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Abstract: This study investigates the uniqueness properties of L-functions associ-
ated with meromorphic functions that share a small function of finite weight. Based
on the Value Distribution Theory of Nevanlinna and the uniqueness properties of
L-functions, we establish several theorems that demonstrate the conditions under
which two L-functions can be considered equivalent, particularly in the context of
their shared values and the behavior of associated polynomials. Our results extend,
generalize, and improve those of Mandal and Datta [10]. We also provide an ex-
ample that supports our results and poses open questions regarding the relaxation
of conditions in uniqueness theorems.
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1. Introduction and Main Results
For a long time a lot of attention have been given by many scholars on the

Riemann hypothesis. At the outset, we assume that by an L-function we always
mean an L-function L in the Selberg class which includes the Riemann zeta function
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ζ(s) =
∑∞

n=1 n
−s and essentially those Dirichlet series where one might expect a

Riemann hypothesis. Such an L-function is defined [13, 14] to be a Dirichelet series

L(s) =
∞∑
n=1

a(n)

n−s
(1.1)

satisfying the following axioms:

1. Ramanujan hypothesis : a(n) ≪ nε for every ε > 0;

2. Analytic continuation : There is a nonnegative integer m such that (s −
1)mL(s) is an entire function of finite order;

3. Functional equation: L satisfies a functional equation of type

ΛL(s) = wΛL(1− s), (1.2)

where

ΛL(s) = L(s)Qs

k∏
j=1

Γ(λjs+ νj), (1.3)

with positive real numbers Q, λj and complex numbers νj, w with Re(νj) ≥ 0
and |w| = 1;

4. Euler product hypothesis: logL(s) =
∑∞

n=1
b(n)
ns , where b(n) = 0 unless n is a

positive power of a prime and b(n) ≪ nθ for some θ < 1
2
.

Also, throughout the paper, f and g are two meromorphic functions in the
complex plane C. To prove the main results, we will apply Nevanlinna’s theory
and adopt the standard notations, which are explained in [3, 8, 11, 15, 20]. For any
b ∈ C∪{∞}, the preimage of b under f is defined by f−1(b) = {b ∈ C : f(s)−b = 0}.
The functions f and g are said to share the value b ignoring multiplicities (IM) if
f−1(b) = g−1(b) as two sets in C. Furthermore, f and g are said to share b counting
multiplicities (CM) if they share b IM and if each root of the equation f(s) = b
has exactly the same multiplicities as the root of the equation f(s) = b. Next, we
set Ef(S) for a set S(⊂ C ∪ {∞}) and a function f as

Ef (S) =
⋃
b∈S

{s ∈ C : f(s)− b = 0},
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where each zero of f − b is counted according to their multiplicities, that is, Ef(S)

is a multiset. Also, we denote by Ef (S) the set of distinct elements in Ef (S). We
say that f and g share the set S CM if Ef (S) = Eg(S) and that they share the
set S IM if Ef (S) = Eg(S). This paper deals with the uniqueness problems of
value sharing and set sharing related to L-functions and an arbitrary meromorphic
function in C.

Undoubtedly, L-functions are crucial in number theory, and one can analytically
continue an L-function to a meromorphic function in C. Hence, like the value
distribution of meromorphic functions, the value distribution of L-functions is a
natural consequence. In this respect, a number of researchers have studied the
distribution of zeros of the L-function in great detail during the past few years [5,
16, 9, 13, 14, 21]. The aim of the work has eventually shifted to the uniqueness
determination of an L-function using shared values or sets. Hence, let us recall
these basic definitions of value and set sharing.

Definition 1.1. [7] Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞}.
We denote by Ek(a, f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
then we say that f and g share the value a with weight k.

The definition implies that if f and g share a value a with weight k, then z0 is
an a-points of f with multiplicity m ≤ k if and only if it is an a-ponts of f with
multiplicity m ≤ k, and z0 is an a-points of f with multiplicity m > k if and only
if it is an a-ponts of f with multiplicity n > k, where m is not necessarily equal to
n.

We write f, g share (a, k) to mean that f and g share the value a with weight k.
It is clear that if f, g share (a, k), then f, g share (a, p) for any integer p, 0 ≤ p ≤ k.
Also, note that f, g share the value a IM or CM if and only if f, g share (a, 0) or
(a,∞), respectively.

Definition 1.2. [22] For q ∈ N and b ∈ C ∪ {∞}, we have

Θ(b, f) = 1− lim
r→∞

N(r, b; f)

T (r, f)
and δq(b, f) = 1− lim

r→∞

Nq(r, b; f)

T (r, f)
,

where Nq(r, b; f) = N(r, b; f) +N (2(r, b; f) + . . .+N (q(r, b; f) and hence

0 ≤ δ(b, f) ≤ δq(b, f) ≤ δq−1(b, f) ≤ · · · ≤ δ2(b, f) ≤ δ1(b, f) = Θ(b, f) ≤ 1.

Definition 1.3. [2] For q, n ∈ N, we define

σq = min{q, n} and σ∗
q = q + 1− σq.
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Clearly, Nq(r, 0; f) ≤ σqNσ∗
q
(r, 0; f).

Now, we recall the first result due to Wu and Hu [16].

Theorem 1.1. Let L1 and L2 be two L-functions, and α1, α2 ∈ C be two distinct
values. Let k1, k2 are two positive integers satisfying k1k2 > 1. If Ek1(α1,L1) =
Ek1(α1,L2) and Ek2(α2,L1) = Ek2(α2,L2), then L1 ≡ L2.

Relating the uniqueness of a L-function with an arbitrary meromorphic func-
tion, in 2018, Hao and Chen [4] investigated the following result:

Theorem 1.2. Let L1 be a L-function and F be a meromorphic function defined
in the complex plane C with finitely many poles. Let α1, α2 ∈ C be distinct and
k1, k2 ∈ N satisfying k1k2 > 1. If Eki(αi, F ) = Eki(αi,L1), for i= 1, 2, then L1 ≡ F

In 2020, Mandal and Datta [10], who studied the uniqueness result, shared
a small function by considering an L-function and a differential monomial that
improves and extends the results of Hao and Chen [4] as follows:

Theorem 1.3. Let L1 be a non-constant L-function and η(z) be a small function of
L1 such that η ̸≡ 0,∞. If E4)(η;L1) = E4)(η, (L

m
1 )

(k)), E2)(η;L1) = E2)(η, (L
m
1 )

(k))
and

2Nk+2(r, 0;L
m
1 ) ≤ (σ +O(1))T (r,L1),

where k ≥ 1,m ≥ 1 ∈ N, and 0 < σ < 1, then L1 ≡ (Lm
1 )

(k).
In 2023, Raj and Waghamore [12] introduced new definition on the difference-

differential polynomial, which motivates us to write this paper.

Definition 1.4. [12] Let nij,mij with (i = 0, 1, ..., k) and (j = 1, 2, ..., t) be non-
negative integers and f(z) be a non-constant meromorphic function. We shall
define a general difference-differential monomial as follows

Mj[f ] =
k∏

i=0

[f (i)(z)]nij [f (i)(z + ci)]
mij ,

where c′is(i = 0, 1, ..., k) are complex constants. Let dMj
=

∑k
i=0 nij + mij denote

the degree of Mj[f ] and WMj
=

∑k
i=0(i+ 1)(nij +mij) denote the weight of Mj[f ].

Then the expression

P [f ] =
t∑

j=1

ajMj[f ], (1.4)

where T (r, aj) = S(r, f) for j = 1, 2, ..., t is called the difference-differential polyno-
mial generated by f of upper degree Ud(P ) = max1≤j≤t{dMj

}, lower degree Ld(P ) =
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min1≤j≤t{dMj
}, weight WP = max1≤j≤t{WMj

} and the order k (where k is the high-
est order of the derivative of f in P [f ]). Let ϑ denote max1≤j≤t{WMj

− dMj
}, i.e.,

ϑ = max1≤j≤t

k∑
i=0

[(i+ 1)− 1](nij +mij)

= max1≤j≤t(n1j +m1j + 2n2j + 2m2j + . . .+ knkj + kmkj).

Definition 1.5. Let

Q(z) = bm+nz
m+n + . . .+ bnz

n + . . .+ b0

= bm+n

r∏
j=1

(z − zqj)
qj ,

where bi(i = 0, 1, 2, ..., n+m−1), bn+m ̸= 0 and zqj(j = 1, 2, ..., r) are distinct finite
complex numbers and n + m ≥ r ≥ 2 and q1, q2, ..., qr, r ≥ 2, n,m and k are all
positive integers with

∑r
j=1 qj = n+m. Also let q > maxq ̸=qj ,j=1,2,...,s{qj}, s = r−1,

where r and s are two positive integers.
Let

P(z1) = bn+m

r−1∏
j=1

(z1 + zq − zqj)
qj

= apz
p
1 + ap−1z

p−1
1 + . . .+ a0,

where bn+m = ap, z1 = z − zq, p = n+m− q. Therefore, Q(z) = zq1P(z1).
Next we assume

P(z1) = ap

s∏
j=1

(z1 − βj)
qj

where βj = zqj − zq, (j = 1, 2, ..., s), be distinct zeros of P(z1).
It is important to recognize that no research has been undertaken on difference-

differential polynomials in a broader context. As a result, in order to broaden the
applicability of Theorem 1.3, some unavoidable problems arise. Given the data
reported by Mandal and Datta before, it is natural to ask the following question,
which provides the inspiration behind this paper.

Question: Can an analogous uniqueness result be obtained by incorporating L1

with Pn(L1), Q(L1), and (Lm
1 )

(k) with P [L1]?
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We demonstrate the following theorems with respect to the preceding question:

Theorem 1.4. Let L1 be a non-constant L-function, Pn(z) = anz
n + an−1z

n−1 +
. . .+a1z, be a non-zero polynomial, where aj ∈ C for j = 1, 2, · · · , n with an ̸= 0 and
m be the number of distinct zeros of Pn(z). Let φ(z)(̸= 0,∞) be a small function
of L1, k be a positive integer, and let P [L1] be a difference-differential polynomial
of L1. If n ≥ m+ 1, then Pn(L1)P [L1]− φ has infinitely many zeros.

Theorem 1.5. Let L1 be a non-constant L-function. Let φ(z)(̸= 0,∞) be a small
function of L1, k be a positive integer, and let P [L1] be a difference-differential
polynomial of L1. Suppose E4)(φ;L1) = E4)(φ;P [L1]), E2)(φ;L1) = E2)(φ;P [L1])
and (

(k + 3)Ud(P ) + 4

1 + Ud(P )

)
N(r, 0;L1) < (λ+O(1))T (r,L1),

where 0 < λ < 1, then L1 ≡ P [L1].

Example 1.1. Let L1 =
∞∑
n=1

1
nz , P [L1] =

∞∑
n=1

1
nz +

∞∑
n=1

1
(n+c)z

, where c is a non-zero

constant k = 1, and Ud(P ) = 2. Then we can see that L1 and P [L1] share 1 and
∞ CM, but the conclusion of Theorem 1.5 does not hold, which shows that the
conditions given in the theorem are necessary but not sufficient.

Theorem 1.6. Let L1 be a non-constant L-function, Pn(z) = anz
n + an−1z

n−1 +
. . .+a1z, be a non-zero polynomial, where aj ∈ C for j = 1, 2, · · · , n with an ̸= 0 and
m be the number of distinct zeros of Pn(z). Let φ(z)(̸= 0,∞) be a small function
of L1, k be a positive integer, and let P [L1] be a difference-differential polynomial of
L1. Suppose E4)(φ;Pn(L1)) = E4)(φ;P [L1]), E2)(φ;Pn(L1)) = E2)(φ;P [L1]) and(

(k + 3)Ud(P ) + 4m

n+ Ud(P )

)
N(r, 0;L1) < T (r,L1),

then Pn(L1) ≡ P [L1].

Theorem 1.7. Let L1 be a non-constant L-function. Let φ(z)(̸= 0,∞) be a small
function of L1,Q(z) = bm+nz

m+n + . . .+ bnz
n + . . .+ b0, bm+n ̸= 0, be a polynomial

of degree (m+ n) such that Q(f) = f q
1P(f1). Suppose

E4)(φ;Q(L1)) = E4)(φ;P [L1]), E2)(φ;Q(L1)) = E2)(φ;P [L1]) and

2σ2δσ∗
2
(zq,L1)+Ud(P )δ(0,L1)+(k+2)Ud(P )Θ(0,L1) > n+m+2σ2+(k+2)Ud(P )−q,

then Q(L1) ≡ P [L1].

Remark 1.1.
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1. Theorems 1.4, 1.5, 1.6, and 1.7 directly improves, extends Theorem 1.3 by
extending from differential polynomial to difference-differential polynomial.

2. If we choose mij = 0 in Definition 1.4, the difference-differential polynomial
reduces to the differential polynomial, yielding three equivalent results; rather
than proving these results, we ask an open question at the end of the paper.

2. Auxiliary Lemmas
In this portion, we will introduce certain lemmas that will be utilized to prove

the main results. Let F and G be two non-constant meromorphic functions. Hence-
forth, we shall denote by H the following function.

H =

(
F′′

F′ −
2F′

F− 1

)
−
(

G′′

G′ −
2G′

G − 1

)
. (2.1)

Lemma 2.1. [1] If E4)(1;F) = E4)(1; G), E2)(1;F) = E2)(1; G) and H ̸≡ 0, then

T (r,F) + T (r, G) ≤ 2{N2(r, 0;F) +N2(r,∞;F) +N2(r, 0; G) +N2(r,∞; G)}
+ S(r,F) + S(r, G).

Lemma 2.2. [12] Suppose f is a non-constant meromorphic function of finite
order, and P [f ] is a difference-differential polynomial in f . Then

m

(
r,

P [f ]

fUd(P )

)
≤ {Ud(P )− Ld(P )}m

(
r,

1

f

)
+ S(r, f).

Lemma 2.3. [12] Suppose f is a non-constant meromorphic function of finite
order, and P [f ] is a difference-differential polynomial in f . Then

N (r, P [f ]) ≤ Ud(P )N(r, f) + ϑN(r, f) + S(r, f).

Lemma 2.4. [12] Suppose f is a non-constant meromorphic function of finite
order, and P [f ] is a difference-differential polynomial in f . Then

N

(
r,

P [f ]

fUd(P )

)
≤ ϑ

(
N(r, f) +N(r,

1

f
)

)
+

k∑
j=1

k∑
i=0

mijN(r, f)

+ {Ud(P )− Ld(P )}N
(
r,

1

f

)
+ S(r, f).
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Lemma 2.5. [12] Suppose f is a non-constant meromorphic function of finite
order, and P [f ] is a difference-differential polynomial in f . Then

N

(
r,

1

P [f ]

)
≤ ϑN(r, f) + {Ud(P )− Ld(P )}m

(
r,

1

f

)
+N

(
r,

1

fUd(P )

)
+ S(r, f).

Lemma 2.6. [12] Suppose f is a non-constant meromorphic function of finite
order, and P [f ] is a difference-differential polynomial in f . Then

Nq

(
r,

1

P [f ]

)
≤ Ud(P )Nk+q

(
r,

1

f

)
+ ϑN(r, f) + S(r, f).

Lemma 2.7. [19] Let f(z) be a non-constant meromorphic function in the complex
plane, and let

Pn(f(z)) = anf
n(z) + an−1f

n−1(z) + ...+ a1f(z) + a0, (2.2)

where a0, a1, ..., an are constants and an ̸= 0. Then T (r,Pn(f)) = n T (r, f)+O(1).

Lemma 2.8. [14] Let L be a L-function with degree d. Then

T (r,L) =
d

π
r log r +O(r).

Lemma 2.9. [10] Let L be a L-function. Then N(r,∞;L) = S(r,L).

Lemma 2.10. Suppose f is a non-constant meromorphic function and P [f ] is a
difference-differential polynomial of f . Then

T (r, P [f ]) ≤ Ud(P )T (r, f) + σN(r, f) + S(r, f),

N

(
r,

1

P [f ]

)
≤ T (r, P [f ])− T

(
r,

1

fUd(P )

)
+N

(
r,

1

fUd(P )

)
+ S(r, f),

N

(
r,

1

P [f ]

)
≤ Ud(P )N

(
r,

1

f

)
+ σN(r, f) + S(r, f).

Proof. From Nevanlinna’s first fundamental theorem, we have

N

(
r,

1

P [f ]

)
= T (r, P [f ])−m

(
r,

1

P [f ]

)
+O(1). (2.3)

Also, we have

m

(
r,

1

fUd(P )

)
≤ m

(
r,

P [f ]

fUd(P )

)
+m

(
r,

1

P [f ]

)
, (2.4)



Uniqueness of L-function with Certain Polynomial ... 139

which implies that

m

(
r,

1

fUd(P )

)
≤ m

(
r,

1

P [f ]

)
+ S(r, f), (2.5)

which further implies that

−m

(
r,

1

P [f ]

)
≤ −m

(
r,

1

fUd(P )

)
+ S(r, f). (2.6)

Using (2.6) in (2.3), we get

N

(
r,

1

P [f ]

)
≤ T (r, P [f ])− T

(
r,

1

fUd(P )

)
+N

(
r,

1

fUd(P )

)
+ S(r, f). (2.7)

Since

T (r, P [f ]) = m(r, P [f ]) +N (r, P [f ]) +O(1)

≤ m

(
r,

P [f ]

fUd(P )

)
+m

(
r, fUd(P )

)
+N(r, P [f ])

≤ m
(
r, fUd(P )

)
+ Ud(P )N (r, f) + σN(r, f) + S(r, f)

≤ Ud(P )T (r, f) + σN(r, f) + S(r, f). (2.8)

Substituting (2.8) in (2.7), we get

N

(
r,

1

P [f ]

)
≤ Ud(P )T (r, f) + σN(r, f)− T

(
r,

1

fUd(P )

)
+N

(
r,

1

fUd(P )

)
+ S(r, f),

implies that

N

(
r,

1

P [f ]

)
≤ Ud(P )N(r,

1

f
) + σN(r, f) + S(r, f).

Lemma 2.11. [18] Let f(z) and g(z) be two non-constant meromorphic functions.
Then

N

(
r,∞;

f

g

)
−N

(
r,∞;

g

f

)
= N(r,∞; f) +N(r, 0; g)−N(r,∞; g)−N(r, 0; f).

Lemma 2.12. Let f(z) be a transcendental entire function of finite order, Pn(z)
be a non-zero polynomial as defined in Theorem 1.4, and P [f ] is a difference-
differential polynomial of f(z). Set F1 = Pn(f)P [f ]. Then, we have

nT (r, f) ≤ T (r,F1)−N(r, 0;P [f ]) + S(r, f).
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Proof. Note that by Lemma 2.9 and 2.11, we have

m(r,fn+1) = m(r,Pn(f)P [f ]) +m

(
r,

f

P [f ]

)
+ S(r, f)

≤ m(r,F1) + T

(
r,

f

P [f ]

)
−N

(
r,∞;

f

P [f ]

)
+ S(r, f)

≤ m(r,F1) + T

(
r,
P [f ]

f

)
−N

(
r,∞;

f

P [f ]

)
+ S(r, f)

≤ m(r,F1) +N

(
r,∞;

P [f ]

f

)
+m

(
r,
P [f ]

f

)
−N

(
r,∞;

f

P [f ]

)
+ S(r, f)

≤ m(r,F1) +N (r,∞;P [f ]) +N(r, 0; f)−N(r,∞; f)−N (r, 0;P [f ]) + S(r, f)

≤ m(r,F1) +N(r, 0; f)−N (r, 0;P [f ]) + S(r, f).

By Lemma 2.7, we get

(n+ 1)T (r, f) = m(r, fn+1) ≤ T (r,F1) + T (r, f)−N (r, 0;P [f ]) + S(r, f),

i.e.,

nT (r, f) ≤ T (r,F1)−N (r, 0;P [f ]) + S(r, f).

This completes the Lemma.

3. Proof of Theorems

3.1. Proof of Theorem 1.4. Let F1(z) =
Pn(L1)P [L1]

φ(z)
. In view of Lemma 2.12 and

by the second theorem for small functions (see [17]), we get

nT (r,L1) ≤ T (r,F1)−N (r, 0;P [L1]) + S(r,L1)

≤ N(r, 0;F1)−N(r,∞;F1) +N(r, 0;F1 − φ)−N(r, 0;P [L1]) + S(r,L1)

≤ N(r, 0;Pn(L1)) +N(r, 0;P [L1]) +N(r, 0;F1 − φ)−N(r, 0;P [L1]) + S(r,L1)

≤ mT (r,L1) +N(r, 0;F1 − φ) + S(r,L1),

which is a contradiction, since n ≥ m + 1, from above one can easily say that
F1 − φ has infinitely many zeros. This completes the proof.

3.2. Proof of Theorem 1.5.

Proof. Let L = L1(z)
φ(z)

and D = P [L1]
φ(z)

. Clearly, we have E4)(1,L) = E4)(1,D) and

E2)(1,L) = E2)(1,D) except for the poles and zeros of φ(z).
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Now, we shall investigate the following two cases:
Case 1: If H ̸≡ 0. Then from Lemma 2.1, we write

T (r,L) + T (r,D) ≤ 2{N2(r, 0;L) +N2(r,∞;L) +N2(r, 0;D) +N2(r,∞;D)}
+ S(r,L) + S(r,D).

Using Lemmas 2.7, 2.9 and 2.10, we write

T (r,L1) + T (r,P [L1]) ≤ 2{N2(r, 0;L1) +N2(r,∞;L1) +N2(r, 0;P [L1])

+N2(r,∞;P [L1])}+ S(r,L1) + S(r, P [L1])

≤ 2N2(r, 0;L1) + T (r, P [L1])− T

(
r,

1

L1
Ud(P )

)
+N

(
r,

1

L1
Ud(P )

)
+ Ud(P )Nk+2(r, 0;L1) + σN(r,∞;L1) + S(r,L1),

which implies that

(Ud(P ) + 1)T (r,L1) ≤ 2N2(r, 0;L1) + Ud(P )N(r, 0;L1) + (k + 2)Ud(P )N(r, 0;L1)

+ S(r,L1)

≤ 4N(r, 0;L1) + Ud(P )N(r, 0;L1) + (k + 2)Ud(P )N(r, 0;L1)

+ S(r,L1)

≤ ((k + 2)Ud(P ) + 4)N(r, 0;L1) + Ud(P )N(r, 0;L1) + S(r,L1)

≤ ((k + 3)Ud(P ) + 4)N(r, 0;L1) + S(r,L1),

which contradicts

T (r,L1) >

(
(k + 3)Ud(P ) + 4

1 + Ud(P )

)
N(r, 0;L1). (3.1)

Case 2: Suppose H ≡ 0. Then we get(
L′′

L′ −
2L′

L − 1

)
≡

(
D′′

D′ −
2D′

D − 1

)
. (3.2)

By integrating twice the (3.2), we get

1

L − 1
=

a

D − 1
+ b, (3.3)

where a and b are constants and a ̸= 0. From (3.3), it is easy to see that L and D
share 1 CM. We claim that b = 0. Suppose if b ̸= 0. Then from (3.3), we get

1

L − 1
=

b(D − 1 + a
b
)

D − 1
. (3.4)
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From (3.4), we clearly have,

N
(
r, 0;D − 1 +

a

b

)
= N(r,∞;L) = S(r,L1). (3.5)

Suppose a ̸= b, then from Nevanlinna’s Fundamental Theorem-II, (3.5), and
Lemma 2.9, we have

T (r,D) ≤ N (r,∞;D) +N (r, 0;D) +N
(
r, 0;D − 1 +

a

b

)
+ S(r,D)

≤ N (r, 0;D) + S(r,L1)

≤ T (r,D) + S(r,L1). (3.6)

Thus from Lemma 2.6, 2.9, 2.10, and (3.6), we get

T (r,D) = N (r, 0;D) + S(r,L1)

≤ N (r, 0;D) + S(r,L1)

≤ T (r,D)− T

(
r,

1

L1
Ud(P )

)
+N(r, 0;L1

Ud(P )) + S(r,L1),

which implies T (r,L1) ≤ N(r, 0;L1) + S(r,L1), which contradicts (3.1).
Hence, if a = b, then from (3.3), we can write

−φ2(z)

L1(bL1 − bφ− φ)
≡ P [L1]

L1

,

Thus, by (3.3), Lemma 2.7 and Lemma 2.9, we obtain

P [L1]

L1
Ud(P )

≡ −φ2(z)

L1
Ud(P )(bL1 − bφ− φ)

. (3.7)

Thus, by (3.7), Lemmas 2.2, 2.4, 2.7, and 2.9, we obtain

(Ud(P ) + 1)T (r,L1) = T

(
r,

P [L1]

L1
Ud(P )

)
+ S(r,L1)

≤ N

(
r,

P [L1]

L1
Ud(P )

)
+m

(
r,

P [L1]

L1
Ud(P )

)
+ S(r,L1)

≤ ϑ

(
N(r,L1) +N(r,

1

L1

)

)
+

k∑
j=1

k∑
i=0

mijN(r,L1)

+ {Ud(P )− Ld(P )}N
(
r,

1

L1

)
+ {Ud(P )− Ld(P )}m

(
r,

1

L1

)
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+ S(r,L1)

≤ {Ud(P )− Ld(P )}T (r,L1) + ϑN

(
r,

1

L1

)
+ S(r,L1),

which implies that

T (r,L1) ≤
ϑ

(Ld(P ) + 1)
N

(
r,

1

L1

)
+ S(r,L1),

which is impossible. Hence b = 0 and so from (3.3), we get

D − 1

L − 1
≡ a. (3.8)

Suppose a ̸= 1, then from (3.8), we get

N(r, 0;D + a− 1) = N(r, 0;L). (3.9)

Now, from Nevanlinna’s Second Fundamental Theorem-II, Lemma 2.9, 2.10,
and (3.9), we obtain

T (r,D) ≤ N (r,∞;D) +N (r, 0;D) +N (r, 0;D − 1 + a) + S(r,D)

≤ N (r, 0;P [L1]) +N (r, 0;L1) + S(r,L1)

≤ T (r, P [L1])− T

(
r,

1

L1
Ud(P )

)
+N

(
r,

1

L1
Ud(P )

)
+N (r, 0;L1) + S(r,L1),

which implies that

Ud(P )T (r,L1) ≤ Ud(P )N (r, 0;L1) +N (r, 0;L1) + S(r,L1)

≤ (Ud(P ) + 1)N (r, 0;L1) ,

which contradicts (3.1). Therefore, a = 1 and hence from (3.8), we get L1 ≡ P [L1].
Which completes the proof.

3.3. Proof of Theorems 1.6 and 1.7.

Proof. Similar to the proof of Theorem 1.5, Theorems 1.6 and 1.7 can be demon-
strated.

4. Conclusion
We studied the uniqueness problems of an L-function sharing a small function

with a finite weight with an intention to determine whether the analogues unique-
ness results of Mandal and Datta [10] be obtained by incorporating L1 withPn(L1),
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Q(L1), and (Lm
1 )

(k) with P [L1]. The main results of this study are Theorems 1.4,
1.5, 1.6, and 1.7, which mostly focus on the uniqueness properties of L- functions
with some difference-differential polynomials generated by a non-constant L- func-
tion. The results improve upon previous results in terms of generalizing the existing
result. To study further, we can pose the following open questions:

Open Questions:

1. Is it possible to further relax the conditions in all the theorems by examining
them in relation to differential polynomials, as demonstrated in [6] ?

2. Can we study all the results for difference-differential monomial

Mj[f ] =
k∏

i=0

[f (i)(z)]nij [∆cif
(i)(z)]mij

or a difference-differential polynomial ?

3. Can we study all the results for the homogeneous difference-differential poly-
nomial as in Definition 1.4 ?
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