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1. Introduction
In [9], Santos et al. introduced the concept of a two-line array. For a positive

integer ν, let(
α1 α2 . . . αr

β1 β2 . . . βr

)
, αi, βi ≥ 0 for 1 ≤ i ≤ r (1.1)

be a two-line array such that

ν =
r∑

i=1

αi +
r∑

i=1

βi. (1.2)

Using the above two-line array representation and by imposing certain restrictions
on αi and βi, Santos and his collaborators interpreted many identities from Slater’s
list [10] including Rogers–Ramanujan identities and Lebesgue’s partition identities
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in [9]. They also presented several bijective proofs for partition identities. The
work is further related to three-quadrant Ferrers graphs in [4]. Continuing with
the above work, Brietzke et al. [5] found the combinatorial interpretations of a
number of mock theta functions using a two-line array, some of which were already
interpreted using (n + t)–color partitions. In [2], Alegri introduced a third row of
γi in a line array representation, such that ν =

∑
i

αi +
∑
i

βi +
∑
i

γi, to construct

a correspondence between three-line arrays and overpartitions. In [3], a bijection
from certain classes of plane partitions to overpartitions and unrestricted partitions
was presented. The purpose of this paper is to study combinatorial interpretations
of Rogers–Ramanujan type identities (RRTIs), given in [6, 10], using the three-line
arrays and establish bijections with (n+ t)–color overpartitions. Before proceeding
further, we recall:

Definition 1.1. [1] An (n+ t)–color partition (also called a partition with “n+ t
copies of n”) t ≥ 0, is a partition in which a part of size n, n ≥ 0, can come
in n + t different colors denoted by n1, n2, . . . , nn+t. Note that, only one copy
of zero is allowed and it cannot repeat. The weighted difference is defined as
(((mi)xi

− (mj)xj
)) = mi − mj − xi − xj where (mi)xi

and (mj)xj
(mi ≥ mj) are

two parts in an (n + t)–color partition (m1)x1 + (m2)x2 + . . . + (mr)xr such that
m1 ≥ m2 ≥ . . . ≥ mr. For ν = 2, the (n+2)–color partitions are 24, 23, 22, 21, 1313,
1312, 1311, 1212, 1211, 1111. For convenience, we denote δi = (((mi)xi

−(mi+1)xi+1
))

where mi ≥ mi+1.

Definition 1.2. [7, 8] An (n+ t)–color overpartition is an (n+ t)–color partition
in which the final occurrence of a part (mj)xj

may be overlined. Here zero is not
permitted to repeat and only one copy of 0 is allowed so either 0x or 0x is used.
In Section 2, we present combinatorial interpretations of fourteen RRTIs with
three-line arrays and (n + t)–color overpartitions. We proceed constructively to
obtain three-line array interpretations and translate these results into (n+ t)–color
overpartitions using certain bijections. Based on these bijections we classify the
fourteen identities into five groups: Group 1 contains 2, Group 2 contains 4, Group
3 contains 3, Group 4 contains 2 and Group 5 contains 3 RRTIs. In Section 3,
we provide alternate proofs of sum side in RRTIs involving three-line arrays using
classical approach. We provide one full proof of a theorem and for remaining the-
orems we give sketch proofs due to the similarity of the proofs associated with the
theorems.

2. Combinatorial interpretations

Group 1
The following RRTIs (2.1) appears in [10] and (2.2) in [6], as Identity No. 29:
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∞∑
n=0

(−q; q2)nq
n2

(q; q)2n
=

(−q; q2)∞
(q2; q2)∞

[−q2,−q4, q6; q6]∞, (2.1)

∞∑
n=0

(−1)n(q; q2)nq
n2

(−q; q2)n(q4; q4)n
=

(q; q2)∞
(q2; q2)∞

[−q2,−q3, q5; q5]∞. (2.2)

Here we have employed the standard q-series notation

(a; q)n =
n−1∏
k=0

(1− aqk),

[a1, a2, , ak; qn] = (a1; q)n(a2; q)n · · · (ak; q)n,
and [a1, a2, . . . , ak; q]∞ = (a1; q)∞(a2; q)∞ · · · (ak; q)∞.

Throughout the paper, sums in an RRTIs represent generating functions for ei-
ther Ai(ν), which count partitions in terms of three-line arrays, or Ai(ν), which
count (n + t)–color overpartitions, where 1 ≤ i ≤ 14. The generating function for
Bi(ν), which count ordinary partitions, is expressed without a sum and instead
only uses products from the q-series notation described above. These lead to 3-way
combinatorial interpretations satisfying

∞∑
ν=0

Ai(ν)q
ν =

∞∑
ν=0

Ai(ν)q
ν =

∞∑
ν=0

Bi(ν)q
ν , 1 ≤ i ≤ 14. (2.3)

For Group 1, we construct a bijection between three-line arrays and n–color
overpartitions. Let (mi)xi

and (mi+1)xi+1
be two consecutive parts of an n–color

overpartition. Then the corresponding column

(
αi

βi

γi

)
in the three-line array is given

by

ϕ : (mi)xi
→



(
mi+1 + xi+1 + 1

xi − 1

δi

)
if mi is not overlined,

(
mi+1 + xi+1 + 2

xi − 2

δi

)
if mi is overlined.

(2.4)

In the reverse implication, let

(
αi

βi

γi

)
be any column in the three-line array. Then

the corresponding part in an n–color overpartitions, (mi)xi
, is given by
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ϕ−1 :

(
αi

βi

γi

)
→


(αi + βi + γi)βi+2, if αi ≡ 0 (mod 2),

(αi + βi + γi)βi+1, if αi ̸≡ 0 (mod 2).

(2.5)

We now provide the combinatorial interpretations in terms of three-line arrays
and n–color overpartitions for (2.1) and (2.2) in Theorem 2.1 and Theorem 2.2
respectively.

Theorem 2.1. Let A1(ν) represent the number of three-line arrays into r columns
satisfying

(2.1.a) αr ∈ {1, 2},

(2.1.b) γi ≡ 0 (mod 2), ∀ i

(2.1.c) αi =


2 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 are odd ,

3 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 have opposite parity,

4 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 are even,

where 1 ≤ i ≤ r − 1.

Let A1(ν) count the number of n–color overpartitions of ν into r parts such that

(2.1.d) mi − xi ≡ 0 (mod 2) ∀ i,

(2.1.e) if xi = 1, then the occurrence of the part is not overlined.

Let B1(ν) is the number of partitions of ν such that the odd parts are distinct,
the even parts are ≡ ±2 (mod 6) and two copies of the parts ≡ ±2 (mod 12) are
allowed. Then A1(ν) = A1(ν) = B1(ν), ∀ ν ≥ 0.
Proof. We begin by expanding left hand side of (2.1)
∞∑
r=0

(−q; q2)rq
r2

(q; q)2r
=

∞∑
r=0

(1 + q)(1 + q3) · · · (1 + q2r−1)q1+3+...+(2r−1)

(1− q)(1− q3) · · · (1− q2r−1)(1− q2)(1− q4) · · · (1− q2r)
.

Clearly the factor qr
2
= q1+3+5...+(2r−1) in the above expression generates the par-

tition into r odd parts. It corresponds to the following three-line array 2r − 1 . . . 3 1
0 . . . 0 0
0 . . . 0 0

 .

The factor (−q; q2)r generates the partition into distinct odd parts ≤ 2r − 1, say,
1 · a1, 3 · a2, . . . , (2r− 1) · ar, where ai ∈ {0, 1}, ∀ i. Thus the transformed three-line
array becomes
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 2r − 1 + a1 +
∑r

i=2 2ai . . . 3 + ar−1 + 2ar 1 + ar
0 . . . 0 0
0 . . . 0 0

 .

The factor (q; q2)−1
r generates the partition into odd parts ≤ 2r − 1, say, 1 · b1, 3 ·

b2, . . . , (2r − 1) · br, where bi ≥ 0, ∀ i. The three-line array transforms to 2r − 1 + a1 +
∑r

i=2 2(ai + bi) . . . 3 + ar−1 + 2ar + 2br 1 + ar
b1 . . . br−1 br
0 . . . 0 0


The factor (q2; q2)−1

r generates the partition into even parts ≤ 2r, say, 2 · c1, 4 ·
c2, . . . , 2r · cr, where ci ≥ 0, ∀ i. Hence, the three-line array transforms to

2r − 1 + a1+ . . . 3 + ar−1 + 2ar+ 1 + ar∑r
i=2 2(ai + bi + ci) 2br + 2cr

b1 . . . br−1 br
2c1 . . . 2cr−1 2cr


and ν = 1·(a1+b1+1)+3·(a2+b2+1)+. . .+(2r−1)·(ar+br+1)+2c1+4c2+. . .+2rcr.
Therefore, A1(ν) enumerates the three-line arrays with βi = bi, γi = 2ci ∀ i and
satisfying (2.1.a)–(2.1.c).

Table 1

A1(6) A1(6) B1(6) A1(6) A1(6) B1(6)(
1
5
0

)
66 51

(
2
4
0

)
66 421(

1
3
2

)
64 422

(
2
2
2

)
64 3211(

1
1
4

)
62 322 1

(
2
0
4

)
62 212121(

3 1
2 0
0 0

)
5311 212122

(
4 1
1 0
0 0

)
5311 212222(

3 1
0 0
2 0

)
5111 222222
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Example 2.1. For ν = 6, the n–color overpartitions and three-line arrays satisfy-
ing Theorem 2.1 are listed in Table 1:

Theorem 2.2. Let A2(ν) represent the number of three-line arrays into r columns
satisfying (2.1.a), (2.1.c), and γi ≡ 0 (mod 4) ∀ i. Let A2(ν) count the number of
n–color overpartitions of ν into r parts satisfying (2.1.e), mr − xr ≡ 0 (mod 4),
and mi − xi ≡ 0 (mod 2), for 1 ≤ i ≤ r − 1. δi ≥ 0, and δi ≡ 0 (mod 4) for
i < r. Let B2(ν) =

∑ν
k=0C2(ν − k)D2(k), where C2(ν) is the number of partitions

of ν into distinct parts that are either ≡ 5 (mod 10) or ≡ ±1 (mod 10) with two
copies of parts that are ≡ 5 (mod 10) allowed and one copy of parts that are ≡
±1 (mod 10) allowed and D2(ν) is the number of partitions of ν into parts that are
≡ ±2 (mod 10) with two copies of each part allowed. Then A2(ν) = A2(ν) = B2(ν)
∀ ν ≥ 0.

Group 2

The RRTIs (2.6)–(2.9) below appear in [6] with Identity No. 104, 102, 27, 25 respec-
tively. In this group, the bijection used for (2.7)–(2.9) to establish the connection
between three-line arrays and overpartitions is the same as defined in Group 1.
The RRTIs for this group are:

∞∑
n=0

(−q; q2)nq
n(n+1)

(q; q2)n+1(q2; q2)n
=

1

(q; q)∞
[q4, q8, q12; q12]∞, (2.6)

∞∑
n=0

(−q; q2)nq
n(n+2)

(q; q2)n+1(q2; q2)n
=

1

(q; q)∞
[q2, q10, q12; q12]∞, (2.7)

∞∑
n=0

(−1)n(q; q2)nq
n(n+2)

(−q; q2)n(q4; q4)n
=

(q; q2)∞
(q2; q2)∞

[−q,−q4, q5; q5]∞, (2.8)

∞∑
n=0

(−1)n(q; q2)nq
n(n+2)

(−q; q2)n+1(q4; q4)n
=

(q; q2)∞
(q2; q2)∞

[−q5,−q5, q5; q5]∞. (2.9)

The combinatorial interpretations in terms of three-line arrays and n–color over-
partitions of (2.6)–(2.9) are given in Theorems 2.3–2.6 respectively.

Theorem 2.3. Let A3(ν) represent the number of three-line arrays into r columns
satisfying (2.1.b) along with

(2.4.a) αr = 0 = γr,

(2.4.b) αr−1 ≥ 2,
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(2.4.c) αi =


2 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 are even ,

3 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 have opposite parity,

4 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 are odd,

where 1 ≤ i ≤ r − 2,

(2.4.d) γi ≡ 0 (mod 2), ∀ i.

Let A3(ν) count the number of (n+ 1)–color overpartitions of ν into r parts satis-
fying

(2.4.e) xr = mr + 1,

(2.4.f) (mr)xr is not overlined,

(2.4.g) mi − xi ≡ 1 (mod 2), ∀ i

(2.4.h) if xi = 1, then the occurrence of the part is not overlined.

Let B3(ν) is the number of partitions of ν in which the parts are ̸≡ 0,±4 (mod 12).
Then A3(ν) = A3(ν) = B3(ν) ∀ ν ≥ 0.
Remark 2.1. Here we observe that the mapping used for first r− 1 parts is same
as defined in (2.4) and

ϕ−1 :

(
αi

βi

γi

)
→


(αi + βi + γi)βi+2, if αi ≡ 0 (mod 2),

(αi + βi + γi)βi+1, if αi ̸≡ 0 (mod 2).

For the rth part the mapping is ϕ : (mr)xr →
(

0
xr − 1

0

)
and the inverse mapping is

ϕ−1 :

(
0
βr

0

)
→ (βr)βr+1.

Example 2.2. For ν = 6, A3(6) = 9 = A3(6). The three-line arrays corresponding
to A3(6) are 0

6
0

,

2 0
4 0
0 0

,

2 0
2 0
2 0

,

2 0
0 0
4 0

,

4 0
1 1
0 0

,

3 0
3 0
0 0

,

3 0
1 0
2 0

,

3 0
3 1
0 0

,

4 2 0
0 0 0
0 0 0

.

The (n + 1)–color overpartitions corresponding to A3(6) are 67, 6501, 6301, 6101,
5212, 6501, 6301, 5212, 412101. The partitions corresponding to B3(6) are 6, 51, 33,
321, 3111, 222, 2211, 21111, 111111.
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Theorem 2.4. Let A4(ν) represent the number of three-line arrays into r columns
satisfying (2.4.a) and (2.4.d) along with:

(2.7.a) αr−1 ≥ 3,

(2.7.b) αi =


2 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 are odd ,

3 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 have opposite parity,

4 + αi+1 + 2βi+1 + γi+1 if αi and αi+1 are even,

where 1 ≤ i ≤ r − 2.

Let A4(ν) count the number of (n+ 2)–color overpartitions of ν into r parts satis-
fying (2.4.f) and (2.4.h) along with:

(2.7.c) mi − xi ≡ 0 (mod 2) ∀ i,

(2.7.d) xr = mr + 2.

Let B4(ν) is the number of partitions of ν in which the parts are ̸≡ ±2 (mod 12).
Then A4(ν) = A4(ν) = B4(ν) ∀ ν ≥ 0.
Remark 2.2. Here we observe that the mapping used for first r− 1 parts is same

as defined in (2.4)–(2.5) and for the rth part is ϕ : (mr)xr →
(

0
xr − 2

0

)
and the

inverse mapping is ϕ−1 :

(
0
βr

0

)
→ (βr)βr+2.

Theorem 2.5. Let A5(ν) represent the number of three-line arrays into r columns
satisfying (2.7.b) for 1 ≤ i ≤ r − 1, along with:

(2.9.a) αr ∈ {3, 4},

(2.9.b) γi ≡ 0 (mod 4), ∀ i.

Let A5(ν) count the number of n–color overpartitions of ν into r parts satisfying
(2.4.h) and (2.7.c) along with:

(2.9.c) mr ≥ 3,

(2.9.d) mr − xr ≡ 2 (mod 4),

(2.9.e) δi ≥ 0, and δi ≡ 0 (mod 4), ∀ i < r.

Let B5(ν) =
∑ν

k=0C5(ν − k)D5(k), where C5(ν) is the number of partitions of ν
into distinct parts that are ≡ 5 (mod 10) or ≡ ±3 (mod 10) with two copies of
parts that are ≡ 5 (mod 10) allowed and one copy of parts that are ≡ ±3 (mod 10)
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allowed and D5(ν) is the number of partitions of ν into parts that are ≡ ±4 (mod 10)
with two copies of each part allowed. Then A5(ν) = A5(ν) = B5(ν) ∀ ν ≥ 0.

Remark 2.3. In above the mapping for the rth part is

ϕ : (mr)xr →



(
3

xr − 1

mr − xr − 2

)
if mr is not overlined,

(
4

xr − 2

mr − xr − 2

)
if mr is overlined.

And the inverse mapping is same as given in (2.5).

Theorem 2.6. Let A6(ν) represent the number of three-line arrays into r columns
satisfying (2.4.a), (2.7.a), (2.7.b), and (2.9.b). Let A6(ν) count the number of (n+2)–
color overpartitions of ν into r parts satisfying (2.4.f), (2.4.h), (2.7.c), (2.7.d)
(2.9.e). Let B6(ν) =

∑ν
k=0C6(ν − k)D6(k), where C6(ν) is the number of parti-

tions of ν into distinct parts in which the parts are ≡ ±1,±3 (mod 10) and D6(ν)
is the number of partitions of ν in which the parts are ≡ ±2,±4 (mod 10). Then
A6(ν) = A6(ν) = B6(ν) ∀ ν ≥ 0.

Group 3

The RRTIs (2.10)–(2.12) appear in [6] as Identity No. 195, 45, 46 respectively:

∞∑
n=1

(−q2; q2)n−1q
n2

(q; q)2n
=

[q2, q14, q16; q16]∞[q12, q20; q32]∞
(q; q)∞

, (2.10)

∞∑
n=0

(−1; q2)nq
n(n+1)

(q; q)2n
=

(−q2; q2)∞
(q2; q2)∞

[−q3,−q3, q6; q6]∞, (2.11)

∞∑
n=0

(−q2; q2)nq
n(n+1)

(q; q)2n+1

=
(−q2, q2)∞
(q2; q2)∞

[−q,−q5, q6; q6]∞. (2.12)

The bijection between three-line arrays and (n+ t)–color overpartitions for (2.10)–
(2.12) is given by

ϕ : (mi)xi
→



(
mi+1 + xi+1 + 1

xi − 1

δi

)
if mi is not overlined,

(
mi+1 + xi+1 + 3

xi − 1

δi − 2

)
if mi is overlined,

(2.13)
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and

ϕ−1 :

(
αi

βi

γi

)
→

{
(αi + βi + γi)βi+1 if αi = 2 + αi+1 + 2βi+1 + γi+1,

(αi + βi + γi)βi+1 if αi = 4 + αi+1 + 2βi+1 + γi+1.
(2.14)

The combinatorial interpretations in terms of three-line arrays and n–color over-
partitions of (2.10)–(2.12) are given in Theorems 2.7–2.9 respectively.

Theorem 2.7. Let A7(ν) represent the number of three-line arrays into r columns
satisfying

(2.12.a) αr = 1,

(2.12.b) αi ∈ {2 + αi+1 + 2βi+1 + γi+1, 4 + αi+1 + 2βi+1 + γi+1}, for 1 ≤ i ≤ r − 1

(2.12.c) γi ≡ 0 (mod 2), ∀ i.

Let A7(ν) count the number of n–color overpartitions of ν into r parts satisfying

(2.12.d) mi − xi ≡ 0 (mod 2)∀ i,

(2.12.e) (mr)xr is not overlined,

(2.12.f) δi ≥ 0, and δi ≡ 0 (mod 2)∀ i < r. For δi = 0, mi is not overlined.

Let B7(ν) is the number of partitions of ν in which the parts are ̸≡ ±2,±12,±14, 16
(mod 32). Then A7(ν) = A7(ν) = B7(ν) ∀ ν ≥ 0.

For the combinatorial interpretation of left hand side of (2.11), we write

∞∑
n=0

(−1; q2)nq
n(n+1)

(q; q)2n
= 1 + 2

∞∑
n=1

(−q2; q2)n−1q
n(n+1)

(q; q)2n

= 1 + 2

∞∑
ν=1

Â8(ν)q
ν , (2.15)

where
∑∞

ν=1 Â8(ν)q
ν =

∑∞
n=1

(−q2;q2)n−1qn(n+1)

(q;q)2n
. Now we give the combinatorial in-

terpretation of (2.11) in the following theorem.

Theorem 2.8. Let Â8(ν) represent the number of three-line arrays into r columns

satisfying (2.12.b), (2.12.c) and αr = 2. Let Â8(ν) count the number of n–color
overpartitions of ν into r parts satisfying (2.12.d), (2.12.e), mr, xr > 1, δi ≥ −2,
and δi ≡ 0 (mod 2), ∀ i < r. For δi = −2, mi is not overlined.
Let B8(ν) =

∑ν
k=0C8(ν − k)D8(k), where C8(ν) is the number of partitions ν in
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which the parts are ≡ ±2,±3,±4 (mod 12) and D8(ν) is the number of partitions
of ν into distinct parts that are ≡ ±2,±3, ±4 (mod 12). Then,

2Â8(ν) = A8(ν) = 2Â8(ν) = A8(ν) = B8(ν) ∀ ν ≥ 1.

Remark 2.4. Here for the rth part, we use the following mapping:

ϕ : (mr)xr →
(

2
xr − 1

mr − xr − 1

)
.

And the inverse mapping is same as in (2.4).

Example 2.3. For ν = 6, the three-line arrays corresponding to Â8(6) are1
5
0

,

1
3
2

,

1
1
4

,

3 1
2 0
0 0

,

3 1
0 0
2 0

,

5 1
0 0
0 0

.

And the n–color overpartitions corresponding to Â8(6) are 66, 64, 62, 5311, 5111,

5111. Hence Â8(6) = Â8(6) = 6 and A8(6) = A8(6) = 12.

Theorem 2.9. Let A9(ν) represent the number of three-line arrays into r columns
satisfying (2.12.b) and (2.12.c) along with:

(2.16.a) αr = 0 = γr,

(2.16.b) αr−1 ≥ 2.

Let A9(ν) counts the number of (n + 1)–color overpartitions of ν into r parts sat-
isfying (2.12.f) along with:

(2.16.c) xr = mr + 1,

(2.16.d) (mr)xr is not overlined,

(2.16.e) mi − xi ≡ 1 (mod 2), ∀ i.

Let B9(ν) =
∑ν

k=0 C9(ν − k)D9(k), where C9(ν) is the number of partitions of ν
in which the parts are ≡ 2, 4 (mod 6) and D9(ν) is the number of partitions of ν
into distinct parts that are ≡ 0,±1,±2 (mod 6). Then A9(ν) = A9(ν) = B9(ν) ∀
ν ≥ 0.

Remark 2.5. Here for the rth part, the mapping and inverse mapping are defined
as

ϕ : (mr)xr →
(

0
xr − 1

0

)
, ϕ−1 :

(
0
βr

0

)
→ (βr)βr+1.
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Group 4

The RRTIs (2.16)–(2.17) below appear in [6] as Identity No. 11, 12 respectively.

∞∑
n=0

(−1; q4)nq
n2

(q; q2)n(q4; q4)n
=

(−q; q2)∞
(q2; q2)∞

[−q,−q4, q3;−q4]∞, (2.16)

∞∑
n=0

(−1; q4)nq
n(n+2)

(q; q2)n(q4; q4)n
=

(−q; q2)∞
(q2; q2)∞

[−q3,−q4, q;−q4]∞. (2.17)

To establish the bijection between three-line arrays and n–color overpartitions for
(2.16) and (2.17), we use

ϕ : (mi)xi
→



(
mi+1 + xi+1 + 1

xi − 1

δi

)
if mi is not overlined,

(
mi+1 + xi+1 + 5

xi − 1

δi − 4

)
if mi is overlined,

(2.18)

and

ϕ−1 :

(
αi

βi

γi

)
→

{
(αi + βi + γi)βi+1 if αi = 2 + αi+1 + 2βi+1 + γi+1,

(αi + βi + γi)βi+1 if αi = 6 + αi+1 + 2βi+1 + γi+1.
(2.19)

The combinatorial interpretations in terms of three-line arrays and n–color over-
partitions of (2.16) and (2.17) are given in Theorem 2.10 and Theorem 2.11 respec-
tively.

Theorem 2.10. Let Â10(ν) represent the number of three-line arrays into r
columns satisfying

(2.18.a) αr = 1,

(2.18.b) αi ∈ {2 + αi+1 + 2βi+1 + γi+1, 6 + αi+1 + 2βi+1 + γi+1}, for 1 ≤ i ≤ r − 1

(2.18.c) γi ≡ 0 (mod 4), ∀ i.

Let Â10(ν) count the number of n–color overpartitions of ν into r satisfying

(2.18.d) mr − xr ≡ 0 (mod 4),

(2.18.e) (mr)xr is not overlined,
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(2.18.f) δi ≥ 0 and δi ≡ 0 (mod 4), ∀ i < r. For δi = 0, mi is not overlined.

Let B10(ν) =
∑ν

k=0 C10(ν − k)D10(k), where C10(ν) is the number of partitions of
ν in which the parts are ≡ ±1, 4 (mod 8) and D10(ν) is the number of partitions
of ν in which the parts are ≡ ±1, 4 (mod 8). Then,

2Â10(ν) = A10(ν) = 2Â10(ν) = A10(ν) = B10(ν) ∀ ν ≥ 1.

Remark 2.6. In the above theorem, we used similar argument as given in (2.15)

and letting
∑∞

ν=1 Â10(ν)q
ν =

∑∞
n=1

(−q4;q4)n−1qn
2

(q;q2)n(q4,q4)n
.

Theorem 2.11. Let Â11(ν) represent the number of three-line arrays into r

columns satisfying αr ≥ 3 and (2.18.b)–(2.18.c). Let Â11(ν) count the number of
n–color overpartitions of ν into r parts satisfying along with (2.18.f):

(2.20.a) mr > 2,

(2.20.b) mr − xr ≡ 2 (mod 4), (mr)xr is not overlined.

Let B11(ν) =
∑ν

k=0 C11(ν − k)D11(k), where C11(ν) is the number of partitions of
ν in which the parts are ≡ ±3, 4 (mod 8) and D11(ν) is the number of partitions
of ν into distinct parts that are ≡ ±3, 4 (mod 8). Then,

2Â11(ν) = A11(ν) = 2Â11(ν) = A11(ν) = B11(ν) ∀ ν ≥ 1.

Remark 2.7. In the above theorem, we used similar argument as given in (2.15)

and letting
∑∞

ν=1 Â11(ν)q
ν =

∑∞
n=1

(−q4;q4)n−1qn(n+2)

(q;q2)n(q4,q4)n
. The mapping for the rth part

is ϕ : (mr)xr →
(

3
xr − 1

mr − xr − 2

)
. And the inverse mapping is same as in (2.19).

Group 5

The RRTIs (2.20)–(2.22) below appear in [6] as Identity No. 37, 106, 40 respec-
tively.

∞∑
n=0

(−1; q)nq
n2

(q; q2)n(q; q)n
=

(−q; q)∞
(q; q)∞

[q3, q3, q6; q6]∞, (2.20)

∞∑
n=1

(−q; q)n−1q
n2

(q; q2)n(q; q)n
=

[−q5,−q7, q12; q12]∞
(q; q)∞

, (2.21)

∞∑
n=0

(−q; q)nq
n(n+1)

(q; q2)n+1(q; q)n
=

(−q; q)∞
(q; q)∞

[q, q5, q6; q6]∞. (2.22)
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To establish the bijection between three-line arrays and (n+t)–color overpartitions
for (2.20)–(2.22), we use

ϕ : (mi)xi
→



(
mi+1 + xi+1 + 1

xi − 1

δi

)
if mi is not overlined,

(
mi+1 + xi+1 + 2

xi − 1

δi − 1

)
if mi is overlined,

and

ϕ−1 :

(
αi

βi

γi

)
→

{
(αi + βi + γi)βi+1 if αi = 2 + αi+1 + βi+1 + γi+1,

(αi + βi + γi)βi+2 if αi = 3 + αi+1 + βi+1 + γi+1.

The combinatorial interpretations in terms of three-line arrays and n–color over-
partitions of (2.20)–(2.22) are given in Theorems 2.12–2.14 respectively.

Theorem 2.12. Let Â12(ν) represent the number of three-line arrays into r
columns satisfying

(2.22.a) αr = 1,

(2.22.b) αi ∈ {2 + αi+1 + 2βi+1 + γi+1, 3 + αi+1 + 2βi+1 + γi+1} for 1 ≤ i ≤ r − 1.

Let Â12(ν) count the number of n–color overpartitions of ν into r parts satisfying

(2.22.c) (mr)xr is not overlined,

(2.22.d) δi ≥ 0, ∀ i < r. For δi = 0, mi is not overlined.

Let B12(ν) =
∑ν

k=0C12(ν − k)D12(k), where C12(ν) is the number of partitions of
ν in which the parts are ≡ ±1,±2 (mod 6) and D12(ν) is the number of partitions
of ν into the distinct parts that are ≡ ±1, ±2 (mod 6). Then,

2Â12(ν) = A12(ν) = 2Â12(ν) = A12(ν) = B12(ν) ∀ ν ≥ 1.

Remark 2.8. In the above theorem, we used similar argument as given in (2.15)

and letting
∑∞

ν=1 Â12(ν)q
ν =

∑∞
n=1

(−q;q)n−1qn
2

(q;q2)n(q,q)n
.

Theorem 2.13. Let A13(ν) represent the number of three-line arrays into r
columns and A13(ν) counts the number of n–color overpartitions of ν into r parts
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satisfying all the conditions of Â12(ν) and Â12(ν) defined in Theorem 2.22 respec-
tively. Let B13(ν) =

∑ν
k=0C13(ν − k)D13(k), where C13(ν) is the number of parti-

tions of ν and D13(ν) is the partitions of ν in which the parts are ≡ ±5 (mod 12).
Then A13(ν) = A13(ν) = B13(ν) ∀ ν ≥ 1.

Theorem 2.14. Let A14(ν) represent the number of three-line arrays into r
columns satisfying (2.22.b) along with:

(2.25.a) αr = 0 = γr,

(2.25.b) αr−1 ≥ 2.

Let A14(ν) counts the number of (n + 1)–color overpartitions of ν into r parts
satisfying (2.22.d) along with:

(2.25.c) xr = mr + 1,

(2.25.d) (mr)xr is not overlined,

(2.25.e) mi − xi ≡ 1 (mod 2), ∀ i.

Let B14(ν) =
∑ν

k=0 C14(ν − k)D14(k), where C14(ν) is the number of partitions of
ν in which the parts are ≡ ±2, 3 (mod 6) and D14(ν) is the number of partitions
of ν into distinct parts. Then A14(ν) = A14(ν) = B14(ν) ∀ ν ≥ 0.

The Proof of Theorems 2.2–2.14 can be supplied by reader on lines of Theorem
2.1, hence omitted.

3. Alternative Proofs
In this section we provide an alternate proof for arrays enumerated by Ai(ν),

where 1 ≤ i ≤ 14. Throughout this section, if Ai(ν) denote the arrays with some
conditions in any number of columns, then Ai(r, ν) will denote the arrays with
same conditions into r columns. In the proofs we follow the method of proof of
[1]. Due to the similarity of the proofs of the Theorem 2.1–Theorem 2.14 presented
so far only detailed proof of Theorem 2.1 is given below and for rest we will only
make an outline of them.
Proof of Theorem 2.1. Split the arrays enumerated by A1(r, ν) into the following
four classes:

(i) those arrays in which rth column is

(
1
0
0

)
,

(ii) those arrays in which rth column is

(
2
0
0

)
,



96 South East Asian J. of Mathematics and Mathematical Sciences

(iii) those arrays in which γr ̸= 0,

(iv) those arrays in which γr = 0, and βr ̸= 0.

Transform the arrays of class (i) by eliminating the rth column

(
1
0
0

)
of the array

and subtracting 2 from all αi, keeping βi and γi as same for 1 ≤ i ≤ r − 1. We
see that transformed arrays are enumerated by A1(r − 1, ν − 2r + 1). In class (ii)

deleting rth column

(
2
0
0

)
of the array and subtracting 4 from all αi, keeping βi

and γi as same for 1 ≤ i ≤ r − 1. The transformed arrays are enumerated by
A1(r − 1, ν − 4r + 2). In class (iii) subtracting 2 from αi, 1 ≤ i ≤ r − 1, keeping
βi ∀ i as same and subtract 2 from γr. Remaining γi, 1 ≤ i ≤ r − 1 remains same.
The transformed arrays are enumerated by A1(r, ν − 2r).
Finally, we transform the arrays of class (iv) by subtracting 2 from αi, ∀ i, and
subtracting 1 from βr and remaining βi for 1 ≤ i ≤ r − 1 and γi ∀ i are same,
we see that transformed arrays are enumerated by A1(r, ν − 2r + 1) having the

rth column as

(
αi

βi

0

)
, βi ̸= 0. Thus number of arrays in class (iv) are obtained by

subtracting the number of array which are enumerated by A1(r, ν − 2r + 1) with

the rth column as

(
αr

βr

γr

)
where γr ̸= 0 from A1(r, ν− 2r+1). Thus the transformed

arrays are enumerated by A1(r, ν − 2r + 1) − A1(r, ν − 4r + 1). Hence we get the
following recurrence formula for A1(r, ν):

A1(r, ν) = A1(r − 1, ν − 2r + 1) + A1(r − 1, ν − 4r + 2) + A1(r, ν − 2r)

+ A1(r, ν − 2r + 1)− A1(r, ν − 4r + 1), (3.1)

where A1(0, 0) = 1 and A1(r, ν) = 0 for ν < 0.
For |q| < 1 and |z| < |q|−1, let g1(z, q) be defined by

g1(z, q) =
∞∑
ν=0

∞∑
r=0

A1(r, ν)z
rqν . (3.2)

Substitute A1(r, ν) from (3.1) in (3.2), we get q–functional equation

g1(z, q) = zqg1(zq
2, q) + zq2g1(zq

4, q) + g1(zq
2, q)

+ q−1g1(zq
2, q)− q−1g1(zq

4, q). (3.3)
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Setting

g1(z, q) =
∞∑
n=0

w1(n, q)z
n. (3.4)

Using (3.3) in (3.4) and then examining the coefficients of zn, we get

w1(n, q) =
q2n−1(1 + q2n−1)

(1− q2n)(1− q2n−1)
w1(n− 1, q). (3.5)

Iterating (3.5) n times and observing w1(0, q) = 1, we find that

w1(n, q) =
(−q; q2)nq

n2

(q2; q2)n(q; q2)n
. (3.6)

Therefore,

g1(z, q) =
∞∑
n=0

(−q; q2)nq
n2

(q2; q2)n(q; q2)n
zn

and

∞∑
ν=0

A1(ν)q
ν =

∞∑
ν=0

(
∞∑
r=0

A1(r, ν)

)
qν

= g1(1, q)

=
∞∑
n=0

(−q; q2)nq
n2

(q2; q2)n(q; q2)n
.

Hence the proof. Now we give a concise proof of remaining theorems.

Sketch Proof of Theorem 2.2.
The classes of A2(r, ν) are same as defined for A1(r, ν). Using the similar transfor-
mation we get the following recurrence relation for A2(r, ν).

A2(r, ν) = A2(r − 1, ν − 2r + 1) + A2(r − 1, ν − 4r + 2) + A2(r, ν − 4r)

+A2(r, ν − 2r + 1)− A2(r, ν − 6r − 1).

The remaining proof can be supplied by the reader as done earlier.

Sketch Proof of Theorem 2.3.

Split the arrays into two classes, first containing the arrays with

(
0
0
0

)
as their



98 South East Asian J. of Mathematics and Mathematical Sciences

rth column and second containing the arrays with

(
0
βr

0

)
as rth column. After

transformation, the arrays in the first class are enumerated by A1(r− 1, ν − r+ 1)
and in the second class are enumerated by A3(r, ν − 2r + 1). Thus the recurrence
relation becomes

A3(r, ν) = A1(r − 1, ν − r + 1) + A3(r, ν − 2r + 1).

The remaining proofs for Theorems 2.2-2.3 can be supplied by the reader as done
earlier.
For upcoming lemmas and theorems we only provide the recurrence relations and
the corresponding classes are given in Table 2. As the detailed proof is on similar
lines as done earlier, hence omitted.

Sketch proof of Theorems 2.4–2.6.
The recurrence relations for the enumerates Ai(r, ν), 4 ≤ i ≤ 6, are:

A4(r, ν) = A1(r − 1, ν − 2r + 2) + A4(r, ν − 2r + 1),

A5(r, ν) = A5(r − 1, ν − 2r − 1) + A5(r − 1, ν − 4r) + A5(r, ν − 4r)

+A5(r, ν − 2r + 1)− A5(r, ν − 6r + 1),

A6(r, ν) = A5(r − 1, ν) + A6(r, ν − 2r + 1).

Sketch Proof of Theorem 2.7.
To obtain the recurrence relation for the enumerator A7(r, ν), we consider the
following q–series:

∞∑
ν=0

M1(ν)q
ν =

∞∑
n=0

(−q2; q2)nq
n2

(q; q)2n
. (3.7)

The interpretation of (3.7) in terms of three-line arrays is given in following lemma.

Lemma 3.1. For ν ≥ 0, let M1(ν) represent the number of three-line arrays
satisfying αi ∈ {1, 3}, (2.12.b) and (2.12.c).
Sketch Proof of Lemma 3.1.
Let M1(r, ν) represent the number of three-line arrays enumerated by M1(ν) of ν
into r columns. We split the arrays enumerated by M1(r, ν) into four classes and
get the recurrence relation:

M1(r, ν) = M1(r − 1, ν − 2r + 1) +M1(r − 1, ν − 4r + 1) +M1(r, ν − 2r)

+M1(r, ν − 2r + 1)−M1(r, ν − 4r + 1),

where M1(0, 0) = 1 and M1(r, ν) = 0 for ν < 0.
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We now find the recurrence relation for A7(r, ν) using the classes of M1(r, ν):

A7(r, ν) = M1(r − 1, ν − 2r + 1) +M1(r − 1, ν − 4r + 1) + A7(r, ν − 4r)

+A7(r, ν − 2r + 1)− A7(r, ν − 6r + 1).

Sketch Proof of Theorems 2.8 and 2.9
To obtain the recurrence relation for the enumerator Â8(r, ν) and
A9(r, ν), where Â8(r, ν) is Â8(ν) into r columns, we consider the following q–series:

∞∑
ν=0

M2(ν)q
ν =

∞∑
n=0

(−q2; q2)nq
n(n+1)

(q; q)2n
. (3.8)

The combinatorial interpretation of (3.8) is given in Lemma 3.2.

Lemma 3.2. For ν ≥ 0, let M2(ν) represent the number of three-line arrays
satisfying αi ∈ {2, 4}, (2.12.b) and (2.12.c).
Sketch Proof of Lemma 3.2.
The recurrence relation forM2(r, ν), whereM2(r, ν) representM2(ν) into r columns
is:

M2(r, ν) = M2(r − 1, ν − 2r) +M2(r − 1, ν − 4r) +M2(r, ν − 2r)

+M2(r, ν − 2r + 1)−M2(r, ν − 4r + 1).

Now we find the recurrence relations for Â8(r, ν) and A9(r, ν):

Â8(r, ν) = M2(r − 1, ν − 2r) +M2(r − 1, ν − 4r) + Â8(r, ν − 4r)

+Â8(r, ν − 2r + 1)− Â8(r, ν − 6r + 1),

A9(r, ν) = M2(r − 1, ν − 2r + 1) + A9(r, ν − 2r + 1).

Sketch Proof of Theorem 2.10.
To obtain the recurrence relation for the enumerator Â10(r, ν), where Â10(r, ν) is
Â10(ν) into r columns, we consider the following q–series:

∞∑
ν=0

M3(ν)q
ν =

∞∑
n=0

(−q4; q4)nq
n2

(q; q2)n(q4; q4)n
. (3.9)

The combinatorial interpretation of (3.9) is given in Lemma 3.3.

Lemma 3.3. For ν ≥ 0, let M3(ν) represent the number of three-line arrays
satisfying αi ∈ {1, 5}, (2.18.b) and (2.18.c).
Sketch Proof of Lemma 3.3.
The recurrence relation forM3(r, ν), whereM3(r, ν) representM3(ν) into r columns
is:
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M3(r, ν) = M3(r − 1, ν − 2r + 1) +M3(r − 1, ν − 6r + 1) +M3(r, ν − 4r)

+M3(r, ν − 2r + 1)−M3(r, ν − 6r + 1).

Now we find the recurrence relations for Â10(r, ν):

Â10(r, ν) = M3(r − 1, ν − 2r + 1) +M3(r − 1, ν − 6r + 1) + Â10(r, ν − 8r)

+Â10(r, ν − 2r + 1)− Â10(r, ν − 10r + 1).

Sketch Proof of Theorem 2.11.
To obtain the recurrence relation for the enumerator Â11(r, ν), where Â11(r, ν) is
Â11(ν) into r columns, we consider the following q–series:

∞∑
ν=0

M4(ν)q
ν =

∞∑
n=0

(−q4; q4)nq
n(n+2)

(q; q2)n(q4; q4)n
. (3.10)

The combinatorial interpretation of (3.10) is given in Lemma 3.4.

Lemma 3.4. For ν ≥ 0, let M4(ν) represent the number of three-line arrays
satisfying αi ∈ {3, 7}, (2.18.b) and (2.18.c).
Sketch Proof of Lemma 3.4.
The recurrence relation forM4(r, ν), whereM4(r, ν) representM4(ν) into r columns
is:

M4(r, ν) = M4(r − 1, ν − 2r − 1) +M4(r − 1, ν − 6r − 1) +M4(r, ν − 4r)

+M4(r, ν − 2r + 1)−M4(r, ν − 6r + 1).

And the recurrence relations for Â11(r, ν) is:

Â11(r, ν) = M4(r − 1, ν − 2r − 1) +M4(r − 1, ν − 6r − 1) + Â11(r, ν − 8r)

+Â11(r, ν − 2r + 1)− Â11(r, ν − 10r + 1).

Sketch proof of Theorem 2.12.
To obtain the recurrence relation for the enumerator Â12(r, ν), where Â12(r, ν) is
Â12(ν) into r columns, we consider the following q–series:

∞∑
ν=0

M5(ν)q
ν =

∞∑
n=0

(−q; q)nq
n2

(q; q2)n(q; q)n
. (3.11)

The combinatorial interpretation of (3.11) is given in Lemma 3.5.

Lemma 3.5. For ν ≥ 0, let M5(ν) represent the number of three-line arrays
satisfying αi ∈ {1, 5}, and (2.22.b).
Sketch Proof of Lemma 3.5.
The recurrence relation forM5(r, ν), whereM5(r, ν) representM5(ν) into r columns
is:
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M5(r, ν) = M5(r − 1, ν − 2r + 1) +M5(r − 1, ν − 3r + 1) +M5(r, ν − r)

+M5(r, ν − 2r + 1)−M5(r, ν − 3r + 1).

And the recurrence relations for Â12(r, ν) is:

Â12(r, ν) = M5(r − 1, ν − 2r + 1) +M5(r − 1, ν − 3r + 1) + Â12(r, ν − 2r)

+Â12(r, ν − 2r + 1)− Â12(r, ν − 4r + 1).

As Â12(ν) = A13(ν), so the recurrence relations for the enumerators Â12(ν) and
A13(ν) are same.

Sketch proof of Theorem 2.14.
The recurrence relation for the enumerator A14(r, ν) is

A14(r, ν) = M5(r − 1, ν − 2r + 1) + A14(r, ν − 2r + 1).

Table 2

Enumerator class 1 class 2 Enumerator class 1 class 2

A4(ν)

(
0

0

0

) (
0

βr

0

)
Â12(ν)

(
1

0

0

) (
1

0

1

)

A5(ν)

(
3

0

0

) (
4

0

0

)
A13(ν)

(
1

0

0

) (
1

0

1

)

A6(ν)

(
0

0

0

) (
0

βr

0

)
A14(ν)

(
0

0

0

) (
0

βr

0

)

Â8(ν)

(
2

0

0

) (
2

0

2

)
M2(ν)

(
2

0

0

) (
4

0

0

)

A9(ν)

(
0

0

0

) (
0

βr

0

)
M3(ν)

(
1

0

0

) (
5

0

0

)

A10(ν)

(
1

0

0

) (
1

0

4

)
M4(ν)

(
3

0

0

) (
7

0

0

)

Â11(ν)

(
3

0

0

) (
3

0

4

)
M5(ν)

(
1

0

0

) (
2

0

0

)
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In Table 2, we provide the classes and the corresponding enumerator. For
Ai(ν), i = 4, 6, 9 and 14 we have only two classes given in the Table 2, and for the
remaining enumerators we have four classes: first and second classes are given in
the table, third class has those arrays in which γr ̸= 0, and fourth class has those
arrays in which γr = 0, and βr ̸= 0.
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