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1. Introduction
In [9], Santos et al. introduced the concept of a two-line array. For a positive
integer v, let

Bl 52 51”

be a two-line array such that

<a1 ay ... ar)’ a, B; >0 forl<i<r (1.1)

i=1 =1

Using the above two-line array representation and by imposing certain restrictions
on «; and 3;, Santos and his collaborators interpreted many identities from Slater’s
list [10] including Rogers—Ramanujan identities and Lebesgue’s partition identities
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in [9]. They also presented several bijective proofs for partition identities. The
work is further related to three-quadrant Ferrers graphs in [4]. Continuing with
the above work, Brietzke et al. [5] found the combinatorial interpretations of a
number of mock theta functions using a two-line array, some of which were already
interpreted using (n + t)—color partitions. In [2], Alegri introduced a third row of
v in a line array representation, such that v = > a; + > 5; + > i, to construct

7 (2 (2
a correspondence between three-line arrays and overpartitions. In [3], a bijection
from certain classes of plane partitions to overpartitions and unrestricted partitions
was presented. The purpose of this paper is to study combinatorial interpretations
of Rogers—Ramanujan type identities (RRTIs), given in [6, 10], using the three-line
arrays and establish bijections with (n + ¢)—color overpartitions. Before proceeding
further, we recall:

Definition 1.1. [1] An (n + t)—color partition (also called a partition with “n +t
copies of n”) t > 0, is a partition in which a part of size n,n > 0, can come
i n + t different colors denoted by ni,no,...,n,. Note that, only one copy
of zero is allowed and it cannot repeat. The weighted difference is defined as
(((mi)e, = (Mj)e,)) = mi —myj — x; — x; where (m;)e, and (m;)q,(m; = m;) are
two parts in an (n + t)—color partition (my)z, + (M2)e, + ... + (M), such that
my > mg > ... > m,. Forv =2, the (n+2)—color partitions are 24, 23, 29, 21, 1313,
131o, 1314, 191y, 1514, 1414, For convenience, we denote 6; = (((1)z;, — (Mit1)2iy1))
where m; > M.

Definition 1.2. [7, 8] An (n + t)—color overpartition is an (n + t)-color partition
in which the final occurrence of a part (m;)., may be overlined. Here zero is not
permitted to repeat and only one copy of 0 is allowed so either 0, or 0, is used.
In Section 2, we present combinatorial interpretations of fourteen RRTIs with
three-line arrays and (n + t)—color overpartitions. We proceed constructively to
obtain three-line array interpretations and translate these results into (n +t)—color
overpartitions using certain bijections. Based on these bijections we classify the
fourteen identities into five groups: Group 1 contains 2, Group 2 contains 4, Group
3 contains 3, Group 4 contains 2 and Group 5 contains 3 RRTIs. In Section 3,
we provide alternate proofs of sum side in RRTIs involving three-line arrays using
classical approach. We provide one full proof of a theorem and for remaining the-
orems we give sketch proofs due to the similarity of the proofs associated with the
theorems.

2. Combinatorial interpretations

Group 1
The following RRTIs (2.1) appears in [10] and (2.2) in [6], as Identity No. 29:
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nZ; = q = ((;;’jjf)): 4% —4",¢% "), (2.1)
Z ( 1) ( )nqn _ (q;q2)00 [_q2’_q3’q5;q5]oo‘ (22)

n=0 (_Q7 q )n(q 7q4)n (CIQ, q2)oo
Here we have employed the standard ¢-series notation

n—1

(a;9)n = H(l — ag"),
k=0
a1, s, , a; @) = (a1;@)n(@2; @)n - -+ (Ak; Q)n,s
and  [a1,a2,. .., 0k qloo = (013 0)00 (@25 @)oo - (A3 @)oo

Throughout the paper, sums in an RRTIs represent generating functions for ei-
ther A;(v), which count partitions in terms of three-line arrays, or A;(v), which
count, (n + t)—color overpartitions, where 1 < ¢ < 14. The generating function for
B;(v), which count ordinary partitions, is expressed without a sum and instead
only uses products from the g-series notation described above. These lead to 3-way
combinatorial interpretations satisfying

[e.9]

iAi( = Ay q—ZB ¢, 1<i<14. (2.3)
v=0 v=0

v=0

For Group 1, we construct a bijection between three-line arrays and n—color

overpartitions. Let (m;),, and (m41)s,,, be two consecutive parts of an n—color
a;

overpartition. Then the corresponding column (ﬂ) in the three-line array is given

Yi
by

([ mig1 @i +1
zi —1 if m; is not overlined,
d;

¢ (my)e, — (2.4)

mir1 +Tip1 +2
z—2 if m; is overlined.
\ oi

Qa;

/Bi) be any column in the three-line array. Then
i

the corresponding part in an n—color overpartitions, (m;),,, is given by

In the reverse implication, let (
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o (i 4 Bi +7i)pi+2,  if ;= 0 (mod 2),
(ﬁil . (5;) — (25)
k (o + Bi +vi)piv1, if a; Z 0 (mod 2).
We now provide the combinatorial interpretations in terms of three-line arrays

and n—color overpartitions for (2.1) and (2.2) in Theorem 2.1 and Theorem 2.2
respectively.

Theorem 2.1. Let Ai(v) represent the number of three-line arrays into r columns
satisfying

(2.1.a) a, € {1,2},

(2.1.0) v, =0 (mod 2), V i

24 aip1 + 2841 + 71 if oy and aiqq are odd
(2.1.¢) a; = ¢ 34+ aip1 + 2Bi01 + Yitt if a; and o1 have opposite parity,
4+ ajr1+ 2801 +vir1 if a; and a1 are even,
where 1 <3 <pr —1.
Let A;(v) count the number of n—color overpartitions of v into r parts such that
(2.1.d) m; —z; =0 (mod 2) V 1,

(2.1.e) if x; = 1, then the occurrence of the part is not overlined.

Let By(v) is the number of partitions of v such that the odd parts are distinct,
the even parts are = £2 (mod 6) and two copies of the parts = £2 (mod 12) are
allowed. Then A,(v) = Ai(v) = By(v), ¥V v > 0.

Proof. We begin by expanding left hand side of (2.1)

— (=g ¢*)rq” _ = (14 q)(1+¢3) - (14 ¢ 1)gtt3t-+Er=1
; (R ; I—q)1=¢g3) 1= N1 -1 —¢Y - (1—¢)

Clearly the factor ¢”* = ¢35t =1 in the above expression generates the par-

tition into r odd parts. It corresponds to the following three-line array

2r—1 A R |
0 .. 0 0
0 .. 0 0

The factor (—gq;¢?), generates the partition into distinct odd parts < 2r — 1, say,
1-a1,3-as,...,(2r—1)-a,, where a; € {0,1}, V i. Thus the transformed three-line
array becomes
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2r—14+a1+>; 5,20, ... 3+a_1+2a 1l+a,
0 0 0
0 0 0

The factor (¢; ¢?);7! generates the partition into odd parts < 2r — 1, say, 1-by,3 -

? T

ba,...,(2r — 1) -b,, where b; > 0, Vi. The three-line array transforms to

2r—1+a1+ > 52(a; +b) 3+a,—1 + 2a, + 2b, 1+ a,
bl [N br,r-_l br
0 - 0 0
The factor (g% ¢*); ' generates the partition into even parts < 2r, say, 2 - ¢y, 4 -
Co,...,2r - ., where ¢; > 0, Vi. Hence, the three-line array transforms to
2r— 14+ a1+ 3+ a,_1+ 2a,+ 1+ a,
Y i 2(a; + b + ¢;) 2b, + 2c¢,
bl N br,‘_l bT
2cq ... 2c,_1 2c,

and v = 1-(a1+b1+1)+3-(ag+ba+1)+. . . +(2r—1)-(a,+b,+1)+2c1 +4co+. . . +2r¢,.
Therefore, A;(v) enumerates the three-line arrays with 5; = b;, v = 2¢; V i and
satisfying (2.1.a)—(2.1.c).

Table 1

Ai(6) | Ai(6) | Bi(6) || Ai(6) | Ai(6) | Bi(6)
1 2 _

<5) 6 51 (4) 66 424
0 0
1 2 _

(3) 64 422 (2) 64 321 1
2 2
1 2 _

(1) 6o 32, 1 (0) 62 | 21212y
4 4

31 41 _

(2 0) 9314 212129 (1 0) 9314 212929
0 0 0 0

3 1

(0 0) 5117 | 292925

2 0
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Example 2.1. For v = 6, the n—color overpartitions and three-line arrays satisfy-
ing Theorem 2.1 are listed in Table 1:

Theorem 2.2. Let As(v) represent the number of three-line arrays into r columns
satisfying (2.1.a), (2.1.c), and v; = 0 (mod 4) V i. Let Ay(v) count the number of
n—color overpartitions of v into r parts satisfying (2.1.€), m, —x, = 0 (mod 4),
and m; —x; = 0 (mod 2), for 1 <i<r—1.6 >0, and §; = 0 (mod 4) for
i <. Let Bo(v) =Y, _o Co(v — k)Do(k), where Cy(v) is the number of partitions
of v into distinct parts that are either = 5 (mod 10) or = +1 (mod 10) with two
copies of parts that are = 5 (mod 10) allowed and one copy of parts that are =
+1 (mod 10) allowed and Do (v) is the number of partitions of v into parts that are
= 42 (mod 10) with two copies of each part allowed. Then Ay(v) = As(v) = By(v)
vV uv>0.

Group 2

The RRTIs (2.6)—(2.9) below appear in [6] with Identity No. 104, 102, 27, 25 respec-
tively. In this group, the bijection used for (2.7)—(2.9) to establish the connection
between three-line arrays and overpartitions is the same as defined in Group 1.
The RRTTIs for this group are:

n+1(q ) (6% 0%

0 n(n+1) 1
qq 4 8 12. 12
= 50,0 75q o, 2.6
> n(n+2) 1
C] C]

E D D [, ¢", 4" 4", (2.7)
> ( q;9q )nqn(n+2) _ (Q7q2)oo [_q _q4 q5,q5] (2 8)
Z D5 (@) T '
n=0
00 n(n+2) .42

q q; 49 )0
E _ &q) -4, —¢*, ¢*; ") - (2.9)

n=0

The combinatorial interpretations in terms of three-line arrays and n—color over-
partitions of (2.6)—(2.9) are given in Theorems 2.3-2.6 respectively.

Theorem 2.3. Let As(v) represent the number of three-line arrays into r columns
satisfying (2.1.b) along with

(24.a) o, =0=r,,

(24()) Qp_1 Z 2,
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24 ajp1 + 2Bit1 + Vit if o and a4 are even
(2.4.¢) a; = ¢ 3+ ip1 +2Bit1 + Vi1 if i and a1 have opposite parity,
44 g1 + 268541 + viv1 i a; and ayqq are odd,
where 1 <1 <r —2, B
(2.4.d) v =0 (mod 2), V 4.
Let As(v) count the number of (n + 1)—color overpartitions of v into r parts satis-
fying
(2.4.€) 2, =m, + 1,

(2.4.f) (my)s, is not overlined,
(24.9) m; —x; =1 (mod 2), V i

(2.4.h) if x; = 1, then the occurrence of the part is not overlined.

Let B3(v) is the number of partitions of v in which the parts are #Z 0,44 (mod 12).
Then Az(v) = A3(v) = Bs(v) V v > 0.

Remark 2.1. Here we observe that the mapping used for first r — 1 parts is same
as defined in (2.4) and

ot (ZZ) —

0
For the ™" part the mapping is ¢ : (m,)s, — (mr - 1) and the inverse mapping s

0
o5 (7) = B

Example 2.2. For v = 6, A3(6) = 9 = A3(6). The three-line arrays corresponding
to A3(6) are

(o + Bi +7i)gi42, ity = 0 (mod 2),

(i + Bi +Yi)p1, if a; £ 0 (mod 2).

The (n + 1)-color overpartitions corresponding to As(6) are 67, 650, 6301, 6,01,
591, 6501, 6301, 5aly, 4,2,0;. The partitions corresponding to Bs(6) are 6, 51, 33,
321, 3111, 222, 2211, 21111, 111111.
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Theorem 2.4. Let Ay (v) represent the number of three-line arrays into r columns
satisfying (2.4.a) and (2.4.d) along with:

(2.7.a) a,_1 >3,

24 ajr1 + 2Bit1 + i1 if o and aiq are odd
(2.7.0) a; = ¢ 3+ a1 + 2Bie1 + Yitt if a; and o1 have opposite parity,
44 ajp1 +2B8i11 +vip1  if o and aiqq are even,
where 1 < ¢ <7 — 2.

Let Ay(v) count the number of (n + 2)—color overpartitions of v into r parts satis-
fying (2.4.f) and (2.4.h) along with:

(2.7.c) m; —z; =0 (mod 2) V 1,
(2.7.d) x,. =m, + 2.

Let By(v) is the number of partitions of v in which the parts are # £2 (mod 12).
Then Ay(v) = Ay(v) = Ba(v) Y v > 0.

Remark 2.2. Here we observe that the mapping used for first r — 1 parts is same
0

as defined in (2.4)—(2.5) and for the r'™ part is ¢ : (M), — <$r_2> and the

0

0
muerse mapping s qb_l : (Br> — (ﬁr)ﬂrw-
0

Theorem 2.5. Let A5(v) represent the number of three-line arrays into r columns
satisfying (2.7.b) for 1 <i <r —1, along with:

(2.9.a) a, € {3,4},
(2.9.0) v =0 (mod 4), Vi.

Let As(v) count the number of n—color overpartitions of v into r parts satisfying
(2.4.h) and (2.7.c) along with:

(2.9.¢) m, >3,
(2.9.d) m, — z, =2 (mod 4),
(2.9.€) 0; >0, and 6; =0 (mod 4), Vi <r.

Let Bs(v) = Y ,_oCs(v — k)Ds(k), where Cs(v) is the number of partitions of v
into distinct parts that are = 5 (mod 10) or = £3 (mod 10) with two copies of
parts that are = 5 (mod 10) allowed and one copy of parts that are = £3 (mod 10)
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allowed and D5(v) is the number of partitions of v into parts that are = 4 (mod 10)
with two copies of each part allowed. Then As(v) = As(v) = Bs(v) YV v > 0.

Remark 2.3. In above the mapping for the r'* part is

( 3
( zr—1 if m,. is not overlined,
m

r—Tr —2

¢ i (Mmy)g, —

4
Tr—2 if m, is overlined.
L \"r —@r — 2

And the inverse mapping is same as given in (2.5).

Theorem 2.6. Let Ag(v) represent the number of three-line arrays into r columns
satisfying (2.4.a), (2.7.a), (2.7.b), and (2.9.b). Let Ag(v) count the number of (n+2)-
color overpartitions of v into r parts satisfying (2.4.f), (2.4.h), (2.7.c), (2.7.d)
(2.9.e). Let Bs(v) = > \_oCs(v — k)Dg(k), where Cg(v) is the number of parti-
tions of v into distinct parts in which the parts are = +1,£3 (mod 10) and Dg(v)
is the number of partitions of v in which the parts are = +2,4+4 (mod 10). Then
Ag(v) = Ag(v) = Bs(v) Vv > 0.

Group 3
The RRTIs (2.10)—(2.12) appear in [6] as Identity No. 195, 45, 46 respectively:

f: (—¢2 ¢®)n1q™ _ 4%, 4", 4'% %) 0 [0'2, ¢2°; 6% (2.10)
n=1 <q7 Q>2n (q’ Q)oo ’
i (—1; ¢%)ng"+D _ (_q2;q2)oo[_q3 ¢, ¢% ] (2.11)
= (@2 (6% = 77 7
i (—q2;q2)nqn("+1) _ (_qQ’q2)00[_q g qﬁ,qﬁ] ‘ (2.12)
(¢ @)2n+1 (4% ¢%) oo 7 o

[en]

n—

The bijection between three-line arrays and (n + t)—color overpartitions for (2.10)—
(2.12) is given by

9
¢ (my)e, — (2.13)

Mmit1 + Tit1 +3
zi— 1 if m; is overlined,
\

6 —2

( mi+1 +Tip1 +1
zi—1 if m; is not overlined,
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and

61 (gl) N {(ai +06i+7i)g1 i =2+ a1 + 2841 + Vigs (2.14)

Vi (ai + ﬁz + ’Vi)ﬁﬁ-l if oy = 4 + (e7AN] + 2ﬁi+1 + Yit1-

The combinatorial interpretations in terms of three-line arrays and n—color over-
partitions of (2.10)—(2.12) are given in Theorems 2.7-2.9 respectively.

Theorem 2.7. Let A;(v) represent the number of three-line arrays into r columns
satisfying

(2.12.a) o, =1,

(2.12.0) a; € {2+ jp1 + 2001 + Yiv1, 4+ i1 +2Bi01 +Yia b, for 1 <i<r—1
(2.12.¢) v =0 (mod 2), V 7.

Let A7(v) count the number of n—color overpartitions of v into r parts satisfying
(2.12.d) m; —z; =0 (mod 2)V i,

(2.12.€) (m;),, is not overlined,

(2.12.f) 0; > 0, and 6; =0 (mod 2)V i < r. For 6; =0, m; is not overlined.

Let B;(v) is the number of_partz'tz'ons of v in which the parts are £ £2,+12,+14,16
(mod 32). Then Az(v) = Az(v) = B;(v) V v > 0.
For the combinatorial interpretation of left hand side of (2.11), we write

i (_1; q2)nqn(n+1 P Z n 1qn(n+1)
= (G (43 9)2n
=1 +22A8(u)q”, (2.15)

~ _ 2. n(n+1) . . . .
where S°°°  Ag(v)g” = 320, ( q2’q2?q3215 " Now we give the combinatorial in-

terpretation of (2.11) in the following theorem.

Theorem 2.8. Let Ag(V) represent the number of three-line arrays into r columns

satisfying (2.12.b), (2.12.¢) and o, = 2. Let Ag(v) count the number of n—color
overpartitions of v into r parts satisfying (2.12.d), (2.12.€), m,, x, > 1, §; > —2,
and 6; =0 (mod 2), Vi < r. For §; = —2, m; is not overlined.

Let Bs(v) = Y ,_, Cs(v — k)Ds(k), where Cs(v) is the number of partitions v in
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which the parts are = £2,£3,4+4 (mod 12) and Dg(v) is the number of partitions
of v into distinct parts that are = £2, 43, 4 (mod 12). Then,

2As(v) = Ag(v) = 2As(v) = As(v) = Bs(v) ¥ v > 1.

Remark 2.4. Here for the r'" part, we use the following mapping:

b (my)e, — < _— 1).

And the inverse mapping is same as in (2.4).

Example 2.3. For v = 6, the three-line arrays corresponding to 1218(6) are

1 N\ /1\ /3 1\ /3 1\ /5 1
s1.03). (1], (2 o], (o of,|o o
0o/ \2/ \4/ \o o/ \2 o/ \o o

And the n—color overpartitions corresponding to 28(6) are 6Gg, 64, 62, D311, 5111,
5111 Hence Ag(6) = Ag(6) = 6 and Ag(6) = Ag(6) = 12.

Theorem 2.9. Let Ag(v) represent the number of three-line arrays into r columns
satisfying (2.12.0) and (2.12.c) along with:

(2.16.a) o, =0=1,,
(2.16.b) a,_; > 2.

Let Ag(v) counts the number of (n 4 1)—color overpartitions of v into r parts sat-
isfying (2.12.f) along with:

(2.16.¢c) =, =m, + 1,
(2.16.d) (m,.)s, is not overlined,
(2.16.) m; —x; =1 (mod 2), V i.

)
Let By(v) = Y y_o Co(v — k)Dy(k), where Cy(v) is the number of partitions of v
in which the parts are = 2, 4 (mod 6) and Dg(v) is the number of partitions of v
into distinct parts that are = 0,4+1,£2 (mod 6). Then Ag(v) = Ag(v) = By(v) V
v > 0.

Remark 2.5. Here for the r'" part, the mapping and inverse mapping are defined
as

(b: (mr>rr — <x7~21)7 Qbil : (%) — (ﬁr)ﬂﬂrl-
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Group 4
The RRTIs (2.16

~—

—(2.17) below appear in [6] as Identity No. 11, 12 respectively.

= (10" (407 L s
Z (¢:¢2)n(q*; qY) - (¢% @) [—¢.— ¢, ¢°; —¢" ], (2.16)
n=0 ? n ) n ) o]
 (—1¢D00" " (—¢;¢%)
Z( : : - ! ) ¢, —¢", ¢ ="~ (2.17)

(G @n(d% ¢ ) (6354

To establish the bijection between three-line arrays and n—color overpartitions for
(2.16) and (2.17), we use

Il
=)

n

mip1 +xip1 + 1
zi—1 if m; is not overlined,
0;
¢ (Mi)a; = < (2.18)
m;+1 + Ti41 + 5
zi— 1 if m; is overlined,
L 5i—4

(2.19)

Rl ("‘) . (i + Bi +vi)g1 i o =2+ aipr + 28i41 + Vi1,
(a; + B +7%i)p+1 i oy = 64+ i1 + 2841 + Vig1

The combinatorial interpretations in terms of three-line arrays and n—color over-
partitions of (2.16) and (2.17) are given in Theorem 2.10 and Theorem 2.11 respec-
tively.

Theorem 2.10. Let Alo(u) represent the number of three-line arrays into r
columns satisfying

(2.18.a) o, =1,

(2.18.0) a; € {2+ iv1 + 2001 + Yiv1,6 + i1 + 28501 + Yiva ), for 1 <i<r—1
(2.18.¢) ;=0 (mod 4), V i.

Let El()(l/) count the number of n—color overpartitions of v into r satisfying
(2.18.d) m, — z, =0 (mod 4),

(2.18.€) (m;)., is not overlined,
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(2.18.f) 0; > 0 and §; =0 (mod 4), ¥V i <r. For é; =0, m; is not overlined.

Let Byo(v) = 3 1_o Cio(v — k)D1o(k), where Cho(v) is the number of partitions of
v in which the parts are = +£1,4 (mod 8) and Dio(v) is the number of partitions
of v in which the parts are = £1,4 (mod 8). Then,

21410(7/) = AIO(V) = 2A10(V) — ZlO(”) — BIO(V) V v 2 1
Remark 2.6. In the above theorem, we used similar argument as given in (2.15)
and letting Zf’zl Alo(y)qv =y (—'q4;q4)n471q"

n=1 (q;¢*)n(g*,q")n *
Theorem 2.11. Let AH(V) represent the number of three-line arrays into r

columns satisfying o, > 3 and (2.18.b)—(2.18.c). Let ZH(I/) count the number of
n—color overpartitions of v into r parts satisfying along with (2.18.f):

(2.20.a) m, > 2,
(2.20.6) m, — z, =2 (mod 4), (m;),, is not overlined.

Let B11(v) =Y 1_y Ci1(v — k)D11(k), where Cy1(v) is the number of partitions of
v in which the parts are = £3,4 (mod 8) and Dy1(v) is the number of partitions
of v into distinct partithat are = £3,4 (mod 8). Then,

2411 (V) = Ap(v) = 241, (v) = A (v) = Bu(v) Y v > 1.

Remark 2.7. In the above theorem, we used similar argument as given in (2.15)
1qn(n+2)

and letting 3200 A (v)g” = 3200, (_E’;;f;)):@47q4)n . The mapping for the r'* part

3
is ¢ (my)y, — < o —1 ) And the inverse mapping is same as in (2.19).

My — Ty — 2
Group 5

The RRTIs (2.20)—(2.22) below appear in [6] as Identity No. 37, 106, 40 respec-
tively.

n2

(—L@)nd" (Do 35 3 6 6
(GG D) (G0 4,4, 4% Lo (2.20)

NE

n=

. n2 5 7T 12, 12
( QQ)n—lq :[ 9,—9,9 >4 ]007 (221)

(¢:q ) (¢ @)n (¢ 9)

Mg

n=1

0 n(nJrl) S
—q;q ( an)oo 5 6. 6
E = 9,99 oo 2.22
—~ (¢; ¢? n+1(q ODn (G0 | | (2.22)
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To establish the bijection between three-line arrays and (n+t)—color overpartitions
for (2.20)—(2.22), we use

([ mit1+@ig +1
zi—1 if m; is not overlined,
8

mip1 + Tjp1 +2
zi—1 if m; is overlined,
L si—1

and

oL (a> - (a; + B +vi)grr I =24 aipr + Bigr + Vit
(0 + Bi +vi)ga2 i oy =34+ g1 + Bipr + Vit

The combinatorial interpretations in terms of three-line arrays and n—color over-
partitions of (2.20)—(2.22) are given in Theorems 2.12-2.14 respectively.

Theorem 2.12. Let 12112(1/) represent the number of three-line arrays into r
columns satisfying

(2.22.a) a, =1,
(222b) o € {2 + O + 25“_1 + Yi+15 3+ (67AN] + 252‘4_1 + ’7i+1} fO?" 1 S 1 S r— 1.

Let A12<I/) count the number of n—color overpartitions of v into r parts satisfying

(2.22.¢) (M)

18 not overlined,

T

(2.22.d) 6; >0,V i <r. Ford; =0, m; is not overlined.

Let Bio(v) =Y 1 _o Cia(v — k) D1o(k), where Cio(v) is the number of partitions of
v in which the parts are = £1,4+2 (mod 6) and D12(v) is the number of partitions
of v into the distinct parts that are = +1, 2 (mod 6). Then,

2A12(V) = A12<1/) = 21412(1/) = Zlg(V) = Bm(l/) V 1% Z 1.
Remark 2.8. In the above theorem, we used similar argument as given in (2.15)

~ e n2
and letting Y 2 | A1a(v)g" =3 00, %.

Theorem 2.13. Let Ai3(v) represent the number of three-line arrays into r
columns and Ay3(v) counts the number of n—color overpartitions of v into r parts
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satisfying all the conditions of 12112(1/) and Alg(y) defined in Theorem 2.22 respec-
tively. Let Bi3(v) = > i_, Cis(v — k) D13(k), where Ci3(v) is the number of parti-
tions of v and D13(v) is the partitions of v in which the parts are = £5 (mod 12).
Then Alg(V) = Zlg(y) = B13(V> Vv 2 1.

Theorem 2.14. Let Ay4(v) represent the number of three-line arrays into r
columns satisfying (2.22.b) along with:

(2.25.a) o, =0 =",
(2.25.0) a1 > 2.

Let Ay4(v) counts the number of (n + 1)—color overpartitions of v into v parts
satisfying (2.22.d) along with:

(2.25.¢) z, =m, + 1,

(2.25.d) (my.)s, is not overlined,

(2.25.¢) m; —x; =1 (mod 2), V 1.

Let B14(v) = Y 1_y Ca(v — k)D14(k), where C4(v) is the number of partitions of
v in which the parts are = £2,3 (mod 6) and D14(v) is the number of partitions
of v into distinct parts. Then A14(v) = A1y(v) = Buu(v) Vv > 0.

The Proof of Theorems 2.2-2.14 can be supplied by reader on lines of Theorem
2.1, hence omitted.

3. Alternative Proofs

In this section we provide an alternate proof for arrays enumerated by A;(v),
where 1 < i < 14. Throughout this section, if A;(v) denote the arrays with some
conditions in any number of columns, then A;(r,v) will denote the arrays with
same conditions into r columns. In the proofs we follow the method of proof of
[1]. Due to the similarity of the proofs of the Theorem 2.1-Theorem 2.14 presented
so far only detailed proof of Theorem 2.1 is given below and for rest we will only
make an outline of them.
Proof of Theorem 2.1. Split the arrays enumerated by A;(r, v) into the following
four classes:

1
(i) those arrays in which r** column is (0),
0

2
(i) those arrays in which 7 column is (0),
0
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(iii) those arrays in which ~, # 0,
(iv) those arrays in which 7, = 0, and 5, # 0.

0
and subtracting 2 from all «;, keeping f; and 7; as same for 1 < i < r — 1. We

see that transformed arrays are enumerated by A;(r — 1,7 — 2r + 1). In class (ii)

1
Transform the arrays of class (i) by eliminating the 7" column <0> of the array

2
deleting 7" column (0) of the array and subtracting 4 from all «;, keeping ;
0

and v; as same for 1 < ¢ < r — 1. The transformed arrays are enumerated by
Ay(r —1,v —4r + 2). In class (iii) subtracting 2 from «a;, 1 < i < r — 1, keeping
B; ¥V i as same and subtract 2 from «,.. Remaining 7;, 1 <i <r — 1 remains same.
The transformed arrays are enumerated by A;(r,v — 2r).

Finally, we transform the arrays of class (iv) by subtracting 2 from «;, V i, and
subtracting 1 from (3, and remaining g; for 1 < i < r — 1 and 7; V i are same,
we see that transformed arrays are enumerated by A;(r,v — 2r + 1) having the

;g
r* column as (&-), Bi # 0. Thus number of arrays in class (iv) are obtained by
0

subtracting the number of array which are enumerated by A;(r,v — 2r 4+ 1) with
the r** column as <B:) where 7, # 0 from A;(r,v —2r 4+ 1). Thus the transformed

Yr
arrays are enumerated by A;(r,v —2r +1) — A;(r,v — 4r + 1). Hence we get the

following recurrence formula for A;(r, v):

Ai(rv)=Ai(r—=1Lv—=2r+ 1)+ Ay(r — L,v —4r +2) + Ay (r,v — 2r)
+ Ay(r, v —2r+1) — Ay (r,v —4r + 1), (3.1)

where A;(0,0) =1 and A;(r,v) =0 for v < 0.
For |g] < 1 and |z| < |¢|7*, let g1(z, ¢) be defined by
gl(z7Q) = ZZAl(rv V)zrqy' (32)
v=0 r=0

Substitute A;(r,v) from (3.1) in (3.2), we get g—functional equation

91(2,q) = 2q91(2¢%, q) + 2¢° 91 (24", @) + 1(2¢*, q)
+q '91(2¢%,q9) — ¢ ' g1(2q", q). (3.3)
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Setting
91(z,q) =Y wi(n,q)2". (3.4)
n=0
Using (3.3) in (3.4) and then examining the coefficients of 2", we get

q2n71(1 _}_q2n71)
1—¢>)(1—¢>1)

Iterating (3.5) n times and observing w;(0,¢) = 1, we find that

wi(n,q) = ( wi(n—1,q). (3.5)

2

(=4 ¢)nq"
wilmn ) = (@ a2 )n (3:6)
Therefore,
N (—q;4%)ng™
an(zq) = D — —n 2
= (0% (@ ¢)n
and
ZAl(l/)q” = Z (ZAI(T, V)) q”
v=0 v=0 r=0
= 9i(1,9)

Hence the proof. Now we give a concise proof of remaining theorems.

Sketch Proof of Theorem 2.2.
The classes of As(r,v) are same as defined for A;(r,v). Using the similar transfor-
mation we get the following recurrence relation for As(r,v).

Ay(r,v) = Ag(r—1v—2r+1)+ As(r — 1L, v —4r 4 2) + Ay(r,v — 4r)
+Ao(r,v —2r + 1) — Ay(r,v — 61 — 1).

The remaining proof can be supplied by the reader as done earlier.

Sketch Proof of Theorem 2.3. .
Split the arrays into two classes, first containing the arrays with (0) as their
0



98 South FEast Asian J. of Mathematics and Mathematical Sciences

0
r*" column and second containing the arrays with (4. ) as r** column. After
0

transformation, the arrays in the first class are enumerated by A;(r — 1,v —7r+1)
and in the second class are enumerated by As(r,v — 2r + 1). Thus the recurrence
relation becomes

As(r,v)=A1(r—Lv—r+1)+ As(r,v —2r + 1).

The remaining proofs for Theorems 2.2-2.3 can be supplied by the reader as done
earlier.

For upcoming lemmas and theorems we only provide the recurrence relations and
the corresponding classes are given in Table 2. As the detailed proof is on similar
lines as done earlier, hence omitted.

Sketch proof of Theorems 2.4-2.6.
The recurrence relations for the enumerates A;(r,v), 4 <i < 6, are:

Ay(ryv) = Ay(r—1Lv—=2r+2)+ Ay(r,v —2r + 1),
As(ryv) = As(r—Lv—2r—1)+As(r—1L,v—4r) + As(r,v — 4r)
+As(r,v — 2r + 1) — As(r,v — 6r + 1),
Ag(r,v) = As(r—1,v)+ Ag(r,v —2r +1).
Sketch Proof of Theorem 2.7.

To obtain the recurrence relation for the enumerator A;(r,v), we consider the
following g—series:

S Mg =y GO (37
— —  (¢:9)2
The interpretation of (3.7) in terms of three-line arrays is given in following lemma.

Lemma 3.1. For v > 0, let M,(v) represent the number of three-line arrays
satisfying o; € {1,3}, (2.12.0) and (2.12.c).

Sketch Proof of Lemma 3.1.

Let M;(r,v) represent the number of three-line arrays enumerated by M;(v) of v
into r columns. We split the arrays enumerated by M;(r,v) into four classes and
get the recurrence relation:

Mi(r,v) = M(r—1v—=2r+1)+M(@r—1v—4r+1)+ M(r,v—2r)
+Mi(r,v—2r+1) — My(r,v —4r + 1),

where M;(0,0) =1 and M;(r,v) =0 for v < 0.
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We now find the recurrence relation for A(r,v) using the classes of M (r,v):
A(ryv) = My(r—1Lv—=2r+1)+M(r—1v—4r+1)+ Az(r,v — 4r)
+A7(r,v —2r4+1) — Ag(r,v — 6r + 1).
Sketch Proof of Theorems 2.8 and 2.9

To obtain the recurrence relation for the enumerator Ag(r, v) and
Ag(r,v), where Ag(r,v) is Ag(v) into r columns, we consider the following g—series:

ZM2(V)C]V _ Z (_q2; q2)nq

per S C )

n(n+1)

(3.8)

The combinatorial interpretation of (3.8) is given in Lemma 3.2.

Lemma 3.2. For v > 0, let My(v) represent the number of three-line arrays
satisfying oy € {2,4}, (2.12.b) and (2.12.c).

Sketch Proof of Lemma 3.2.

The recurrence relation for Ms(r, v), where My(r, v) represent My (v) into r columns
is:

My(r,v) = My(r—1,v—2r)+ My(r —1,v —4r) + Ms(r,v — 2r)
+My(r,v —2r+ 1) — My(r,v —4r + 1).
Now we find the recurrence relations for Ag(r,v) and Ag(r,v):
Ag(r,v) = My(r—1,v = 2r) + My(r — 1,v — 4r) + Ag(r,v — 4r)
+As(r,v —2r +1) — Ag(r,v — 6r + 1),
Ag(r,v) = My(r—1,v—2r+1)+ Ag(r,v —2r +1).
Sketch Proof of Theorem 2.10.

To obtain the recurrence relation for the enumerator Ayo(r, v), where Ayo(r,v) is
Ajo(v) into r columns, we consider the following g-series:

S Mg =Y (=" ¢")nd" (3.9)

(¢ ®)nla q)n

n=0
The combinatorial interpretation of (3.9) is given in Lemma 3.3.

Lemma 3.3. For v > 0, let M;(v) represent the number of three-line arrays
satisfying o; € {1,5}, (2.18.0) and (2.18.c).

Sketch Proof of Lemma 3.3.

The recurrence relation for Ms(r, v), where M3(r, v) represent M3(v) into r columns
is:
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Ms(r,v) = Ms(r—1v—2r+1)+ Ms(r — 1L, v —6r+ 1) + Ms(r,v — 4r)
+Ms(r,v —2r 4+ 1) — Ms(r,v — 6r + 1).
Now we find the recurrence relations for Ayo(r, v):
Alo(r, v) = Ms(r—1,v—2r+1)+ Ms(r—1Lv—6r+1)+ Alo(r, v —8r)
+Ao(r, v —2r +1) — Ajo(r,v — 10r 4+ 1).
Sketch Proof of Theorem 2.11.

To obtain the recurrence relation for the enumerator Ay, (r,v), where Ay (r,v) is
Aq1(v) into r columns, we consider the following g—series:

n(n+2)

> > 4.4 (
ZM4(V)QV:Z< QaQ)nq

= (G P)nlgh a)n

(3.10)

The combinatorial interpretation of (3.10) is given in Lemma 3.4.

Lemma 3.4. For v > 0, let My(v) represent the number of three-line arrays
satisfying o; € {3,7}, (2.18.0) and (2.18.¢).

Sketch Proof of Lemma 3.4.

The recurrence relation for My(r, v), where My(r, v) represent My (v) into r columns
is:

My(r,v) = My(r—1,v—2r —1)+ My(r — 1,v —6r — 1) + My(r,v — 4r)
+My(r,v —2r+1) — My(r,v — 6r 4+ 1).
And the recurrence relations for All(r, v) is:
Ap(rv) = My(r—1,0—2r —1)+ My(r — 1,v — 6r — 1) + Ay (r,v — 8r)
+Ay(r,v—2r+1) — Ay (r,v — 10r 4+ 1).
Sketch proof of Theorem 2.12. A )
To obtain the recurrence relation for the enumerator Ajs(r,v), where Ayo(r,v) is

A12(V) into r columns, we consider the following g-series:

2

S My =Y ((—q; Dnq"

= (40 n(@: @)n (3.11)

The combinatorial interpretation of (3.11) is given in Lemma 3.5.

Lemma 3.5. For v > 0, let Ms(v) represent the number of three-line arrays
satisfying o; € {1,5}, and (2.22.).

Sketch Proof of Lemma 3.5.

The recurrence relation for Ms(r, v), where Ms(r, v) represent Ms(v) into r columns
is:
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Ms(r,v) = Ms(r—1Lv—2r+1)+ Ms(r—1,v—3r+1)+ Ms(r,v —r)
+M;5(r,v —2r 4+ 1) — Ms(r,v — 3r +1).
And the recurrence relations for Ay, (r, v) is:
Ap(rv) = Ms(r—1,v—2r+1)+ Ms(r —1,v —3r + 1) + Ap(r, v — 2r)
+Ap(r,v—2r+1) — App(r,v —4r + 1).
As Apy(v) = Ags(v), so the recurrence relations for the enumerators Ays(v) and

Ay3(v) are same.

Sketch proof of Theorem 2.14.
The recurrence relation for the enumerator Ay4(r,v) is

Ava(r,v) = Ms(r —1,v =2 + 1) + Aw(r,v = 2 + 1),

Table 2

Enumerator | class 1 | class 2 || Enumerator | class 1 | class 2

0 0 . 1 1
A4(V) 8 ﬁor Alg(l/) 8 (1)

3 4 1 1
) ) 1) e o) |\

0 0 0 0
Al) ) \o) | o) | \o

AQ(V) 8 ﬁ0r> M3<V) (1)

Aio(v) (1) (1)) My(v) ?)

w (010 = 676

An(v) 3 3) M;(v) (1)
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In Table 2, we provide the classes and the corresponding enumerator. For
Ai(v), i =4,6,9 and 14 we have only two classes given in the Table 2, and for the
remaining enumerators we have four classes: first and second classes are given in
the table, third class has those arrays in which ~, # 0, and fourth class has those
arrays in which v, = 0, and g, # 0.
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