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1. Introduction, Notations and Definitions
Here and throughout the paper, we adopt the standard q-series notation as

given in [2]. Let q be a complex number such that |q| < 1. For positive integer n,
we define

(a; q)n = (1− a)(1− aq)(1− aq2)...(1− aqn−1),

(a; q)0 = 1

and

(a; q)∞ =
∞∏
r=0

(1− aqr).

Some times we use the compressed notation;

(a1, a2, ..., am; q)n = (a1; q)n(a2; q)n...(am; q)n,
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n ∈ N ∪ {∞} and m ≥ 1.
Let

rΦs

[
a1, a2, ..., ar; q; z

b1, b2, ..., bs

]
=

∞∑
n=0

(a1, a2, ..., ar; q)nz
n

(q, b1, b2, ..., bs; q)n

{
(−1)nqn(n−1)/2

}1+s−r
.

Ramanujan’s generalized theta function is defined as

f(a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2,

which by an appeal of Jacobi’s triple product identity [2; App. II (II.28)] gives for
|ab| < 1,

f(a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2 = (−a,−b, ab; ab)∞. (1.1)

Deduction from (1.1) are the product representations of the classical theta func-
tions,

Φ(q) = f(q, q) =
∞∑

n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞, (1.2)

Φ(−q) = (q; q2)2∞(q2; q2)∞ =
(q; q)∞
(−q; q)∞

, (1.3)

Ψ(q) = f(q, q3) =
∞∑

n=−∞

q2n
2

q−n = (−q,−q3, q4; q4)∞ =
(q2; q2)∞
(q; q2)∞

, (1.4)

f(−q) = f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞. (1.5)

Rogers-Ramanujan functions [1; page 150] are defined as,

G(q) =
∞∑
n=0

qn
2

(q; q)n
=

1

(q, q4; q5)∞
(1.6)

and

H(q) =
∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
. (1.7)
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Further, Ramanujan showed that

H(q)

G(q)
=

∞∑
n=0

qn
2+n

(q; q)n
∞∑
n=0

qn
2

(q; q)n

=
(q, q4; q5)∞
(q2, q3; q5)∞

=
1

1+

q

1+

q2

1+

q3

1 + ...
. (1.8)

2. Main Results
In this section, taking modular relations due to Ramanujan and G. N. Watson

certain new modular relation has been established. Certain continued fractions
have also been established in this section.
Ramanujan in his ‘lost’ notebook asserted that

G(q)G(q4) + qH(q)H(q4) =
Φ(q)

(q2; q2)∞
= (−q; q2)2∞ (2.1)

G. N. Watson [3] proved (2.1) and also established in [4] following modular relations

G(−q)Φ(q)−G(q)Φ(−q) = 2qH(q4)Ψ(q2) (2.2)

and
H(−q)Φ(q) +H(q)Φ(−q) = 2G(q4)Ψ(q2) (2.3)

Multiplying (2.2) by H(q) and (2.3) by G(q) then adding those new modular rela-
tions we get,

{G(−q)H(q) +G(q)H(−q)}Φ(q) = 2{qH(q)H(q4) +G(q)G(q4)}Ψ(q2). (2.4)

Now, making use of (2.1) in (2.4) we get,

G(−q)H(q) +G(q)H(−q) = 2
Ψ(q2)

(q2; q2)∞
. (2.5)

(2.5) is assumed to be a new modular relation.
Again taking −q for q in (2.1) we have a modular relation,

G(−q)G(q4)− qH(−q)H(q4) =
Φ(−q)

(q2; q2)∞
. (2.6)

Putting the value of Φ(−q) (given in (1.3)) in (2.6) we have

G(−q)G(q4)− qH(−q)H(q4) =
1

(−q; q)2∞
= (q; q2)2∞. (2.7)
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Taking the ratio of (2.1) and (2.7) we find,

G(q)G(q4) + qH(q)H(q4)

G(−q)G(q4)− qH(−q)H(q4)
=

(−q; q2)2∞
(q; q2)2∞

. (2.8)

Taking the ratio of (2.2) and (2.3) we get,

G(−q)Φ(q)−G(q)Φ(−q)

H(−q)Φ(q) +H(q)Φ(−q)
= q

H(q4)

G(q4)
. (2.9)

Now, making use of (1.8), (2.9) yields

G(−q)Φ(q)−G(q)Φ(−q)

H(−q)Φ(q) +H(q)Φ(−q)
=

q

1+

q4

1+

q8

1+

q12

1 + ...
. (2.10)
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