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Abstract: Let f be a non-constant meromorphic function with finitely many poles,
and let L be an L-function in the Selberg class. In ([13]) the authors showed the ex-
istence of subsets S, T ⊂ C of 10 elements such that the condition L−1(S) = f−1(T )
implies f = hL for a non-zero constant h. In this paper, we present a class of such
subsets S, T ⊂ C of 9 elements. As an application of this result, we obtain a class
of subsets S ⊂ C of 9 elements such that the condition L−1(S) = f−1(S) implies
f = L. This result improves ([22], Theorem 7).
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1. Introduction. Main results
L-functions in the Selberg class, with the Riemann zeta function as a prototype,

are important objects in number theory. In this paper, an L-function always means
a non-constant L-function in the Selberg class S, with the normalized condition
a(1) = 1, which is defined to be a Dirichlet series

L(s) =
∞∑
i=0

a(n)

ns
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satisfying hypotheses:
(i) Ramanujan hypothesis; (ii) Analytic continuation; (iii) Functional equation;

(iv) Euler product hypothesis (see ([23]).
In recent years the problem of determining L-functions by preimages of subsets

caused increasing attentions.
On the other hand, an L-function can be analytically continued as a meromor-

phic function in the complex plane C. Therefore, for the problem of determining
L-functions by preimages of subsets one of the main tools is the Nevanlinna theory
on the value distribution of meromorphic functions. Let us first recall some basic
notions.

Let f be a non-constant meromorphic function in C, and a ∈ C ∪ {∞}. We
assume that the reader is familiar with the notations of Nevanlinna theory (see, for
example ([6]), ([8])): T (r, f), N(r, f), m(r, f),....

Denote by Ef (a) the set of all a− points of f where an a− point is counted
with its multiplicity, and by Ef (a) where an a− point is counted only one time
(i.e., Ef (a) = f−1(a)). Let m be a positive integer. Denote by Ef,m)(a) the set of
a−points of f with multiplicities ≤ m, each a− point counted as many times as
its multiplicity. For a non-empty subset S ⊂ C∪ {∞}, define Ef (S) = ∪a∈SEf (a),
and Ef (S) = f−1(S), and Ef,m)(S) = ∪a∈SEf,m)(a). Let F be a non - empty subset
of M(C). Two non-constant meromorphic functions f, g of F are said to share S,
counting multiplicity, (share S CM), if Ef (S) = Eg(S), and to share S, ignoring
multiplicity, (share S IM), if Ef (S) = Eg(S). If the condition Ef (S) = Eg(S)
(resp. Ef (S) = Eg(S)) implies f = g for any two non-constant meromorphic
(entire) functions f, g of F , then S is called a unique range set for meromorphic
(entire) functions of F counting multiplicity (resp. ignoring multiplicity).

In 1976 Gross [7] proved that there exist three finite sets Sj (j = 1, 2, 3) such
that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj), j = 1, 2, 3 must
be identical. In the same paper Gross [7] posed the following question:

Question A. Can one find two (or possible even one) finite set Sj (j = 1, 2) such
that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj) (j = 1, 2) must
be identical?

Many results have been obtained for this and related topics (see ([4]), ([5]),
([12]), ([13]), ([14]), ([15], [16]), ([26])).

The study of unique range sets primarily focuses on two topics:
a) Finding unique range sets with the smallest possible number of elements.
b) Characterizing the properties of unique range sets.
For Topic a), in 1998 (resp. 2000) Frank and Reinders ([4]) (resp. Fujimoto

([5])) exhibited a unique range set for meromorphic functions on C counting mul-
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tiplicity (resp. ignoring multiplicity) with 11 (resp. 17) elements.

In recent years many results have been obtained for the problem of determining
L-functions by preimages of subsets (see [16], ([17]), ([19]), ([9]), ([23]), ([27])).

Steuding ([23]), Hu and Li ([9]) showed that an L-function is uniquely defined
by the preimage of a single point c ̸= 1,∞, counting multiplicity. Hu and Wu ([24]),
Yuan, Li, and Yi ([27]) obtained uniqueness theorems for L-functions sharing values
in a finite subset of C, counting multiplicities.

Concerning Question A it is natural to ask the following question:

Question B. Under what conditions on subsets S, T ⊂ C ∪ {∞} and non-constant
meromorphic functions f and g the relation holds: either Ef (S) = Eg(T ) or
Ef (S) = Eg(T ) ?

Many results have been obtained for this and related topics (see ([25]), ([20]),
([3]), ([21]), ([13])).

In response to Question B, the authors ([13]) showed the existence of subsets
S, T ⊂ C of 10 elements such that for a non-constant meromorphic function f with
finitely many poles, and a L-function L, the condition L−1(S) = f−1(T ) implies
f = hL for a non-zero constant h.

Noting that the identity relationship between a L-function and a meromorphic
functions is a specific instance of a linear dependency between the same functions.

Regarding this and Topic a), we may ask: What are the smallest cardinalities
for such finite sets S, T such that the condition: Ef (S) = Eg(T ) implies f = hL
for a non-zero constant h?

In this direction, in this paper, we present a class of subsets S, T ⊂ C of 9
elements such that for a non-constant meromorphic function f with finitely many
poles, and an non-constant L-function L, the condition L−1(S) = f−1(T ) and
EL′ ,1)(0) = Ef ′ ,1)(0) implies f = hL for a non-zero constant h.

Now let us describe main results of the paper. Consider polynomials P (z), Q(z)
∈ C[z] of degree n of the form:

P (z) = azn + bzn−m + c, where a, b, c ̸= 0;

Q(z) = uzn + vzn−m + t; where u, v, t ̸= 0. (1.1)

Assume that:
an−mcm

bn
̸= (−1)n(n−m)n−mmm

nn
, (1.2)

un−mtm

vn
̸= (−1)n(n−m)n−mmm

nn
. (1.3)
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Note that polynomial P (z) (resp. Q(z)) has n distinct simple zeros if and only
if the condition (1.2) (resp. (1.3)) is satisfied (see ([18], Lemma 2.7)).

We shall prove the following theorem.

Theorem 1. Let m,n be positive integers, n ≥ 2m + 7, let P (z), Q(z) be polyno-
mials of the form (1.1) with conditions (1.2) and (1.3), and let S, T be the zero sets
of P,Q, respectively. Let f be a non-constant meromorphic function with finitely
many poles in the complex plane and L be a L− function. Then we have:

1. L−1(S) = f−1(T ), and EL′ ,1)(0) = Ef ′ ,1)(0) if only if f = hL and hS = T ,

where h is a non-zero constant satisfying hn =
at

cu
and hm =

av

ub
.

2. In particular, L−1(S) = f−1(T ), and f is a L-function, and EL′ ,1)(0) =

Ef ′ ,1)(0) if only if f = L and
a

u
=

b

v
=

c

t
.

Applications. We discuss some applications of Theorem 1.

Theorem 2. Let m,n be positive integers such that (n,m) = 1 and n ≥ 2m+7, let
P (z) be polynomial of the form (1.1) with conditions (1.2), and let S be the zero set
of P . Suppose that L−1(S) = f−1(S) and EL′ ,1)(0) = Ef ′ ,1)(0) for a non-constant
meromorphic function with finitely many poles f and a L-function L. Then we
have: f = L.

Indeed, applying Theorem 1 with Q(z) = P (z), T = S, we get: f = hL and
hS = S, where h is a non-zero constant satisfying hn = 1 and hm = 1. By (n,m) = 1
we obtain h = 1. So f = L.

Examples.
Let f be a non-constant meromorphic function with finitely many poles and

let L be a non-constant L−function, S, T are the zero set of the polynomial P (z)
and Q(z), respectively.

Example 1. Let

P (z) = z11−11

9
z9+1, S = {a1, ..., a11}, Q(z) = z11−11

9
22z9+211, T = {b1, ..., b11}.

Then
L−1(S) = f−1(T ),

EL′ ,1)(0) = Ef ′ ,1)(0) if only if f = hL, hS = T, where h11 = 211, h2 = 22.

Now we show the necessary condition. We investigate conditions (1.2), (1.3).
We have

a = u = 1, b = −11

9
, c = 1, v = −11

9
22, t = 211,

911

1111
̸= 9922

1111
, 11 = 2.2 + 7.
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Then applying Theorem 1 with n = 11, m = 2, a = u = 1, b = −11

9
, c = 1,

v = −11

9
22, t = 211, we obtain:

f = hL, hS = T, where h11 =
at

cu
= 211, h2 =

av

ub
= 22.

Noticing that h = 2 satisfying condition above.
Now we show the sufficient condition. Assume that

f = hL, where h11 =
at

cu
= 211, h2 =

av

ub
= 22.

Then EL′ ,1)(0) = Ef ′ ,1)(0) and h9 = 29, and by

Q(f) = f 11 − 11

9
22f 9 + 211 = 211(L11 − 11

9
L9 + 1) = 211P (L),

we get
211(L− a1) · · · (L− a11) = (f − b1) · · · (f − b11).

From this it follows that L−1(S) = f−1(T ).

Example 2. Let P (z) = z9 − 9

8
z8 + 1. Then

L−1(S) = f−1(S), EL′ ,1)(0) = Ef ′ ,1)(0) if only if f = L.

Now we show the necessary condition. We investigate conditions (1.2). We have
We have

89

99
̸= 88

99
, 9 = 2.1 + 7.

Then applying Theorem 2 with n = 9, m = 1, and noticing that (9, 1) = 1, we
obtain: f = L.

Now we show the sufficient condition. Assume that f = L. Then EL′ ,1)(0) =
Ef ′ ,1)(0). By

P (f) = f 9 − 9

8
f 8 + 1 = L9 − 9

8
L8 + 1 = P (L), we get

(L− a1) · · · (L− a9) = (f − b1) · · · (f − b9).

From this it follows that L−1(S) = f−1(S).

Remark. i) Theorem 1 improves a recent result in ([13], Theorem1.1).
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ii) In ([22], Theorem7) the authors showed the existence of subsets SP ⊂ C of 14
elements such that for a non-constant meromorphic function f with finitely many
poles, and a L-function L, the condition L−1(SP ) = f−1(SP ) and L−1(c) = f−1(c)
and c ̸∈ SP , implies f = L. So Theorem 2 improves ([22], Theorem7).

2. Preliminary results
We have other forms of two Fundamental Theorems of the Nevanlinna theory:
As an immediate consequence of the Nevanlinna’s First fundamental theorem

(([8], Theorem 1.2, p.5)) we have
Another form of the First Fundamental Theorem (see [26], Theorem 1.2,
p.8). Let f(z) be a non-constant meromorphic function and let a ∈ C. Then

T (r,
1

f − a
) = T (r, f) +O(1),

where O(1) is a bounded quantity depending on a.
A another form of the Second Fundamental Theorem (see [26], Theorem
1.6’, p.22). Let f be a non-constant meromorphic function on C and let a1, a2, ...,
aq be distinct points of C. Then

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N(r,
1

f − ai
)−N0(r,

1

f ′ ) + S(r, f),

where N0(r,
1
f
′ ) is the counting function of those zeros of f ′, which are not zeros of

the function (f − a1)...(f − aq), and S(r, f) = o(T (r, f)) for all r, except for a set
of finite Lebesgue measure.

We need some lemmas.

Lemma 2.1. ([6]) For any non-constant meromorphic function f, we have
i) T (r, f (k)) ≤ (k + 1)T (r, f) + S(r, f);
ii) S(r, f (k)) = S(r, f).
([28]) For any non-constant meromorphic function f,

N(r,
1

f ′ ) ≤ N(r,
1

f
) +N(r, f) + S(r, f).

Definition. Let f be a non-constant meromorphic function, and k be a positive
integer. We denote by N (k(r, f) the counting function of the poles of order ≥ k
of f , where each pole is counted only once. If z is a zero of f , denote by νf (z)
its multiplicity. We denote by N(r, 1

f ′ ; f ̸= 0) the counting function of the zeros

z of f
′
satisfying f(z) ̸= 0, where each zero is counted only once. Denote by
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Ef (a, νf−a = k) the set of a−points of f with multiplicities k, where an a− point
is counted only one time.

Let be given two non-constant meromorphic functions f and g. For simplicity,
denote by ν1(z) = νf (z) (resp. ν2(z) = νg(z)), if z is a zero of f (resp. g). Let
f−1(0) = g−1(0). We denote by N(r, 1

f
; ν1 = ν2 = 1) (resp. N(r, 1

f
; ν1 > ν2 ≥ 1))

the counting function of the common zeros z, satisfying ν1(z) = ν2(z) = 1 (resp.
ν1(z) > ν2(z) ≥ 1, where each zero is counted only once), and by N(r, 1

f
; ν1 ≥ 2)

the counting function of the zeros z of f , satisfying ν1(z) ≥ 2. Similarly, we define
the counting functions N(r, 1

g
; ν2 > ν1 ≥ 1) and N(r, 1

g
; ν2 ≥ 2).

Lemma 2.2. Let f, g be two nonconstant meromorphic functions such that f−1(0)
= g−1(0). Set

F =
1

f
, G =

1

g
, H =

F
′′

F ′ −
G

′′

G′ .

Suppose that H ̸≡ 0.
1) We have

([13],Lemma2.4) N(r,H) ≤ N (2(r, f) +N (2(r, g) +N(r,
1

f
; ν1 > ν2 ≥ 1)+

N(r,
1

g
; ν2 > ν1 ≥ 1) +N(r,

1

f ′ ; f ̸= 0) +N(r,
1

g′ ; g ̸= 0).

Moreover, if a is a common simple zero of f and g, then H(a) = 0.
2) Assume additionally that:

Ef (0, ν1 = 1) ∩ Eg(0, ν2 = 2) = ∅ and Ef (0, ν1 = 2) ∩ Eg(0; ν2 = 1) = ∅.

We have

N(r,
1

f
) +N(r,

1

g
) + 2N(r,

1

f
; ν1 ≥ 2) + 2N(r,

1

g
; ν2 ≥ 2)

≤ N(r,H) +
1

2
(N(r,

1

f
) +N(r,

1

g
)) +N(r,

1

f
; ν1 ≥ 2) +N(r,

1

g
; ν2 ≥ 2)

+S(r, f) + S(r, g).

Proof. Applying ([6], p. 14) we get:

N(r,
1

f
) =

∑
0<|ai|<r

log
r

|ai|
+ n(0,

1

f
) log r,
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where the ai’s are zeros of f , counting multiplicity, and

N(r,
1

f
) =

∑
0<|ai|<r

log
r

|ai|
+ n(0,

1

f
) log r,

where the ai’s are zeros of f , ignoring multiplicity.

Set

M = N(r,
1

f
) +N(r,

1

g
) + 2N(r,

1

f
; ν1 ≥ 2) + 2N(r,

1

g
; ν2 ≥ 2),

T = N(r,
1

f
; ν1 = ν2 = 1) +

1

2
(N(r,

1

f
) +N(r,

1

g
))+

N(r,
1

f
; ν1 ≥ 2) +N(r,

1

g
; ν2 ≥ 2).

We first prove that M ≤ T.

Let a be a zero of f with multiplicity p. From Ef (0) = Eg(0), it follows that a
is a zero of g with multiplicity q. We consider the following cases:

Case 1. Assume that p = q.

If p = q = 1, then a is counted with 1 + 1 + 0 + 0 = 2 times in M and it is
counted with 1 + 1

2
(1 + 1) = 2 times in T .

If p = q ≥ 2, then a is counted with 1 + 1 + 2 + 2 = 6 times in M and it is
counted with 0 + 1

2
(p+ p) + p+ p = 3p ≥ 6 times in T .

Case 2. Assume that p > q.

If p > q and q = 1, then p ≥ 3 from Ef (0, ν1 = 2) ∩ Eg(0, ν2 = 1) = ∅, and
then a is counted with 1 + 1 + 2 + 0 = 4 times in M and by p ≥ 3 we see that a is
counted with 0 + 1

2
(p+ 1) + p+ 0 = p+ p+1

2
≥ 5 > 4 times in T .

If p > q and q ≥ 2, then p ≥ 3 and a is counted with 1 + 1 + 2 + 2 = 6 times
in M , and by p ≥ 3, and q ≥ 2, we see that p+ q ≥ 5, and then a is counted with
0 + 1

2
(p+ q) + p+ q = 0 + 3(p+q)

2
> 6 times in T .

Case 3. Assume that q > p.

The proof of Case 3 is completed by using the arguments similar to the ones in
Case 2.

So M ≤ T. Noting that if a is a common simple zero of f and g, then H(a) = 0,
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we have

N(r,
1

f
; ν1 = ν2 = 1) ≤ N(r,

1

H
) ≤ T (r,H) +O(1)

= N(r,H) +m(r,H) +O(1)

≤ N(r,H) +m(r,
F

′′

F ′ ) +m(r,
G

′′

G′ ) +O(1)

≤ N(r,H) + S(r, f) + S(r, g).

Lemma 2.2 is proved.

Lemma 2.3. [19] Suppose L is a non-constant L-function, there is no generalized
Picard exceptional value of L in the complex plane.

Lemma 2.4. [23] Let L be a non-constant L− function. Then
i) T (r, L) = dL

π
r log r + O(r), where dL = 2

∑K
i=1 λi is the degree of L− func-

tion, and K,λi are respectively the positive integer and positive real number in the
functional equation of the definition of L− functions;

ii) N(r, L) = S(r, L).

Lemma 2.5. [10] Let L1, ..., LN be distinct non-constant L-functions. Then
L1, ..., LN are linearly independent over C.

Lemma 2.6. [13] Let P (z), Q(z) be two non-constant polynomials of degree n
and let f be a non-constant meromorphic function with finitely many poles in the
complex plane, L be a non-constant L-function. Assume that f and L satisfy

1

Q(f)
=

c

P (L)
+ c1,

where c, c1 ∈ C and c ̸= 0. Then c1 = 0.

Lemma 2.7. [13] Let L be an L-function in the extended Selberg class, f be a
meromorphic function, a, b, d, u, v, t be non-zero complex constants, n and m be
positive integers, n ≥ 2m+ 3. Set

P (x) = axn + bxn−m + d; Q(y) = uyn + vyn−m + t.

1. If P (L) = Q(f), then f = hL, where h is a constant, satisfying hn = a/u,
hn−m = b/v and d = t.

2. If (n,m) = 1, a = u, b = v, and P (L) = Q(f), then f = L and d = t.
3. If L1, L2 are L-functions in the extended Selberg class and P (L1) = Q(L2),

then L1 = L2 and P = Q.
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3. Proof of Theorem 1
Recall that

P (z) = azn + bzn−m + d, Q(z) = uzn + vzn−m + t, a, b, d, u.v, t ̸= 0.

Therefore, we have:

P (z) = a(z − a1)...(z − an), P
′(z) = Azn−m−1(z − d1)...(z − dm), A ̸= 0, di ̸= dj,

Q(z) = u(z−b1)...(z−bn), Q
′(z) = Bzn−m−1(z−t1)...(z−tm), B ̸= 0, ti ̸= tj, (3.1)

P (L) = a(L− a1)...(L− an), Q(f) = u(f − b1)...(f − bn). (3.2)

[P (L)]
′
= ALn−m−1(L− d1)...(L− dm)L

′
, [Q(f)]

′
= Bfn−m−1(f − t1)...(f − tm)f

′
.

(3.3)
The necessary condition.

Lemma 3.1. We have
1)

(n− 1)T (r, L) + S(r, L) ≤ nT (r, f) + S(r, f),

2)

(n− 1)T (r, f) + S(r, f) ≤ nT (r, L) + S(r, L), S(r, f) = S(r, L).

Proof. By Lemma 2.4, T (r, L) = dL
π
r log r+O(r), and therefore N(r, L) = S(r, L).

On the other hand, we have

N(r, f) =
∑

0<|ai|<r

log
r

|ai|
+ n(0, f) log r,

where the ai’s are poles of f , ignoring multiplicity (see ([6], p. 14)). From this and
f is a non-constant meromorphic function with finitely many poles it follows that
N(r, f) = O(log r), and so N(r, f) = S(r, L). Applying another form of the two
Fundamental Theorems and noting that EL(S) = Ef (T ), we obtain

(n− 1)T (r, L) ≤ N(r, L) +
n∑

i=1

N(r,
1

L− ai
) + S(r, L),

(n− 1)T (r, L) + S(r, L) ≤
n∑

i=1

N(r,
1

f − bi
) + S(r, f)

≤ nT (r, f) + S(r, f).
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Similarly

(n− 1)T (r, f) ≤ N(r, f) +
n∑

i=1

N(r,
1

f − bi
) + S(r, f),

(n− 1)T (r, f) + S(r, f) ≤
n∑

i=1

N(r,
1

L− ai
) + S(r, L),

(n− 1)T (r, f) + S(r, f) ≤ nT (r, L) + S(r, L).

Lemma 3.1 is proved.
We will prove that there is a constant l ̸= 0 such that P (L) = lQ(f). Set

F =
1

P (L)
, G =

1

Q(f)
, H =

F
′′

F ′ −
G

′′

G′ ,

S(r) = S(r, L) = S(r, f), T (r) = T (r, L) + T (r, f). (3.4)

Then T (r, P (L)) = nT (r, L) + O(1) and T (r,Q(f)) = nT (r, f) + O(1), and hence
S(r, P (L)) = S(r, L) and S(r,Q(f)) = S(r, f). We first prove that H ≡ 0. Suppose
that H ̸≡ 0, on the contrary.

Claim 1. We have

i) (n−1)T (r, L) ≤ N(r,
1

P (L)
)−No(r,

1

L′ )+S(r), where No(r,
1
L′ ) is the counting

function of those zeros of L
′
, which are not zeros of the function (L − a1)(L −

a2) · · · (L− an).

ii) (n−1)T (r, f) ≤ N(r,
1

Q(f)
)−No(r,

1

f ′ )+S(r), where No(r,
1
f ′ ) is the counting

function of those zeros of f
′
, which are not zeros of the function (f−b1) · · · (f−bn).

Proof. i) Applying another form of the two Fundamental Theorems to L and the
values a1, a2, ..., aq, and noticing that

N(r, L) = S(r, L),
n∑

i=1

N(r,
1

L− ai
) = N(r,

1

P (L)
),

we obtain

(n− 1)T (r, L) ≤ N(r, L) +
n∑

i=1

N(r,
1

L− ai
)−No(r,

1

L′ ) + S(r, L),

(n− 1)T (r, L) ≤ N(r,
1

P (L)
)−No(r,

1

L′ ) + S(r).
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ii) The inequality for f is proved by a similar argument.
Claim 1 is proved.

Claim 2. We have

N(r,H) ≤ (m+ 1)T (r) +No(r,
1

f ′ ) +No(r,
1

L′ ) + S(r).

Proof.
Noting that H has only simple poles, from Lemma 2.2 we obtain

N(r,H) ≤N (2(r, P (f)) +N (2(r, P (L))+

N(r,
1

P ′(f)
;P (f) ̸= 0) +N(r,

1

P ′(L)
;P (L) ̸= 0) + S(r).

On the other hand,

N (2(r, P (L)) = N(r, L) = S(r), N (2(r,Q(f)) = N(r, f) = S(r).

Moreover, we have

N(r,
1

[P (L)]′
;P (L) ̸= 0) ≤

N(r,
1

L
) +

m∑
i=1

N(r,
1

L− di
; (L− a1) · · · (L− an) ̸= 0) +No(r,

1

L′ )

≤ N(r,
1

L
) +

m∑
i=1

N(r,
1

L− di
) +No(r,

1

L′ ) ≤ (m+ 1)T (r, L) +No(r,
1

L′ ) + S(r).

Thus

N(r,
1

[P (L)]′
;P (L) ̸= 0) ≤ (m+ 1)T (r, L) +No(r,

1

L′ ) + S(r).

Similarly,

N(r,
1

[Q(f)]′
;P (f) ̸= 0) ≤ (m+ 1)T (r, f) +No(r,

1

f ′ ) + S(r).

Claim 2 is proved.

Claim 3. We have
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N(r,
1

P (L)
) +N(r,

1

Q(f)
) ≤ (

n

2
+m+ 2)T (r) +No(r,

1

L′ ) +No(r,
1

f ′ ) + S(r).

Proof. Set νP (L)(z) = ν1, νQ(f)(z) = ν2. Then,

EP (L)(0, ν1 = 1) ∩ EQ(f)(0, ν2 = 2) = ∅.

Indeed, suppose that EP (L)(0, ν1 = 1)∩EQ(f)(0, ν2 = 2) ̸= ∅, on the contrary. From
this and P (L) = a(L − a1)...(L − an), Q(f) = u(f − b1)...(f − bn) it follows that
there exists ai, bj and z0 such that z0 ∈ EL(ai, νL−ai = 1) and z0 ∈ Ef (bj, νf−bj = 2).
Therefore, z0 ∈ Ef ′ ,1)(0). Because Ef ′ ,1)(0) = EL′ ,1)(0) we get z0 ∈ EL′ ,1)(0), which
is a contradiction since νL−ai(z0) = 1 and (L− ai)

′ = L′. So

EP (L)(0, ν1 = 1) ∩ EQ(f)(0, ν2 = 2) = ∅.

Similarly, we have

EP (L)(0, ν1 = 2) ∩ EQ(f)(0, ν2 = 1) = ∅.

Now applying the Lemma 2.2 to the functions P (L), Q(f) and noticing that

N (2(r, P (L)) = N(r, L) = S(r), N (2(r, P (f)) = N(r, f) = S(r),

we obtain

N(r,H) ≤ N(r,
1

P (L)
; ν1 > ν2 ≥ 1) +N(r,

1

Q(f)
; ν2 > ν1 ≥ 1)

+N(r,
1

[P (L)]′
;P (L) ̸= 0) +N(r,

1

[Q(f)]′
;Q(f) ̸= 0) + S(r), (3.5)

and

N(r,
1

P (L)
) +N(r,

1

Q(f)
) + 2N(r,

1

P (L)
; ν1 ≥ 2)+

2N(r,
1

Q(f)
; ν2 ≥ 2) ≤ N(r,H) +

1

2
(N(r,

1

P (L)
) +N(r,

1

Q(f)
))+

N(r,
1

P (L)
; ν1 ≥ 2) +N(r,

1

Q(f)
; ν2 ≥ 2) + S(r). (3.6)

From (3.5) and (3.6) and noticing that

N(r,
1

P (L)
; ν1 > ν2 ≥ 1) ≤ N(r,

1

P (L)
; ν1 ≥ 2),
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N(r,
1

Q(f)
; ν2 > ν1 ≥ 1) ≤ N(r,

1

Q(f)
; ν2 ≥ 2),

we get

N(r,
1

P (L)
) +N(r,

1

Q(f)
) ≤ (m+ 1)T (r) +

1

2
(N(r,

1

P (L)
)+

N(r,
1

Q(f)
)) +N(r,

1

P (L)
; ν1 ≥ 2)−N(r,

1

P (L)
; ν1 ≥ 2)+

N(r,
1

Q(f)
; ν2 ≥ 2)−N(r,

1

Q(f)
; ν2 ≥ 2) +No(r,

1

L′ ) +No(r,
1

f ′ ) + S(r). (3.7)

On the other hand, from P (L) = a(L − a1)...(L − an) it follows that if z0 is a
zero of P (L) with multiplicity d ≥ 2, then z0 is a zero of L − ai with multiplicity
d ≥ 2 for some i ∈ {1, 2, ..., n}, and therefore, it is a zero of L

′
with multiplicity

d− 1, so we have

N(r,
1

P (L)
; ν1 ≥ 2)−N(r,

1

P (L)
; ν1 ≥ 2) ≤ N(r,

1

L′ ).

From this and Lemma 2.1 we obtain

N(r,
1

P (L)
; ν1 ≥ 2)−N(r,

1

P (L)
; ν1 ≥ 2) ≤ N(r,

1

L′ ) ≤

N(r,
1

L
) +N(r, L) + S(r, L) ≤ T (r, L) + S(r, L).

Similarly, we have

N(r,
1

Q(f)
; ν2 ≥ 2)−N(r,

1

Q(f)
; ν2 ≥ 2) ≤ N(r,

1

f ′ ) ≤ T (r, f) + S(r, f).

Therefore,

N(r,
1

P (L)
; ν1 ≥ 2)−N(r,

1

P (L)
; ν1 ≥ 2)+

N(r,
1

Q(f)
; ν2 ≥ 2)−N(r,

1

Q(f)
; ν2 ≥ 2) ≤ T (r) + S(r). (3.8)

Combining (3.7)-(3.8) and noticing that N(r, 1
P (L)

)+N(r, 1
Q(f)

) ≤ n

2
T (r) we get

N(r,
1

P (L)
) +N(r,

1

Q(f)
) ≤ (

n

2
+m+ 2)T (r) +No(r,

1

L′ ) +No(r,
1

f ′ ) + S(r).
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Claim 3 is proved.
Now we use Claims 1, 3 to obtain a contradiction, and complete the proof of

H ≡ 0. Claim 1 and Claim 3 give us

(n− 1)T (r) ≤ (
n

2
+m+ 2)T (r) + S(r), (n− 2m− 6)T (r) ≤ S(r),

which is a contradiction since n ≥ 2m+ 7.

So H ≡ 0. Therefore,
1

Q(f)
=

l

P (L)
+ c1 for some constants l(̸= 0) and c1. By

Lemma 2.6 we obtain c1 = 0. Thus there is a constant l ̸= 0 such that P (L) =
lQ(f). That is

aLn + bLn−m + c = lufn + lvfn−m + lt. (3.9)

Now we return proof the necessary condition of Theorem 1.
Then we have (3.9). Applying Lemma 2.7 to equation (3.9) we get

aLn + bLn−m + c = lufn + lvfn−m + lt, f = hL, l =
c

t
, hn =

a

lu
, hm =

lv

b

at

uc
.

Therefore hn =
at

cu
, hm =

av

ub
. Because f = hL, we have EL′ ,1)(0) = Ef ′ ,1)(0). Now

we prove hS = T. Take ai ∈ S, i = 1, ..., n. By Lemma 2.3, there exists z0 ∈ C such
that L(z0)− ai = 0. Moreover, from P (L) = lQ(f) and (3.2) we obtain

P (L) = a(L− a1)...(L− an), u(f − b1)...(f − bn) = Q(f);

a(L− a1)...(L− an) = lu(f − b1)...(f − bn). (3.10)

By (3.10) we see that: L(z0) − ai = 0 if and only if z0 is a zero of P (L) and
L(z0) − aj ̸= 0 with i ̸= j, and therefore, there exists a unique bk ∈ {b1, ..., bn}
such that f(z0)− bk = 0. Because f = hL, we have hL(z0)− bk = 0, and therefore
hai = bk. From this and cardinalities of S, T are n it follows that hS = T.
The sufficient condition. Then we have:

P (L) = aLn + bLn−m + c, Q(f) = ufn + vfn−m + t,

f = hL, hn =
at

cu
, hm =

av

ub
,Q(f) = uhnLn + vhn−mLn−m + t.

Therefore,

EL′ ,1)(0) = Ef ′ ,1)(0), tP (L) = cQ(f) and at(L−a1)...(L−an) = cu(f−b1)...(f−bn).
(3.11)
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From this it follows that L−1(S) = f−1(T ).

The necessary condition. Then, by 1/ we get: f = hL, where h is a non-zero

constant satisfying hn =
at

cu
, hm =

av

ub
. If f ∈ S, then f = L from Lemma 2.5, and

then h = 1,
a

u
=

b

v
=

c

t
.

The sufficient condition. The proof is completed by using the arguments similar
to the ones in the sufficient condition of 1.

Theorem 1 is proved.
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