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Abstract: Let f be a non-constant meromorphic function with finitely many poles,
and let L be an L-function in the Selberg class. In ([13]) the authors showed the ex-
istence of subsets S, T" C C of 10 elements such that the condition L=(S) = f~(T)
implies f = hL for a non-zero constant h. In this paper, we present a class of such
subsets S, T C C of 9 elements. As an application of this result, we obtain a class
of subsets S C C of 9 elements such that the condition L=(S) = f~(S) implies
f = L. This result improves ([22], Theorem 7).
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1. Introduction. Main results

L-functions in the Selberg class, with the Riemann zeta function as a prototype,
are important objects in number theory. In this paper, an L-function always means
a non-constant L-function in the Selberg class S, with the normalized condition
a(1) = 1, which is defined to be a Dirichlet series
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satisfying hypotheses:

(i) Ramanujan hypothesis; (ii) Analytic continuation; (iii) Functional equation;
(iv) Euler product hypothesis (see ([23]).

In recent years the problem of determining L-functions by preimages of subsets
caused increasing attentions.

On the other hand, an L-function can be analytically continued as a meromor-
phic function in the complex plane C. Therefore, for the problem of determining
L-functions by preimages of subsets one of the main tools is the Nevanlinna theory
on the value distribution of meromorphic functions. Let us first recall some basic
notions.

Let f be a non-constant meromorphic function in C, and a € CU {oo}. We
assume that the reader is familiar with the notations of Nevanlinna theory (see, for
example ([6]), ([8])): T'(r, f), N(r, f), m(r, f),....

Denote by Ef(a) the set of all a— points of f where an a— point is counted
with its multiplicity, and by Ef(a) where an a— point is counted only one time
(i.e., E¢(a) = f~%(a)). Let m be a positive integer. Denote by E,,)(a) the set of
a—points of f with multiplicities < m, each a— point counted as many times as
its multiplicity. For a non-empty subset S C CU {oo}, define E¢(S) = UsesEy(a),
and E¢(S) = f~1(S), and Efm)(S) = UsesEfmy(a). Let F be a non - empty subset
of M(C). Two non-constant meromorphic functions f, g of F are said to share S,
counting multiplicity, (share S CM), if E¢(S) = E,(S), and to share S, ignoring
multiplicity, (share S IM), if E;(S) = FE,(S). If the condition E;(S) = E,(S)
(resp. E(S) = E,(9)) implies f = g for any two non-constant meromorphic
(entire) functions f, g of F, then S is called a unique range set for meromorphic
(entire) functions of F counting multiplicity (resp. ignoring multiplicity).

In 1976 Gross [7] proved that there exist three finite sets S; (j = 1,2, 3) such
that any two entire functions f and g satisfying E((S;) = E4(S;), 7 = 1,2,3 must
be identical. In the same paper Gross [7] posed the following question:

Question A. Can one find two (or possible even one) finite set S; (j = 1,2) such
that any two entire functions f and g satisfying Er(S;) = E,(S;) (j = 1,2) must
be identical?

Many results have been obtained for this and related topics (see ([4]), ([5]),
([12)), ([13)), ([14]), (15, [16)), ([26])).

The study of unique range sets primarily focuses on two topics:

a) Finding unique range sets with the smallest possible number of elements.

b) Characterizing the properties of unique range sets.

For Topic a), in 1998 (resp. 2000) Frank and Reinders ([4]) (resp. Fujimoto
([5])) exhibited a unique range set for meromorphic functions on C counting mul-
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tiplicity (resp. ignoring multiplicity) with 11 (resp. 17) elements.

In recent years many results have been obtained for the problem of determining
L-functions by preimages of subsets (see [16], ([17]), ([19]), ([9]), ([23]), ([27])).

Steuding ([23]), Hu and Li (]9]) showed that an L-function is uniquely defined
by the preimage of a single point ¢ # 1, 0o, counting multiplicity. Hu and Wu ([24]),
Yuan, Li, and Yi ([27]) obtained uniqueness theorems for L-functions sharing values
in a finite subset of C, counting multiplicities.

Concerning Question A it is natural to ask the following question:

Question B. Under what conditions on subsets S, T C CU {oc} and non-constant
meromorphic functions f and g the relation holds: either Ef(S) = E (T) or
E,(S) = E,(T) ?

Many results have been obtained for this and related topics (see ([25]), ([20]),
(3]), ([21]), ([13])).

In response to Question B, the authors ([13]) showed the existence of subsets
S, T C C of 10 elements such that for a non-constant meromorphic function f with
finitely many poles, and a L-function L, the condition L™(S) = f~!(T) implies
f = hL for a non-zero constant h.

Noting that the identity relationship between a L-function and a meromorphic
functions is a specific instance of a linear dependency between the same functions.

Regarding this and Topic a), we may ask: What are the smallest cardinalities
for such finite sets S, T such that the condition: E(S) = E,(T) implies f = hL
for a non-zero constant h?

In this direction, in this paper, we present a class of subsets S,T C C of 9
elements such that for a non-constant meromorphic function f with finitely many
poles, and an non-constant L-function L, the condition L™!(S) = f~(T) and
Ep1)(0) = Ep 1)(0) implies f = hL for a non-zero constant h.

Now let us describe main results of the paper. Consider polynomials P(z), Q(z)
€ C[z] of degree n of the form:

P(z) = az" +bz""™ + ¢, where a,b,c # 0;

Q(z) = uz" +vz""" 4+ t; where u,v,t # 0. (1.1)
Assume that:
an—mcm (_1)n(n _ m)n—mmm
1.2
b 7 nn ’ (1.2)
g —1)(n — m)*~mm™
L D —m) (1.3
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Note that polynomial P(z) (resp. @Q(z)) has n distinct simple zeros if and only
if the condition (1.2) (resp. (1.3)) is satisfied (see ([18], Lemma 2.7)).
We shall prove the following theorem.

Theorem 1. Let m,n be positive integers, n > 2m + 7, let P(2),Q(z) be polyno-
mials of the form (1.1) with conditions (1.2) and (1.3), and let S, T be the zero sets
of P,(Q, respectively. Let f be a non-constant meromorphic function with finitely
many poles in the complex plane and L be a L— function. Then we have:

1. L7YS) = f~UT), and Ep; 1,(0) = Ep 1)(0) if only if f = hL and hS =T,

a av
where h is a non-zero constant satisfying h" = — and h'™ = e

U
2. In particular, L=(S) = f~Y(T), and f is a L-function, and EL/J)(O) =
. . a b c
Ef’,l)(o) if only if f = L and SE=o =g

v t
Applications. We discuss some applications of Theorem 1.

Theorem 2. Let m,n be positive integers such that (n,m) =1 andn > 2m+7, let
P(2) be polynomial of the form (1.1) with conditions (1.2), and let S be the zero set
of P. Suppose that L=(S) = f~1(S) and Eps 1)(0) = Ep 1)(0) for a non-constant
meromorphic function with finitely many poles f and a L-function L. Then we
have: f = L.

Indeed, applying Theorem 1 with Q(z) = P(2),T = S, we get: f = hL and
hS = S, where h is a non-zero constant satisfying h” = 1 and ™ = 1. By (n,m) = 1
we obtain h = 1. So f = L.

Examples.

Let f be a non-constant meromorphic function with finitely many poles and
let L be a non-constant L—function, S,T" are the zero set of the polynomial P(z)
and Q(z), respectively.

Example 1. Let
11 1 9 11 11 2.9 11
P(Z) =z —32 +1, S = {al,...,au}, Q(Z) =z —32 2" +2 s T= {bl’---abll}-

Then
L7H(8) = fH(T),
Ep y(0) = Ep 1y(0) if only if f=hL,hS =T, where h'' =2 7n? =27,

Now we show the necessary condition. We investigate conditions (1.2), (1.3).
We have

11 11 gt 9922
a=u=1b=—— c=1 v=——2% t=21 —_

9 9 5 1111 m, ].1 - 22 + 7
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11
Then applying Theorem 1 with n =11, m =2, a =u =1, b = 9 c =1,
11
v = —522, t = 21 we obtain:
t
f=hL, hS§ =T, where ptt =2 —ott p2 20 _ 92
cu ub
Noticing that A = 2 satisfying condition above.
Now we show the sufficient condition. Assume that
t
f=hL, where ptt =28 — o1t p2 20 _ 92
cu ub

Then E; ,(0) = Ep ;)(0) and h? = 2%, and by
o ooe o o g 1
Qfy=1f —EQf +27=2"(L _EL +1)=2"P(L),

we get
UL —ar) - (L —an) = (f = ba) -+ (F — bun).
From this it follows that L='(S) = f~1(T).

9
Example 2. Let P(z) = 2% — gzg + 1. Then

L7H(S) = f7H(S), B 1)(0) = Ep 1)(0) if only if f= L.

Now we show the necessary condition. We investigate conditions (1.2). We have
We have
g 88
90 7 99’
Then applying Theorem 2 with n = 9, m = 1, and noticing that (9,1) = 1, we
obtain: f = L.
Now we show the sufficient condition. Assume that f = L. Then E L’,1)(0) =
Ef’,1)(0)- By

9=21+4T7.

9 9
PN =F =g +1=0 = gLP+1=P(L), we get

(L—a1)--(L—ag) = (f = b1)--(f = by).
From this it follows that L='(S) = f~1(.9).

Remark. i) Theorem 1 improves a recent result in ([13], Theorem1.1).
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i) In ([22], TheoremT) the authors showed the ezistence of subsets Sp C C of 14
elements such that for a non-constant meromorphic function f with finitely many
poles, and a L-function L, the condition L~(Sp) = f~1(Sp) and L7'(c) = f~(c)
and ¢ ¢ Sp, implies f = L. So Theorem 2 improves ([22], TheoremT).

2. Preliminary results
We have other forms of two Fundamental Theorems of the Nevanlinna theory:
As an immediate consequence of the Nevanlinna’s First fundamental theorem
(([8], Theorem 1.2, p.5)) we have
Another form of the First Fundamental Theorem (see [26], Theorem 1.2,
p.8). Let f(z) be a non-constant meromorphic function and let a € C. Then

1
f—a
where O(1) is a bounded quantity depending on a.

A another form of the Second Fundamental Theorem (see [26], Theorem

1.6°, p.22). Let f be a non-constant meromorphic function on C and let a1, as, ...,
a, be distinct points of C. Then

T(r, ) =T(r, ) +0(1),

L)+ 50 £),

(=170 £) < N )+ 3 Nl =) = Nafr 5

where Ny(r, %) is the counting function of those zeros of f’, which are not zeros of
the function (f —a1)...(f —ay), and S(r, f) = o(T(r, f)) for all v, except for a set
of finite Lebesgue measure.

We need some lemmas.

Lemma 2.1. ([6]) For any non-constant meromorphic function f, we have
) T(r, /®) < (K + DT (r, f) + S(r. f);
i) S(r, f*)) = S(r, f).
([28]) For any non-constant meromorphic function f,

N(r, i) < N(r, %) + N(r, )+ S(r, f).

f/
Definition. Let f be a non-constant meromorphic function, and k be a positive
integer. We denote by N(r, f) the counting function of the poles of order > k
of f, where each pole is counted only once. If z is a zero of f, denote by ve(z)
its multiplicity. We denote by N(r,%: f # 0) the counting function of the zeros

z of f satisfying f(z) # 0, where each zero is counted only once. Denote by
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Ef(a, Vi_q = k) the set of a—points of f with multiplicities k, where an a— point
1s counted only one time.

Let be given two non-constant meromorphic functions f and g. For simplicity,
denote by v1(z) = v(z) (resp. a(z) = vy(2)), if z is a zero of f (resp. g). Let
F750) = ¢g7'(0). We denote by N(r, %;1/1 =15 = 1) (resp. N(r, %;Vl > vy > 1))
the counting function of the common zeros z, satisfying v1(z) = 1»(2) = 1 (resp.
v1(z) > 1e(z) > 1, where each zero is counted only once), and by N(r, %; v > 2)
the counting function of the zeros z of f, satisfying v4(z) > 2. Similarly, we define
the counting functions N(r, é; ve >y > 1) and N(r, é; vy > 2).

Lemma 2.2. Let f, g be two nonconstant meromorphic functions such that f~1(0)

= g~ (0). Set

1!

1 1 F' G
F=- G=- H=— ——
f? g? F/ G/
Suppose that H Z 0.
1) We have
— — —, 1
([13], Lemma2.4) N(r,H) < N(r, f) + Ne(r,g) + N(r, ?;Vl >y > 1)+

1 — 1 — 1
N(7"7§;V2>V1Z1)+N(7’a?;f%O)ﬂLN(ﬁ;;g?’éO)-

Moreover, if a is a common simple zero of f and g, then H(a) = 0.
2) Assume additionally that:

Ei(0,1, =1)NEy0,10=2)=0 and E;(0,1, =2)NE,(0;v, =1) = 0.

We have
N D) £ N D) 4 2N, 2o > 2) 19N, Ly > 2)
r,—= r,— r,—" =2 r,—iVy =
f g £ g’
1 1 1 1 1
< N(H) + 5(N(r 5) + Nr ) + Nl in 2 2) 4+ NG in 29

+5(r, f) +5(r. g).
Proof. Applying ([6], p. 14) we get:

1 1
N5 = 3 1ogﬁ+n<o,_>1ogr,

0<]a;|<r f
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where the a;’s are zeros of f, counting multiplicity, and

1 r 1
N(r,—) = log +n(0, =) logr,
)=, 2 loagg T p)
where the a;’s are zeros of f, ignoring multiplicity.
Set
— 1. — 1 — 1 —, 1
M:N(T7?)+N(T,—)+2N(’F,?;V1 Z 2)+2N(T7_;V2 Z 2)7
g g

We first prove that M < T.

Let a be a zero of f with multiplicity p. From E;(0) = E,(0), it follows that a
is a zero of g with multiplicity q. We consider the following cases:

Case 1. Assume that p = q.

If p=gqg =1, then a is counted with 1 + 1+ 0+ 0 = 2 times in M and it is
counted with 14 (1 + 1) = 2 times in 7.

If p=g¢q > 2, then a is counted with 1 + 1+ 2 + 2 = 6 times in M and it is
counted with 04 (p+p) + p+p =3p > 6 times in 7.

Case 2. Assume that p > q.

If p>gqand ¢ =1, then p > 3 from E;(0,1; =2) N E (0,1, =1) = , and
then a is counted with 1 +1+ 2+ 0 = 4 times in M and by p > 3 we see that a is
counted With0+%(p+1)+p+0:p+’%l >5>4 times in T

If p>qand ¢ > 2, then p > 3 and a is counted with 1 + 1+ 2+ 2 = 6 times
in M, and by p > 3, and ¢ > 2, we see that p + ¢ > 5, and then a is counted with
O+ i(p+q)+p+q=0+224 > 6 timesin 7.

Case 3. Assume that g > p.

The proof of Case 3 is completed by using the arguments similar to the ones in
Case 2.

So M < T. Noting that if a is a common simple zero of f and g, then H(a) = 0,
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we have
N 5im = =1) < Nir.) £ T, H) + O(1)
=N(r,H)+m(r,H)+ O(1)
< NG H) +mlr, 55) 4 mir, )+ 0()
N

< N(r,H)+ S(r,f)+ S(r,g).

Lemma 2.2 is proved.

Lemma 2.3. [19] Suppose L is a non-constant L-function, there is no generalized
Picard exceptional value of L in the complex plane.

Lemma 2.4. [23] Let L be a non-constant L— function. Then

i) T(r,L) = “rlogr + O(r), where d;, = 238\ is the degree of L— func-
tion, and K, \; are respectively the positive integer and positive real number in the
functional equation of the definition of L— functions;

i) N(r,L) = S(r, L).

Lemma 2.5. [10] Let Ly,...,Ly be distinct non-constant L-functions. Then
L, ..., Ly are linearly independent over C.

Lemma 2.6. [13] Let P(z), Q(z) be two non-constant polynomials of degree n
and let f be a non-constant meromorphic function with finitely many poles in the
complex plane, L be a non-constant L-function. Assume that f and L satisfy

1 c

Q) ~ Py

where ¢,y € C and ¢ # 0. Then ¢y = 0.

Lemma 2.7. [13] Let L be an L-function in the extended Selberg class, f be a
meromorphic function, a,b,d,u,v,t be non-zero complex constants, n and m be
positive integers, n > 2m + 3. Set

P(z)=ax"+bz" ™ +d; Qy) =uy" +ovy" ™+t

1. If P(L) = Q(f), then f = hL, where h is a constant, satisfying h™ = a/u,
h"~™ =b/v and d = t.

2. If(n,m)=1,a=u, b=wv, and P(L) = Q(f), then f = L and d = t.

3. If Ly, Ly are L-functions in the extended Selberg class and P(Ly) = Q(Ls),
then Ly = Lo and P = Q).
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3. Proof of Theorem 1
Recall that

P(z)=az"+bz"""+d, Q(z) =uz"+vz"""+1t,a,b,d,u.v,t #0.
Therefore, we have:
P(z)=a(z —a1)..(z — a,), P'(2) = A" " Yz —dy)..(2 — d,n), A # 0, d; # d;,

Q(2) = u(z—0b1)...(2=b,),Q'(2) = Bz" "™ Hz—t1)...(2—tm), B # 0,t; # t;, (3.1)
P(L) = a(L - a)(L = a), Q) = ulf —b)o(f—b).  (32)

[P(L)] = AL L = dy)..(L = d) L, [QUN)] = Bf* " H(f = t1)-..(f — tng)f’j
3.3
The necessary condition.

Lemma 3.1. We have

1)
(n—1)T(r,L)+ S(r,L) <nT(r, f)+ S(r, f),

2)
(n—=1T(r, f)+ SO, f) <nT(r,L)+ S(r,L), S(r, f) = S(r,L).

Proof. By Lemma 2.4, T(r, L) = %rlogr+O(r), and therefore N (r, L) = S(r, L).
On the other hand, we have

L 7(0, f)logr,

where the a;’s are poles of f, ignoring multiplicity (see ([6], p. 14)). From this and
f is a non-constant meromorphic function with finitely many poles it follows that
N(r,f) = O(logr), and so N(r, f) = S(r,L). Applying another form of the two
Fundamental Theorems and noting that E(S) = E;(T), we obtain

(n—1T(r,L) < N(r, L) +ZN

)+ S(r, L),

_a/l

3

— 1

(n—l)T(r,L)—i—S(r,L)S. N{(r, f_b)—i-S( r, f)

<nT(r, f)+ S(r, f).
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Similarly

(0= DT ) < N0 )+ 3 Nl 5=) + 5.5,

3

IN

(n—l)T(Taf)"_S(r:f) . N<T’L_ai

(n—=1T(r, f)+ S(r, f) <nT(r,L)+ S(r,L).

)+ S(r, L),

Lemma 3.1 is proved.
We will prove that there is a constant [ # 0 such that P(L) = IQ(f). Set

1" 11

1 1 F G
R “Tan T F
S(r)=S(r, L) =S(r. f),T(r) =T(r,L) + T(r, f). (3.4)
Then T'(r, P(L)) = nT(r,L) + O(1) and T'(r,Q(f)) = nT'(r, f) + O(1), and hence

S(r,P(L)) = S(r,L) and S(r,Q(f)) = S(r, f). We first prove that H = 0. Suppose
that H # 0, on the contrary.

Claim 1. We have

i) (n—1)T(r, L) < N(r !

1
)N (r, = N,
’P(L)) o(T, L,)—l—S( r), where No(r, 77) is the counting
function of those zeros of L', which are not zeros of the function (L — ay)(L —
ag) -+ (L — ay). ) X
i) (n—D)T(r, f) < N(r, — ,—)+S(r), where Ny(r, L) is the counting
) (n=1)T'(r, ) (Q(f) f) (r) (r, )

function of those zeros of f', which are not zeros of the function (f —by)--- (f —by).
Proof. i) Applying another form of the two Fundamental Theorems to L and the
values ai, as, ..., aq, and noticing that

)—No(r

N(r,L) = S(r, L) ZN I—a :N(r,P(L>),
we obtain
(n— 1)T(r. L) < N(r. L) +ZN L)~ No(r, )+ 5(r, D),
(n— DT(r, L) < N(r, ——) — N,(r, —) + S(r)
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ii) The inequality for f is proved by a similar argument.
Claim 1 is proved.

Claim 2. We have

N(r, H) < (m + 1)T(r) + No(r, %) N, 75) + S0,

Proof.
Noting that H has only simple poles, from Lemma 2.2 we obtain
N(r, H) <N(r, P(f)) + N(r, P(L))+

Nr. gyt P # 0+ N gz P # 0+ ()

On the other hand,

Ne(r, P(L)) = N(r,L) = S(r), No(r, Q(f)) = N(r, f) = S(r).

Moreover, we have

N(r,%) +Y W, Lidi;(L—al)u-(L—an) £0) +No(r,%)

< N(r, z) + ZN(?“, 7 i di) + N,(r, %) < (m+1)T(r, L) + Ny(r, %) + S(r).

[p(L)]/5P(L) #0) < (m+1)T(r, L)+ N,(r, %) + S(r).

Similarly,

— 1

?) +S<’/’).

Claim 2 is proved.

Claim 3. We have
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_ 1 — 1 n 1 1
———) + N(r, m) < (5 +m +2)T(r) + N,(r, f) + N, (r, ?) + S(r).

Proof. Set vp(r)(2) = 11, vo(s)(2) = vo. Then,
EP(L)(O, V] = 1) ﬂEQ(f)(O, Vy = 2) = (.

Indeed, suppose that Epz,) (0,1 = 1)NEqs)(0,v2 = 2) # 0, on the contrary. From
this and P(L) = a(L — a1)...(L — ay), Q(f) = u(f — b1)...(f — b,) it follows that
there exists a;, b; and z such that z, € Ep(a;, vy, =1)and 2, € Ef(bj, Vip, = 2).
Therefore, 29 € E} 1,(0). Because E 11(0) = E; 1)(0) we get zo € £y 1,(0), which
is a contradiction since vy, (20) =1 and (L —a;)' = L'. So

Epr)(0,v1 = 1) N Eqp)(0,v2 = 2) = 0.
Similarly, we have
Epy(0,v1 =2) N Eg(p (0,1, =1) = 0.
Now applying the Lemma 2.2 to the functions P(L), Q(f) and noticing that
Ne(r, P(L)) = N(r, L) = S(r), Ne(r, P(f)) = N(r. f) = S(r),
we obtain

— 1
i > > 1)+ N(ry——;10 > 11 > 1)

Q(f)

Q0T (f) # 0) + 5(r), (3.5)

N(r,H) Sw(r,ﬁ

N L P(L) #0) + N(r, 1

and
— 1 — 1 —
N(T, W) + N(T, W) + QN(T,

P(L);Vl > 2)+

(v > 2) + S(r). (3.6)

From (3.5) and (3.6) and noticing that

— 1 —
N(T,m;V1>V221)§N(T,
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N(r, Q(1f>,V2>V1>1)§N(T, (lf);l/QZQ),
e N(r L )+ N(r L) < (m+1)T(r)+ =(N(r ! )+
"P(L) Q) "P(L)
1 1 — 1
N i) + Nl psion 22 = N ptsion 2 2)+
1 — 1 1 1
N(r, W’ vy >2) — N(r, W’ v > 2) + N,(r, f) + N,(r, ?) + S(r). (3.7)

On the other hand, from P(L) = a(L — ay)...(L — a,) it follows that if z, is a
zero of P(L) with multiplicity d > 2, then z is a zero of L — a; with multiplicity
d > 2 for some i € {1,2,...,n}, and therefore, it is a zero of L' with multiplicity
d — 1, so we have

1 — 1 1
;v > 2) — N(r, 2 2) < N(r, ).

N gy = P(L)

From this and Lemma 2.1 we obtain

1 — 1 1
: >2)— N : >2)< N(r,—) <
P(L)ayl_ ) (T7P<L);Vl_ )— (T>L/)—

N(r, %) + N(r, L)+ S(r, L) <T(r,L) + S(r, L).

Similarly, we have

s V2 Z 2) _N<T7

1
Qf)

Combining (3.7)-(3.8) and noticing that N (r, ﬁ) +N(r, 50) <

>2) < T(r)+ S(r). (3.8)

)< (5 m e 2)T() + Nolr, 77) + Nolr,
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Claim 3 is proved.
Now we use Claims 1, 3 to obtain a contradiction, and complete the proof of
H = 0. Claim 1 and Claim 3 give us

(n—DT(r) < (%

5 +m+2)T(r)+S(r), (n—2m—6)T(r) < S(r),

which is a contradiction since n > 2m + 7.

1 l
So H = 0. Therefore, —— = ——— + ¢; for some constants [(# 0) and ¢;. By

Q(f) P(L)
Lemma 2.6 we obtain ¢; = 0. Thus there is a constant [ # 0 such that P(L) =
IQ(f). That is

aLl™ + bL"™™ + ¢ = luf™ + lof™™ + It. (3.9)

Now we return proof the necessary condition of Theorem 1.
Then we have (3.9). Applying Lemma 2.7 to equation (3.9) we get

lv at
aL™ + L™ 4 ¢ = luf" + lf*™ +1t, f = hL, zzg,hnzi, g 0ot

lu b uc

t
Therefore h" = a_ " = a_b Because f = hL, we have Ey/ 1,(0) = E} 1,(0). Now

we prove hS = T Take a; € S,1=1,...,n. By Lemma 2.3, there exists z; € C such
that L(z9) — a; = 0. Moreover, from P( ) =1Q(f) and (3.2) we obtain

P(L) = a(L = ar)..(L = ap), u(f = b1)..(f = bn) = Q(f);

a(L —ay)...(L—a,) =lu(f —b1)..(f — by). (3.10)

By (3.10) we see that: L(zy) — a; = 0 if and only if 2y is a zero of P(L) and
L(z)) —a; # 0 with ¢ # j, and therefore, there exists a unique by, € {b,...,b,}
such that f(zo) — by = 0. Because f = hL, we have hL(zy) — by, = 0, and therefore
ha; = by. From this and cardinalities of S,T" are n it follows that AS = T.

The sufficient condition. Then we have:

P(L)=aLl"4+bL" ™ +c, Q(f) =uf"+vfr™+t,

t
f=hLW" = = W = = Q(f) = u" L + oh" L ¢

Therefore,

Ep1y(0) = Ep )(0), tP(L) = cQ(f) and at(L—ay)...(L—a,) = cu(f=b1)...(f—bn).
(3.11)
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From this it follows that L='(S) = f~1(T).
The necessary condition. Then, by 1/ we get: f = hL, where h is a non-zero
t
constant satisfying h" = a—, hm = a—z. If feS, then f = L from Lemma 2.5, and
cu u
thenhzl,g:é:g
u vt

The sufficient condition. The proof is completed by using the arguments similar
to the ones in the sufficient condition of 1.

Theorem 1 is proved.
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