)

∂y2
+Gr T̄ (y, v)

Pr

v
T̄ (y, v) =

∂2T̄ (y, v)

∂y2

Ū(0, v) = 0, T̄ (0, v) = G(v), v ≥ 0

Ū(y, v) → 0, T̄ (y, v) → 0 as y → ∞


(C.3)
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To solve eqn. (C.3) by means of PPM, first we rearrange the terms in eqn. (C.3):(
∂2Ū(y, v)

∂y2

)
−
(
1

v
Ū(y, v)

)
+ (Gr T̄ (y, v)) = 0 (C.4)

with
Ū(0, v) = 0, v ≥ 0 and Ū(y, v) → 0 as y → ∞ (C.5)(

∂2T̄ (y, v)

∂y2

)
−
(
Pr

v
T̄ (y, v)

)
= 0 (C.6)

with
T̄ (0, v) = G(v), v ≥ 0 and T̄ (y, v) → 0 as y → ∞ (C.7)

Parameter perturbation method (PPM) to find the solution of the tem-
perature profile:
To solve the second-order differential eqn. (C.6) with the boundary condition in
eqn. (C.7) by using the parameter perturbation method.
We introduced an expanding variable via a linear transformation:

T̄ (y, v) = ϵS̄(y, v) + b (C.8)

where ϵ is the perturbation variable and b is the unknown steady(constant) param-
eter.
Substituting eqn. (C.8) into eqn. (C.6), we get(

∂2

∂y2
(ϵS̄(y, v) + b)

)
−
(
Pr

v
(ϵS̄(y, v) + b)

)
= 0

=⇒ ϵ
∂2S̄(y, v)

∂y2
− ϵ

Pr

v
S̄(y, v)− Pr

v
b = 0,

=⇒ ∂2S̄(y, v)

∂y2
− Pr

v
S̄(y, v)− Pr

ϵv
b = 0 (C.9)

The solution is elaborated in the following manner:

S̄ =
n∑

i=0

ϵiS̄i = S̄0 + ϵS̄1 + ϵ2S̄2 + ... (C.10)

Substituting eqn. (C.10) into eqn. (C.9), we get

∂2

∂y2
(S̄0 + ϵS̄1 + ϵ2S̄2 + ...)− Pr

v
(S̄0 + ϵS̄1 + ϵ2S̄2 + ...)− Pr

ϵv
b = 0 (C.11)
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Equating the powers of ϵ -terms in eqn. (C.11), we get

ϵ0 :
∂2S̄0

∂y2
− Pr

v
S̄0 −

Pr

ϵv
b = 0 (C.12)

ϵ1 :
∂2S̄1

∂y2
− Pr

v
S̄1 = 0 (C.13)

...

On solving the eqn. (C.12), we obtain the solution

S̄0(y, v) = Aey
√

Pr
v +Be−y

√
Pr
v − b

ϵ
(C.14)

Substituting eqn. (C.14) into eqn. (C.8), we obtain

T̄0(y, v) = ϵ

(
Aey

√
Pr
v +Be−y

√
Pr
v − b

ϵ

)
+ b (C.15)

Utilizing the boundary conditions in eqn. (C.7), we get the solution:

T̄0(y, v) = G(v)e−y
√

Pr
v

The solution of the temperature field is obtained by

T̄ (y, v) = G(v)e−y
√

Pr
v (C.16)

Parameter perturbation approach to find the solution of the velocity
field:
To solve the second-order differential eqn. (C.4) with the boundary condition in
eqn. (C.5) by using the parameter perturbation method.
Substituting eqn. (C.16) into eqn. (C.4), we get(

∂2Ū(y, v)

∂y2

)
−
(
1

v
Ū(y, v)

)
+
(
Gr
(
G(v)e−y

√
Pr
v

))
= 0 (C.17)

We introduced an expanding variable via a linear transformation:

Ū(y, v) = ϵR̄(y, v) + b (C.18)
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where ϵ is the perturbation variable and b is the unknown steady(constant) param-
eter.
Substituting eqn. (C.18) into eqn. (C.17), we get(

∂2

∂y2
(ϵR̄(y, v) + b)

)
−
(
1

v
(ϵR̄(y, v) + b)

)
+
(
Gr
(
G(v)e−y

√
Pr
v

))
= 0 (C.19)

=⇒ ϵ
∂2R̄(y, v)

∂y2
− ϵ

1

v
R̄(y, v)− b

v
+Gr

(
G(v)e−y

√
Pr
v

)
= 0

=⇒ ∂2R̄(y, v)

∂y2
− 1

v
R̄(y, v)− b

ϵv
+

1

ϵ
Gr
(
G(v)e−y

√
Pr
v

)
= 0 (C.20)

The solution is elaborated in the following manner:

R̄ =
n∑

i=0

ϵiR̄i = R̄0 + ϵR̄1 + ϵ2R̄2 + ... (C.21)

Substituting eqn. (C.21) into eqn. (C.20), we get

∂2

∂y2
(R̄0+ϵR̄1+ϵ2R̄2+ ...)− 1

v
(R̄0+ϵR̄1+ϵ2R̄2+ ...)− b

ϵv
+
1

ϵ
Gr
(
G(v)e−y

√
Pr
v

)
= 0

(C.22)
Equating the powers of ϵ-terms in eqn. (C.22), we get

ϵ0 :
∂2R̄0

∂y2
− 1

v
R̄0 −

b

ϵv
+

1

ϵ
Gr
(
G(v)e−y

√
Pr
v

)
= 0 (C.23)

ϵ1 :
∂2R̄1

∂y2
− 1

v
R̄1 = 0 (C.24)

...

On solving the eqn. (C.23), we obtain the solution

R̄0(y, v) = Aey
√

1
v +Be−y

√
1
v − b

ϵ
+

v Gr

(1− Pr)ϵ
G(v)e−y Pr

v (C.25)

Substituting eqn. (C.25) into eqn. (C.18), we obtain

Ū0(y, v) = ϵ

(
Aey

√
1
v +Be−y

√
1
v − b

ϵ
+

v Gr

(1− Pr)ϵ
G(v)e−y Pr

v

)
+ b (C.26)
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Utilizing the boundary conditions in eqn. (C.5), we get the solution:

Ū0(y, v) =
v

(1− Pr)
Gr.G(v)

[
e−y Pr

v − e−y 1
v

]
The solution of the velocity field is obtained by

Ū(y, v) =
v

(1− Pr)
Gr.G(v)

[
e−y Pr

v − e−y 1
v

]
(C.27)

Finally, by means of parameter perturbation technique, we find the solution of
eqns. (C.4) and (C.6),

T̄ (y, v) = G(v)e−y
√

Pr
v

Ū(y, v) =
v

(1− Pr)
Gr.G(v)

[
e−y Pr

v − e−y 1
v

] (C.28)

By applying the inverse Kamal transform to the eqn. (C.28), we get

K−1
[
T̄ (y, v)

]
= K−1

[
G(v)e−y

√
Pr
v

]
K−1

[
Ū(y, v)

]
= K−1

[
v

(1− Pr)
Gr.G(v)

(
e−y Pr

v − e−y 1
v

)]
 (C.29)

=⇒ T (y, t) = K−1

[
G(v)

(
1

v

)
e−y Pr

v(
1
v

) ]

U(y, t) = K−1

[
Gr

(1− Pr)
G(v)

(
e−y Pr

v(
1
v

) − e−y 1
v(

1
v

) )]
 (C.30)

The approximate analytical solution of the temperature and velocity fields is ob-
tained

T (y, t) = f ′(t) ∗ erfc

[
y
√
Pr

2
√
t

]

U(y, t) =
Gr

1− Pr
f(t) ∗

(
erfc

[
y
√
Pr

2
√
t

]
− erfc

[
y

2
√
t

])
Pr ̸= 1

 (C.31)
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Appendix D: Nomenclature

Symbol Meaning
g Gravitational acceleration
q Thermal flux of the nanofluid
x and y Cartesian coordinates
v0 Characteristic velocity
ρnf Density of the nanofluid
µnf Viscosity of the nanofluid
p Fluid pressure
(cp)nf Specific heat of the nanofluid
βnf Thermal expansion coefficient of

nanofluid at constant pressure
knf Thermal conductivity of the nanofluid
π Volume fraction parameter
vnf Kinematic viscosity
T Temperature
T∞ Ambient temperature
TW Temperature of the sheet
f(t) Piecewise continuous function
Pr Prandtl number
Gr Grashof number
Nu Nusselt number
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