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Abstract: Recently, the authors introduced the leap Zagreb coindices (LZCIs)
of graphs. They presented many properties, so also, established upper and lower
bounds for them. They, also in last work, studied and presented the general formu-
las for the first leap Zagreb coindex of some operations of a graph. In the present
work, we investigate to continue in our work by computing the general formulas of
the second and third LZCIs of union, cartesian product, composition, disjunction,
symmetric difference of graphs.
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1. Introduction
Throughout this paper, we assume that all graphs Γ = (V,E) are simple. That

is finite, have neither loops, nor multiple, nor directed edges. Let Γ be such a
graph, the cardinality of the vertex set V (Γ) and edge set E(Γ), will be denoted
by n and m, are called the order and size of a graph Γ, respectively. A distance
from a vertex v to a vertex u, in Γ, denoted by d(u, v) (or dΓ(u, v) if there is any
confusion), and is the number of edges in a shortest path connecting them. the
open second neighborhood of a vertex v in Γ is N2(v) = {u ∈ V (Γ) : d(u, v) =
2}. The set of all second (2-distance) edges of a graph Γ denoted and defined as
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E2(Γ) = {{u, v} ⊂ V (Γ) : d(u, v) = 2}, as well as we denote by µ(Γ) (in short, µ)
to the cardinality of E2(Γ). The second degree of v in Γ, denoted by d2(v/Γ) (or
d2(v) if no misunderstanding), is the number of second neighbors of v.

The eccentricity of a vertex v in a graph Γ, is e(v) = max{d(v, u) : u ∈ V (Γ)},
the diameter of Γ is diam(Γ) = max{e(v) : v ∈ V (Γ)} and the radius is rad(Γ) =
min{e(v) : v ∈ V (Γ)}. The induced subgraph ⟨H⟩ of Γ is a graph with vertex set
H ⊆ V (Γ) and consists of all edges in E(Γ) that its both endpoints in H. An H-
free graph is a graph have no induced subgraph isomorphic to H. The complement
Γ of a graph Γ, is a graph with V (Γ) = V (Γ) and for any u, v ∈ V (Γ), uv ∈ E(Γ),
if and only if uv /∈ E(Γ).
For any terminologies or notations not defined here, we refer the reader to [13].

A topological indices (TIs) of a graph are fixed parameters (invariants) that do
not change for isomorphic graphs. The most important and studied among TIs
the first and second Zagreb indices, which were defined in 1972, by Gutman and
Trinajestic [12], [11], and defined as:

M1(Γ) =
∑

v∈V (Γ)

d2(v) and M2(Γ) =
∑

uv∈E(Γ)

d(u)d(v).

For more details on these two indices and beyond, the reader is referred to the
surveys [5, 9].

Analogously, the coindices of the Zagreb indices, were put forward by Ali Ashrafi
et al. [2], as following:

M1(Γ) =
∑

uv/∈E(Γ)

(d(u) + d(v)), and M2(Γ) =
∑

uv/∈E(Γ)

d(u)d(v).

For more about Zagreb coindices, see [1, 2, 6, 9].
Naji et al. [19], introduced leap Zagreb indices (LZIs) of a graph Γ. They

defined them as:

LM1(Γ) =
∑

v∈V (Γ)

d22(v), LM2(Γ) =
∑

uv∈E(Γ)

d2(u)d2(v) and LM3(Γ) =
∑

v∈V (Γ)

d(v)d2(v).

These LZIs have various applications in chemistry. Surprisingly, the first one is
very correlate with physical properties of chemical compounds, for instance, with
the entropy, the boiling point, DHVAP, HVAP and the accentric factor [4].
For more properties and details on LZIs , the readers may be refer to [3, 4, 15-22].

Recently, Ferdose and Shivashankara [7], introduced the leap Zagreb coindices
of a graph. They defined them as

L1(Γ) =
∑

uv/∈E2(Γ)

(
d2(u) + d2(v)

)
and L2(Γ) =

∑
uv/∈E(Γ)

(
d2(u)d2(v)

)
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L3(Γ) =
∑

uv/∈E(Γ)

(
d2(u) + d2(v)

)
.

They, also in [8], studied the first LZCI of many graph operations.
In this paper, the general formulas for L2 and L3 of some graph operations is
presented.

The following results are useful and will be used in main our arguments through
this study.

Theorem 1.1. [22, 23] Let Γ be a connected graph with n vertices and m edges.
Then

d2(v) ≤

( ∑
u∈N1(v)

d1(u)

)
− d1(v).

Equality is holding if and only if Γ is a triangle- and quadrangle-free.
The following result directly follows from the above Theorem.

Corollary 1.2. [22] Let Γ be a connected graph with n vertices and m edges. Then∑
v∈V (Γ)

d2(v) ≤ M1(Γ)− 2m,

and equality holds if and only if Γ is a {C3, C4}-free.
2. Main Results

For two graphs Γ1 and Γ2, the vertex set, edge and second-edge sets will be
denoted by V (Γ1), V (Γ2), E(Γ1), E(Γ2), E2(Γ1) and E2(Γ2), respectively, and their
cardinality by n1, n2,m1,m2, µ(Γ1) and µ(Γ2), respectively.

2.1. Union

Definition 2.1. [14] The union Γ1 ∪ Γ2 of graphs Γ1 and Γ2 is the graph whose
vertex set V (Γ1 ∪ Γ2) = V (Γ1)∪ V (Γ2), and edge set E(Γ1 ∪ Γ2) = E(Γ1)∪E(Γ2).

Clearly that |V (Γ1∪Γ2)| = n1+n2, |E(Γ1∪Γ2)| = m1+m2, and |E2(Γ1∪Γ2)| =
µ1 + µ2, where µ = µ(Γ) = |E2(Γ)|. So, the following result is straightforward,

Lemma 2.2. [17] Let Γ1 and Γ2 be two disjoint connected graphs with n1 and n2

vertices. Then for each v ∈ V (Γ1 ∪ Γ2),

d2(v/(Γ1 ∪ Γ2)) =

{
d2(v/Γ1), if v ∈ V (Γ1);
d2(v/Γ2), if v ∈ V (Γ2).

Theorem 2.3. Let Γ1 and Γ2 be connected graphs with n1, n2 vertices and m1, m2

edges, respectively. Then

L2(Γ1∪Γ2) ≤ L2(Γ1)+L2(Γ2)+M1(Γ1)M1(Γ2)−2m2M1(Γ1)−2m1M1(Γ2)+4m1m2.
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Equality is holding if and only if Γ1 and Γ2 are (C3, C4)-free graphs.
Proof. From Lemma 2.2, if u, v ∈ V (Γ1 ∪ Γ2), then uv /∈ E(Γ1 ∪ Γ2) if and only if
u, v ∈ V (Γ1) and uv /∈ E(Γ1), or u, v ∈ V (Γ2) and uv /∈ E(Γ2), or u ∈ V (Γ1) and
v ∈ V (Γ2). Thus L2(Γ1∪Γ2) is equal to the sum of L2(Γ1) and L2(Γ2). In addition,
the contributions which obtain from the missing edges between V (Γ1) and V (Γ2).
Where there are n1n2 of them. Then by this and Corollary 1.2, we obtain

L2(Γ1 ∪ Γ2) =
∑

uv/∈E(Γ1∪Γ2)

(
d2(u/(Γ1 ∪ Γ2))d2(v/(Γ1 ∪ Γ2))

)
=

∑
uv/∈E(Γ1)

(
d2(u/(Γ1 ∪ Γ2))d2(v/(Γ1 ∪ Γ2))

)
+

∑
uv/∈E(Γ2)

(
d2(u/(Γ1 ∪ Γ2))d2(v/(Γ1 ∪ Γ2))

)
+

∑
u∈V (Γ1)

∑
v∈V (Γ2)

(
d2(u/(Γ1 ∪ Γ2))d2(v/(Γ1 ∪ Γ2))

)
=

∑
uv/∈E(Γ1)

(
d2(u/Γ1)d2(v/Γ1)

)
+

∑
uv/∈E(Γ2)

(
d2(u/Γ2)d2(v/Γ2)

)
+

∑
u∈V (Γ1)

∑
v∈V (Γ2)

(
d2(u/Γ1)d2(v/Γ2)

)
= L2(Γ1) + L2(Γ2) +

∑
u∈V (Γ)

∑
v∈V (Γ2)

d2(u/Γ1)d2(v/Γ2)

= L2(Γ1) + L2(Γ2) +
∑

u∈V (Γ1)

d2(u/Γ1)
∑

v∈V (Γ2)

d2(v/Γ2)

≤ L2(Γ1) + L2(Γ2) + (M1(Γ1)− 2m1)(M1(Γ2)− 2m2)

≤ L2(Γ1) + L2(Γ2) +M1(Γ2)M1(Γ1)− 2(m2M1(Γ1) +m1M1(Γ2)) + 4m1m2.

Theorem 2.4. For connected graphs Γ1 and Γ2 of orders n1, n2 and size m1, m2,
respectively.

L3(Γ1 ∪ Γ2) ≤ L3(Γ1) + L3(Γ2) + n2M1(Γ1) + n1M1(Γ2)− 2(n2m1 + n1m2).

Equality is holding if and only if Γ1 and Γ2 are (C3, C4)-free.
Proof. Like the arguments as in the proof of Theorem 2.3, and since there are
n1n2 missing edges between V (Γ1) and V (Γ2) and by using Corollary 1.2. Then
we obtain
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L3(Γ1 ∪ Γ2) =
∑

uv/∈E(Γ1∪Γ2)

(
d2(u/(Γ1 ∪ Γ2)) + d2(v/(Γ1 ∪ Γ2))

)
=

∑
uv/∈E(Γ1)

(
d2(u/(Γ1 ∪ Γ2)) + d2(v/(Γ1 ∪ Γ2))

)
+

∑
uv/∈E(Γ2)

(
d2(u/(Γ1 ∪ Γ2)) + d2(v/(Γ1 ∪ Γ2))

)
+

∑
u∈V (Γ1)

∑
v∈V (Γ2)

(
d2(u/Γ1 ∪ Γ2) + d2(v/Γ1 ∪ Γ2)

)
L3(Γ1 ∪ Γ2) =

∑
uv/∈E(Γ1)

(
d2(u/Γ1) + d2(v/Γ1)

)
+

∑
uv/∈E(Γ2)

(
d2(u/Γ2) + d2(v/Γ2)

)
+

∑
u∈V (Γ1)

∑
v∈V (Γ2)

(
d2(u/Γ1) + d2(v/Γ2)

)
= L3(Γ1) + L3(Γ2) +

∑
u∈V (Γ)

∑
v∈V (Γ2)

d2(u/Γ1) + d2(v/Γ2)

= L3(Γ1) + L3(Γ2) + n2

∑
u∈V (Γ1)

d2(u/Γ1) + n1

∑
v∈V (Γ2)

d2(v/Γ2)

≤ L3(Γ1) + L3(Γ2) + n2(M1(Γ1)− 2m1) + n1(M1(Γ2)− 2m2)

≤ L3(Γ1) + L3(Γ2) + n2M1(Γ1) + n1M1(Γ2)− 2(n2m1 + n1m2).

Theorem 2.5. For k ≥ 2, let Γ1, ...,Γk be connected graphs with ni vertices and
mi edges, for every i = 1, ..., k. Then

L2(
k⋃

i=1

Γi) ≤
k∑

i=1

(
L2(Γi) + [M1(Γi)− 2mi]

k∑
i<j

[M1(Γj)− 2mj]

)
. (1)

L3(
k⋃

i=1

Γi) ≤
k∑

i=1

(
L3(Γi) + ni

k∑
j=1
j ̸=i

[
M1(Γj)− 2mj

])
. (2)

Equalities hold if and only if Γi, for i = 1, 2, ..., k is a (C3, C4)-free.
From Theorem 2.5, the following result holds.

Corollary 2.6. Let F be a connected graph with n vertices, m edges and diam(F ) ≥
2, and let Γ = kF , for k ≥ 2. Then

L2(Γ) ≤ kL2(F ) +
k(k − 1)

2
(M1(F )− 2m)2. (3)
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L3(Γ) ≤ kL3(F ) + nk(k − 1)(M1(F )− 2m). (4)

Equality is holding if and only if F is a (C3, C4)-free.

From Corollary 2.6, the following results follow, for every n ≥ 5.

� M1(Kn) = n(n− 1)2 , and L2(Kn) = L3(Kn) = 0

� M1(Pn) = 4n− 6, and L2(Pn) = 2(n2 − 7n+ 14), L3(Pn) = 2n(n− 5)

� M1(Cn) = 4n, and L2(Cn) = L3(Cn) = 2n(n− 3)

Corollary 2.7. For p ≥ 2 and n ≥ 5, we have

1. L2(pKn) = L3(pKn) = 0,

2. L2(pPn) = 2p(n2 − 7n+14)+ 2p(p− 1)(n− 2)2, L3(pPn) = 2np(np− 2p− 3)

3. L2(pCn) = L3(pCn) = 2np(np− 3)

2.2. Join

Definition 2.8. [14] For given graphs Γ1 and Γ2 with n1, n2,m1 and m2 orders and
sizes, respectively. The join graph Γ1+Γ2, is defined as the graph with V (Γ1+Γ2) =
V (Γ1) ∪ V (Γ2), and E(Γ1 + Γ2) = E(Γ1) ∪ E(Γ2) ∪ {uv : ∀u ∈ V (Γ1) and ∀v ∈
V (Γ2)}.

It is clear that |V (Γ1 + Γ2)| = n1 + n2 and |E(Γ1 + Γ2)| = m1 +m2 + n1n2.

Lemma 2.9. [17] Let Γ1 and Γ2 be two graphs with n1 and n2 vertices. Then

d2(v/(Γ1 + Γ2)) =

{
n1 − 1− d(v/Γ1), if v ∈ V (Γ1);
n2 − 1− d(v/Γ2), if v ∈ V (Γ2).

Theorem 2.10. Let Γ1 and Γ2 be nontrivial graphs with n1, n2 vertices and m1,
m2 edges, respectively. Then

L2(Γ1 + Γ2) = M2(Γ1) +M2(Γ2). (5)

L3(Γ1 + Γ2) = M1(Γ1) +M1(Γ2). (6)

Proof. Since for nontrivial graphs Γ1 and Γ2, the join graph Γ1 +Γ2 has diameter
at most two. Hence, if u, v ∈ V (Γ1 + Γ2), then uv /∈ E(Γ1 + Γ2), if and only if
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uv /∈ E(Γ1), or uv /∈ E(Γ2). Then by Lemma 2.9,

L2(Γ1 + Γ2) =
∑

uv/∈E(Γ1+Γ2)

(
d2(u/(Γ1 + Γ2))d2(v/(Γ1 + Γ2))

)
=

∑
uv/∈E(Γ1)

(
d2(u/(Γ1 + Γ2))d2(v/(Γ1 + Γ2))

)
+

∑
uv/∈E(Γ2)

(
d2(u/(Γ1 + Γ2))d2(v/(Γ1 + Γ2))

)
=

∑
uv∈E(Γ1)

(
d(u/Γ1)d(v/Γ1)

)
+

∑
uv∈E(Γ2)

(
d(u/Γ2)d(v/Γ2)

)
= M2(Γ1) +M2(Γ2).

This completes the proof of second LZCI of join graph, for third LZCI, we have

L3(Γ1 + Γ2) =
∑

uv/∈E(Γ1+Γ2)

(
d2(u/(Γ1 + Γ2)) + d2(v/(Γ1 + Γ2))

)
=

∑
uv/∈E(Γ1)

(
d2(u/(Γ1 + Γ2)) + d2(v/(Γ1 + Γ2))

)
+

∑
uv/∈E(Γ2)

(
d2(u/(Γ1 + Γ2)) + d2(v/(Γ1 + Γ2))

)
=

∑
uv∈E(Γ1)

(
d(u/Γ1) + d(v/Γ1)

)
+

∑
uv∈E(Γ2)

(
d(u/Γ2) + d(v/Γ2)

)
= M1(Γ1) +M1(Γ2).

From Theorem 2.10, the following generalization follows.

Proposition 2.11. For k ≥ 2, let Γ1, ...,Γk be connected graphs with ni vertices
and mi edges, respectively. Then

L2(
k∑

i=1

Γi) =
k∑

i=1

M2(Γi). (7)

L3(
k∑

i=1

Γi) =
k∑

i=1

M1(Γi). (8)
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By using the following facts, which is found in [10], and state that

M2(Γ) =
1

2
n(n− 1)3 + 2m2 − 3m(n− 1)2 +

2n− 3

2
M1(Γ)−M2(Γ) (9)

M1(Γ) = M1(Γ) + n(n− 1)2 − 4m(n− 1). (10)

The following results are straightforward.

Corollary 2.12. For connected graphs Γ1, ...,Γk, k ≥ 2, with ni vertices and mi

edges, for every i = 1, 2, ..., k.

L2(
k∑

i=1

Γi) =
k∑

i=1

(2ni − 3

2
M1(Γi)−M2(Γi) +

(ni − 1)2

2

[
ni(ni − 1)− 3mi

]
+ 2m2

i

)
.

(11)

L3(

k∑
i=1

Γi) =

k∑
i=1

(
M1(Γi) + ni(ni − 1)2 − 4mi(ni − 1)

)
. (12)

2.3. Cartesian product

Definition 2.13. [14] The Cartesian product of two graphs Γ1 and Γ2, denoted
by Γ1□Γ2, is a graph with V (Γ1□Γ2) = V (Γ1) × V (Γ2), such that if u = (u1, u2)
and v = (v1, v2) vertices in V (Γ1□Γ2), then uv ∈ E(Γ1□Γ2), if and only if either
(u1 = v1 and u2v2 ∈ E(Γ2)) or (u2 = v2 and u1v1 ∈ E(Γ1)).

The Cartesian product of graphs is commutative and associative in operation.
|V (Γ1□Γ2)| = |V (Γ1)||V (Γ2)|, and d(u, v) = dΓ1(u1, v1) + dΓ2(u2, v2), for every
u, v ∈ V (Γ1□Γ2).

Lemma 2.14. [17] For any connected graphs Γ1 and Γ2. If (u, v) ∈ V (Γ1□Γ2),
then

d2((u, v)/(Γ1□Γ2)) = d2(u/Γ1) + d1(u/Γ1)d1(v/Γ2) + d2(v/Γ2).

The following result is required to prove our main result,

Theorem 2.15. [18] Let Γ1 and Γ2 be two nontrivial connected graphs with n1, n2

vertices and m1, m2 edges, respectively. Then

L3(Γ1□Γ2) = n2L3(Γ1)+n1L3(Γ2)+2m2(M1(Γ1)+2µ(Γ1))+2m1(M1(Γ2)+2µ(Γ2)).

Theorem 2.16. Let Γ1 and Γ2 be two nontrivial connected graphs with n1, n2

vertices and µ(Γ1), µ(Γ2) second edges, respectively. Then the third leap coindex of
(Γ1□Γ2) is given by

L3(Γ1□Γ2) = M1(Γ1)
[
2n2(n1n2 − 1)− 2m2

]
+M1(Γ2)

[
2n1(n1n2 − 1)− 2m1

]
− n2L3(Γ1)− n1L3(Γ2)− 4(n1n2 − 1)(n1m2 + n2m1) + 4n1n2m1m2.
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With equality if and only if Γ1 and Γ2 are (C3, C4)-free graphs.
Proof. From Lemma 2.14, Theorem 2.15 and by using Corollary 1.2 and applying

the fact that state for any graph Γ, L3(Γ) = (n − 1)
∑

v∈V (Γ)

d2(v/Γ) − L3(Γ), we

obtain

L3(Γ1□Γ2) = (n1n2 − 1)
∑

(u,v)∈V (Γ1□Γ2)

(
d2((u, v)/(Γ1□Γ2))

)
− L3(Γ1□Γ2)

= (n1n2 − 1)
∑

u∈V (Γ1)

∑
v∈V (Γ2)

(
d2((u, v)/(Γ1□Γ2))

)
− L3(Γ1□Γ2)

= (n1n2 − 1)
∑

u∈V (Γ1)

∑
v∈V (Γ2)

[
d2(u/Γ1) + d1(u/Γ1)d1(v/Γ2) + d2(v/Γ2))

]
− L3(Γ1□Γ2)

= (n1n2 − 1)
[
n2

∑
u∈V (Γ1)

d2(u/Γ1) + 2m1m2 + n1

∑
u∈V (Γ1)

d2(v/Γ2)
]

−
[
n2L3(Γ1) + 2m2(M1(Γ1) + 2µ(Γ1)) + n1L3(Γ2) + 2m1(M1(Γ2) + 2µ(Γ2))

]
= (n1n2 − 1)

[
2n2µ(Γ1) + 4m1m2 + 2n1µ(Γ2)

]
−
[
n2L3(Γ1) + 2m2(M1(Γ1) + 2µ(Γ1)) + n1L3(Γ2) + 2m1(M1(Γ2) + 2µ(Γ2))

]
= 2µ(Γ1)

[
2n2(n1n2 − 1)−m2

]
− n2L3(Γ1)− 2m2M1(Γ1)

+ 2µ(Γ2)
[
2n1(n1n2 − 1)−m1

]
− n1L3(Γ2)− 2m1M1(Γ2) + 4m1m2(n1n2 − 1)

≤ (M1(Γ1)− 2m)
[
2n2(n1n2 − 1)−m2

]
− n2L3(Γ1)− 2m2M1(Γ1) + (M1(Γ2)− 2m2)[

2n1(n1n2 − 1)−m1

]
− n1L3(Γ2)− 2m1M1(Γ2) + 4m1m2(n1n2 − 1)

= M1(Γ1)
[
2n2(n1n2 − 1)− 2m2

]
− 4m1n2(n− 1n2 − 1) + 2m1m2 − n2L3(Γ1)

+M1(Γ2)
[
2n1(n1n2 − 1)− 2m1

]
− 4m2n1(n− 1n2 − 1) + 2m1m2 − n1L3(Γ2)

+ 4m1m2(n1n2 − 1)

= M1(Γ1)
[
2n2(n1n2 − 1)− 2m2

]
− n2L3(Γ1) +M1(Γ2)

[
2n1(n1n2 − 1)− 2m1

]
− n1L3(Γ2)− 4(n1n2 − 1)(n1m2 + n2m1) + 4n1n2m1m2.

As an application of this result, we list explicit formulae for the third leap
Zagreb coindex for the cartesian product of two complete graphs with p and q
vertices and the rectangular grid Pp□Pq, the C4-nanotube Pp□Cq, and the C4-
nanotorus Cp□Cq, respectively. From Theorem 2.16, by plugging in the expressions
the following values the next result follows.

� M1(Kp) = p(p− 1)2, and L3(Kp) = 0,
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� M1(Pp) = 4p− 6, and L3(Pp) = 2(2p− 5),

� M1(Cp) = 4p, and L3(Cp) = 4p.

Observation 2.17. For the integers number p, q ≥ 5, the following results holds:

� L3(Kp□Kq) = 4
(
pq
2

)[(
p−1
2

)
+
(
q−1
2

)]
+ 2pq

[(
pq
2

)
−
(
p+q
2

)]
+ 2pq(p+ q − 1).

� L3(Pp□Pq) = 8pq(pq − 4)− 2(p+ q)(4pq − 13)− 24.

� L3(Pp□Cq) = 4q(p− 1)(3pq − 8).

� L3(Cp□Cq) = 4pq(3pq − 8).

2.4. Composition

Definition 2.18. [14] The composition of two graphs Γ1 and Γ2 with disjoint
vertex sets and edge sets, denote by Γ1[Γ2], is a graph on vertex set V (Γ1[Γ2]) =
V (Γ1) × V (Γ2) in which two vertices (u1, v1) and (u2, v2) are adjacent whenever
u1u2 ∈ E(Γ1) or u1 = u2 and v1v2 ∈ V (Γ2).

The composition of graphs is not commutative and |E(Γ1[Γ2])| = n1m2+n2
2m1.

Lemma 2.19. [17] For any two graphs Γ1 of order n1 and Γ2 of order n2, such
that V (Γ1) ∩ V (Γ2) = ϕ. Then for every (u, v) ∈ V (Γ1[Γ2]),

d2((u, v)/(Γ1[Γ2])) = n2d2(u/Γ1) + d1(v/Γ2).

We need the following result to show our main result,

Theorem 2.20. For nontrivial connected graphs Γ1 and Γ2 with n1, n2 vertices
and m1,m2 edges, respectively.
L3(Γ1[Γ2]) = n3

2L3(Γ1)−n1M1(Γ2)−4n2m1m2+2(n2−1)(n1m2+n2
2m1)+2n2m2µ(Γ1).

Where, µ(Γ1) =
∑

v∈V (Γ1)

d2(v/Γ1).

Theorem 2.21. Let Γ1 and Γ2 be two nontrivial connected graphs with n1, n2

vertices and µ(Γ1), µ(Γ2) second edges, respectively. Then

L3(Γ1[Γ2]) ≤ n2M1(Γ1)
[
n2(n1n2 − 1)−m2

]
− n3

2L3(Γ1) + n1M1(Γ2)− (n1n2 − 1)[
n2(n1 − 2m1)− n1

]
− 2(n1m2 + 2n2

2m1)
[
n2(n1 + 1)− 2)

]
+ 8n2m1m2.

The equality holds if and only if both the graphs Γ1 and Γ2 are (C3, C4)-free.
Proof. From Lemma 2.19, Theorem 2.20 and by using the fact that state for a
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graph Γ,

L3(Γ) = (n− 1)
∑

v∈V (Γ)

d2(v/Γ)− L3(Γ). Thus

L3(Γ1[Γ2]) = (n1n2 − 1)
∑

(u,v)∈V (Γ1[Γ2])

d2((u, v)/(Γ1[Γ2]))− L3(Γ1[Γ2])

= (n1n2 − 1)
∑

u∈V (Γ1)

∑
v∈V (Γ2)

[d2(u/Γ1)− (n2 − 1)− d(v/Γ2)]− L3(Γ1[Γ2])

= (n1n2 − 1)
[
2n2

2µ(Γ1) + n1n2(n2 − 1)− 2n1m2

]
−
[
n3
2L3(Γ1)− n1M1(Γ2)− 4n2m1m2 + 2(n2 − 1)(n1m2 + n2

2m1) + 2n2m2µ(Γ1)
]

= 2n2µ(Γ1)
[
n2(n1n2 − 1)−m2

]
+ n1n2(n2 − 1)(n1n2 − 1)

− 2n1m2(n1n2 − 1)− n3
2L3(Γ1) + n1M1(Γ2) + 4n2m1m2 − 2(n2 − 1)(n1m2 + n2

2m2)

≤ n2(M1(Γ1)− 2m1)
[
n2(n1n2 − 1)−m2

]
+ n1n2(n2 − 1)(n1n2 − 1)

− 2n1m2(n1n2 − 1)− n3
2L3(Γ1) + n1M1(Γ2) + 4n2m1m2 − 2(n2 − 1)(n1m2 + n2

2m2)

= n2M1(Γ1)
[
n2(n1n2 − 1)−m2

]
− 4n2

2m1(n1n2 − 1) + 4n2m1m2 + n1n2(n2 − 1)(n1n2 − 1)

− 2n1m2(n1n2 − 1)− n3
2L3(Γ1) + n1M1(Γ2) + 4n2m1m2 − 2(n2 − 1)(n1m2 + n2

2m2)

= n2M1(Γ1)
[
n2(n1n2 − 1)−m2

]
− n3

2L3(Γ1) + n1M1(Γ2)− 2(n1n2 − 1)(n1m2 + 2n2
2m1)

+ n1n2(n2 − 1)(n1n2 − 1) + 8n2m1m2 − 2(n2 − 1)(n1m2 + n2
2m2)

= n2M1(Γ1)
[
n2(n1n2 − 1)−m2

]
− n3

2L3(Γ1) + n1M1(Γ2)− 2n2
2m1(n1n2 − 1)

− 2(n1m2 + 2n2
2m1)

[
(n1n2 − 1) + (n2 − 1)

]
+ n1n2(n2 − 1)(n1n2 − 1) + 8n2m1m2

= n2M1(Γ1)
[
n2(n1n2 − 1)−m2

]
− n3

2L3(Γ1)− (n1n2 − 1)
[
n1n2(n2 − 1)− 2n2

2m1

]
− 2(n1m2 + 2n2

2m1)
[
(n1n2 − 1) + (n2 − 1)

]
+ 8n2m1m2 + n1M1(Γ2)

= n2M1(Γ1)
[
n2(n1n2 − 1)−m2

]
− n3

2L3(Γ1)− (n1n2 − 1)
[
n2(n1 − 2m1)− n1

]
− 2(n1m2 + 2n2

2m1)
[
n2(n1 + 1)− 2)

]
+ 8n2m1m2 + n1M1(Γ2).

2.5. Disjunction

Definition 2.22. [14] The disjunction graph Γ1 ∨Γ2 of two graphs Γ1 and Γ2 with
disjoint vertex and edge sets is a graph with V (Γ1∨Γ2) = V (Γ1)×V (Γ2) and if two
vertices u = (u1, u2), v = (v1, v2) in V (Γ1 ∨ Γ2), then uv ∈ E(Γ1 ∨ Γ2), whenever
u1v1 ∈ E(Γ1) or u2v2 ∈ E(Γ2).

The disjunction operation Γ1 ∨ Γ2 is commutative, diam(Γ1 ∨ Γ2) ≤ 2 and



44 South East Asian J. of Mathematics and Mathematical Sciences

|E(Γ1 ∨ Γ2) = n2
1m2 + n2

2m1 − 2m1m2.

Lemma 2.23. [17] Let Γ1 and Γ2 be two graphs with n1 and n2 vertices and m1

and m2 edges, respectively. Then

1. d1((u, v)/(Γ1 ∨ Γ2)) = n2d1(u/Γ1) + n1d1(v/Γ2)− d1(u/Γ1)d1(v/Γ2)

2. d2((u, v)/(Γ1∨Γ2)) = (n1n2−1)−n2d1(u/Γ1)−n1d1(v/Γ2)+d1(u/Γ1)d1(v/Γ2).

Since the diameter of Γ1 ∨ Γ2 is at most two, bring in the mind that, “if
diam(Γ) ≤ 2, then L3(Γ) = L1(Γ)”, (see Theorem 4.3, in [7]), and by using
Theorem 2.18 in [18], the following expression of third leap coindex of Γ1 ∨ Γ2

is straightforward.

Theorem 2.24. If one of the graphs Γ1 and Γ2 is not complete with n1, n2,m1 and
m2 orders and sizes, respectively, then

L3(Γ1 ∨ Γ2) = (n1n
2
2 − 4n2m2)M1(Γ1) + (n2n

2
1 − 4n1m1)M1(Γ2) +M1(Γ1)M1(Γ2)

+ 8n1n2m2 + n1n2(n1n2 − 1)2 − 4(n1n2 − 1)(n2
2m1 + n2

1m2 − 2m1m2).

2.6. Symmetric difference

Definition 2.25. [14] The Symmetric difference Γ1 ⊕ Γ2 of two graphs Γ1 and Γ2

with disjoint vertex sets and edge sets is the graph with vertex set V (Γ1) × V (Γ2)
in which (u1, v1) is adjacent with (u2, v2) whenever u1 is adjacent with u2 in Γ1 or
v1 is adjacent with v2 in Γ2 but not both.

The Symmetric difference is commutative, with |V (Γ1 ⊕ Γ2)| = n1n2 vertices,
diam(Γ1 ⊕ Γ2) ≤ 2 and |E(Γ1 ⊕ Γ2)| = n2

1m2 + n2
2m1 − 4m1m2 edges.

Lemma 2.26. Let Γ1 and Γ2 be distinct graphs of n1 and n2 orders and m1 and
m2 sizes, respectively. Then

1. d1((u, v)/(Γ1 ⊕ Γ2)) = n2d1(u/Γ1) + n1d1(v/Γ2)− 2d1(u/Γ1)d1(v/Γ2)

2. d2((u, v)/(Γ1⊕Γ2)) = (n1n2−1)−n2d1(u/Γ1)−n1d1(v/Γ2)+2d1(u/Γ1)d1(v/Γ2).

By similar arguments as in Theorem 2.26, the following expression of third leap
coindex of Γ1 ⊕ Γ2 is straightforward.

Theorem 2.27. Let Γ1 and Γ2 be two graphs, such that one of them is not complete
with n1 and n2 vertices and m1 and m2 edges, respectively. Then

L3(Γ1 ⊕ Γ2) = (n1n
2
2 − 8n2m2)M1(Γ1) + (n2n

2
1 − 8n1m1)M1(Γ2) + 4M1(Γ1)M1(Γ2)

+ 8n1n2m1m2 + n1n2((n1n2 − 1)2 − 4(n1n2 − 1)(n2
2m1 + n2

1m2− 4m1m2).
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