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Abstract: This paper presents a new private key cryptosystem utilizing the Chi-
nese Remainder Theorem (CRT) for encryption and decryption. The system gen-
erates keys by selecting a specified number of distinct primes and a random integer
‘a’, which is chosen as a random number greater than all the selected primes and
coprime to them, ensuring security without revealing the modulus. Encryption and
decryption operations are performed within the modulus of each prime, enhancing
data protection. The system’s security relies solely on the integrity of prime num-
bers and the randomness of ‘a’, offering a promising solution for secure symmetric
key cryptography.
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1. Introduction
In the digital age, secure communication is paramount, driving the increasing

importance of cryptography [8]. Cryptography, the art of sending messages in dis-
guised form, plays a pivotal role in ensuring the confidentiality and integrity of



128 J. of Ramanujan Society of Mathematics and Mathematical Sciences

digital communications. Broadly classified into public and private key cryptosys-
tems, each has its unique advantages and applications. Public key cryptosystems
[4] offer enhanced security but come with a computational overhead, particularly
in encryption and decryption processes. Consequently, for routine communication
needs, private key cryptosystems are widely favored [12]. Public key cryptography
finds its niche in key exchange, authentication, verification, and digital signatures
[3, 7, 9].

Symmetric key cryptography plays a crucial role in private key cryptosystems,
utilizing the same key for both encryption and decryption. Among the most notable
algorithms are the Data Encryption Standard (DES) and the Advanced Encryp-
tion Standard (AES). DES, based on the Feistel network, was extensively adopted
but became vulnerable to brute force attacks due to its limited key size [2]. AES,
which employs a substitution-permutation network, supports multiple key lengths
and offers enhanced resistance to cryptanalytic techniques [5]. Recent advance-
ments in symmetric ciphers have introduced optimized designs for better efficiency
and resistance to side-channel attacks. Additionally, block ciphers have been tai-
lored for lightweight cryptography in resource-constrained environments, such as
IoT, emphasizing energy efficiency and security [11]. Despite significant advance-
ments, most symmetric key cryptosystems do not incorporate advanced mathemat-
ical frameworks like modular arithmetic, prime numbers, or computational number
theory.

In this paper, we propose a novel private key cryptosystem where encryption
and decryption are intricately tied to the Chinese Remainder Theorem (CRT). Our
method hinges on the selection of a secure key represented as an ordered pair: one
component comprises a set of k distinct primes, while the other is a random integer
exceeding all primes and co-prime with each prime. We adopt the ASCII table for
mapping message units, numerically representing each unit according to the ASCII
table. Encryption entails dividing each message into k numbers, encrypting each
under the modulo of a distinct prime. Decryption, utilizing CRT, aggregates these
encrypted components into a single number, uniquely solvable modulo the product
of all primes.

Importantly, our cryptosystem preserves the confidentiality of the modulus,
treating it as part of the private key. Successful decryption necessitates correctness
across all moduli, ensuring the security of our system. Scaling the number of
primes enhances security but also increases computational complexity due to the
block-like division of messages. Unlike existing symmetric ciphers, our system
leverages modular arithmetic and ensures an expanded key space. The complexity
of encryption is tied to the multiplication of two integers modulo a prime and
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scales with the number of primes k. Decryption complexity, governed by CRT
computation, is O((log n)2), where n is the product of all k primes [7].

By leveraging the Chinese Remainder Theorem, our cryptosystem offers a promis-
ing avenue for secure communication, balancing security and computational effi-
ciency in private key cryptography. Additionally, a Python program has been
authored to implement our cryptographic system, specifically designed for facili-
tating communication.

2. Preliminaries
In this section, we lay the groundwork by discussing fundamental concepts in

modular arithmetic and the Chinese Remainder Theorem (CRT), which are crucial
for understanding our proposed cryptosystem [1, 10].

2.1. Modulo Arithmetic
Modulo arithmetic, also known as clock arithmetic, is a fundamental concept

in mathematics where numbers“wrap around” upon reaching a certain value called
the modulus. In modulo arithmetic, two integers a and b are said to be congruent
modulo n, denoted as a ≡ b (mod n), if their difference is divisible by n. For
example, 11 ≡ 3 (mod 4) because (11− 3) = 8 is divisible by 4.

2.2. Co-prime Numbers
Two integers are said to be co-prime if their greatest common divisor (GCD) is

1. In other words, they have no common factors other than 1. Co-prime numbers
play a crucial role in various number theoretic concepts, including the Chinese
Remainder Theorem.

2.3. Chinese Remainder Theorem (CRT)
The Chinese Remainder Theorem (CRT) is a fundamental theorem in number

theory that provides a solution to a system of simultaneous congruences.
Consider a system of congruences:

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ ak (mod mk)

where m1,m2, . . . ,mk are pairwise co-prime integers. CRT states that this
system has a unique solution modulo M = m1 ·m2 · · ·mk, where M is the product
of the moduli.
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2.4. Finding Solutions using CRT
To find the solution to the system of congruences (in the above) using CRT,

we first compute M = m1 · m2 · · ·mk. Then, for each congruence, we compute
Mi =

M
mi

and find the modular inverse yi of Mi modulo mi. Finally, the solution x
is given by:

x =
k∑

i=1

ai · yi ·Mi (mod M)

These concepts form the basis of our proposed private key cryptosystem, which
we will elucidate in subsequent sections.

3. A Novel Private Key Cryptosystem Based on CRT
This section introduces a novel private key cryptosystem algorithm leveraging

the Chinese Remainder Theorem (CRT). The algorithm encompasses key gener-
ation, encryption, and decryption processes. For encryption and decryption, a
random integer a is utilized alongside a set of k distinct primes p1, p2, · · · , pk as
moduli. The integer a is chosen to be greater than all primes and co-prime to them,
forming the private key. During encryption, plaintext message units are divided
into k integers, resulting in a ciphertext consisting of k numbers or a block of length
k , each smaller than the respective prime pi, where 1 ≤ i ≤ k respectively. De-
cryption involves utilizing the private key, an ordered pair comprising k primes and
a, alongside CRT to obtain a unique solution modulo the product of primes, that
unique number gives the original plaintext message unit. Additionally, numerical
values for each message unit are determined using the ASCII table. Furthermore, a
Python program based on our algorithm is developed for communication purposes.

3.1. Algorithm
Key Generation:

First, choose k distinct primes p1, p2, ..., pk such that p1 < p2 < · · · < pk. Also,
choose an integer a such that a > pk and gcd(a, pi) = 1 for all i. Therefore, the
key in this system is ((p1, p2, ..., pk), a).

Encryption:
Suppose m is the numerical value of the message unit chosen according to the

ASCII table. Then, m is encrypted as follows:

m · a ≡ b1 (mod p1)

m · a ≡ b2 (mod p2)

...

m · a ≡ bk (mod pk)
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The ciphertext will be (b1, b2, ..., bk).

Decryption:
The ciphertext (b1, b2, ..., bk) is decrypted as follows using the key:
First, compute the inverse of a modulo p1, p2, ..., pk, denoted as a1, a2, ..., ak

respectively. Then, solve the following congruence by CRT:

x ≡ a1b1 (mod p1)

x ≡ a2b2 (mod p2)

...

x ≡ akbk (mod pk) (1)

We will get a unique solution modulo p1p2...pk, the product of primes. The
unique solution is the numerical value m of the original message.

Decryption will work as the solution for the each congruence in (1) ism and CRT
gives the unique solution modulo the product p1p2...pk. As the highest numerical
value in the ASCII table is 127, and we choose primes such that the product is more
than 127, our decryption will work. If we want to accommodate more characters,
we can choose primes accordingly.

Note that the algorithm will work not only for prime numbers but also for any
k positive integers that are pairwise coprime. Additionally, the reason for choosing
‘a’ greater than all the primes is to avoid the case where m ·a is less than any pi. If
m is less than any pi, then there is a chance that m · a = bi for some i (in the case
of a ≯ pk). If the ciphertext unit (b1, b2, · · · , bk) is revealed, with the knowledge
of bi and all possible values of m, we can find the value of a. This reveals part of
the key, and with the value of a, we can find the original message as m · a = bi.
Another reason to choose ‘a’ coprime to each pi is that in decryption, we have to
find the inverse of a modulo each pi.

Regarding security, it depends entirely on the choice of primes as moduli and
the random integer a. One advantage is that the modulus is not revealed, as it is
part of the private key. Knowledge of all primes is necessary for decrypting the
message, as CRT gives the original message if all primes are correct. Additionally,
knowledge of the random integer a is also necessary; without it, even with the
correct primes, CRT will not give the original message. Therefore, for security
reasons, if we fix the primes, we can randomly change the value of a. Then, there
is no need to change the entire key every time; sometimes, changing the random
value of a suffices.

Furthermore, each message unit is divided into blocks of length k, where k
represents the number of primes. Therefore, the number of primes used in the
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system is also kept confidential. If a full message consists of l units, then the
ciphertext numerical consists of k × l numbers. When observing the ciphertext,
the recipient first divides it into blocks of length k. Thus, the size of the block also
plays an important role in security.

3.2. Complexity
The complexity of the proposed cryptosystem arises from the encryption and

decryption processes, which are inherently tied to modular arithmetic and the Chi-
nese Remainder Theorem [6] [7].

Encryption: During encryption, we choose k distinct primes and perform mod-
ular arithmetic operations for each message unit m, multiplied with a, under the
modulus of each prime. Since a is greater than all the k primes, the computational
complexity of the encryption is O(k · (log a)2).
Decryption: The decryption process is predominantly determined by solving the
CRT problem. If n is the product of all k primes, the complexity of solving the
CRT is O((log n)2). This ensures that decryption is computationally efficient while
maintaining the security of the cryptosystem.

Overall, the cryptosystem achieves a balance between computational efficiency
and cryptographic strength, making it suitable for secure communication in various
applications.

Example 1. Choose three primes p1 = 11, p2 = 17, and p3 = 41, and a = 45.
Therefore, the key is ((11, 17, 41), 45) and k = 3.
Consider the message ‘‘KRISHNA". The numerical values according to the ASCII
table are: K → 75, R → 82, I → 73, S → 83, H → 72, N → 78 and A → 65.

Encryption of the message KRISHNA is as follows:

� For K: 75 and a = 45, then 75×45 ≡ 9 (mod 11), 75×45 ≡ 9 (mod 17), and
75 × 45 ≡ 13 (mod 41). So, for K, the corresponding ciphertext numericals
are (9, 9, 13).

� Similarly, for the remaining units R, I, S, H, N, A, the ciphertext numericals
are (5, 1, 0), (7, 4, 5), (6, 12, 4), (6, 10, 1), (1, 8, 25), (10, 1, 14), respectively.

Therefore, the numerical ciphertext for the total message is:

[9, 9, 13, 5, 1, 0, 7, 4, 5, 6, 12, 4, 6, 10, 1, 1, 8, 25, 10, 1, 14]

The decryption for the above ciphertext is as follows:

� As there are three primes, divide the above ciphertext into blocks of size
three: (9, 9, 13), (5, 1, 0), (7, 4, 5), (6, 12, 4), (6, 10, 1), (1, 8, 25), (10, 1, 14).
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� Take the first block (9, 9, 13) and find the multiplicative inverse of a = 45
modulo 11, 17, and 41, which are 1, 14, and 31, respectively. Then consider
the congruence:

x ≡ 1× 9 (mod 11)

x ≡ 14× 9 (mod 17)

x ≡ 31× 13 (mod 41)

That is,

x ≡ 9 (mod 11)

x ≡ 7 (mod 17)

x ≡ 34 (mod 41).

� Apply CRT to get the unique solution modulo 11× 17× 41 = 7667.

� Let m1 = 11, m2 = 17, and m3 = 41, and c1 = 9, c2 = 7, and c3 = 34.
Then, compute M = m1 × m2 × m3 = 7667 and M1 = M/m1 = 697,
M2 = M/m2 = 451, and M3 = M/m3 = 187.

� The inverse of Mi mod mi is yi for i = 1, 2, 3. Then y1 = 3, y2 = 2, and
y3 = 25.

� The unique solution is c1×y1×M1+ c2×y2×M2+ c3×y3×M3 (mod 7667),
which evaluates to 75 and 75 → K.

� If we apply the same procedure for the remaining ciphertext blocks, then the
corresponding plaintext for the blocks (5, 1, 0), (7, 4, 5), (6, 12, 4), (6, 10, 1),
(1, 8, 25), (10, 1, 14) is R, I, S, H, N, A, respectively.

4. Python Implementation for Communication
Here is the Python implementation for communication using our algorithm:

def encrypt(msg, a, primes):

numerical_identities = [ord(char) for char in msg]

ciphertext = []

for num in numerical_identities:

ci = [(num * a) % prime for prime in primes]

ciphertext.extend(ci)

return ciphertext

def chinese_remainder_theorem(congruences):
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M = 1

for _, mi in congruences:

M *= mi

result = 0

for ai, mi in congruences:

Mi = M // mi

Mi_inv = pow(Mi, -1, mi)

result += ai * Mi * Mi_inv

return result % M

def decrypt(ciphertext, a, primes):

block_size = len(primes)

decrypted_msg = ""

for i in range(0, len(ciphertext), block_size):

block = ciphertext[i:i + block_size]

congruences = [(block[j] * pow(a, -1, primes[j]), primes[j]) for j in range(block_size)]

m = chinese_remainder_theorem(congruences)

decrypted_msg += chr(m % 128) if m >= 0 and m <= 127 else ’ ’

return decrypted_msg

def main():

num_primes = int(input("Enter the number of primes: "))

primes = [int(input(f"Enter prime {i+1}: ")) for i in range(num_primes)]

a = int(input("Enter a: "))

operation = input("Choose an operation (encrypt/decrypt): ").lower()

if operation == ’encrypt’:

original_message = input("Enter the original message: ")

numerical_ciphertext = encrypt(original_message, a, primes)

print("Numerical Ciphertext:", numerical_ciphertext)

elif operation == ’decrypt’:

user_input_ciphertext = input("Enter numerical values of ciphertext (comma-separated): ")

numerical_ciphertext = [int(num) for num in user_input_ciphertext.split(’,’)]

decrypted_msg = decrypt(numerical_ciphertext, a, primes)

print("\nDecrypted Message:", decrypted_msg)

else:

print("Invalid operation. Please choose either ’encrypt’ or ’decrypt’.")

if __name__ == "__main__":

main()

This program prompts the user to enter the number of primes, the primes
themselves, the value of a, and the operation (encryption or decryption). Then, it
performs the chosen operation accordingly.
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5. Conclusion
In conclusion, we have introduced a novel private key cryptosystem based on

the Chinese Remainder Theorem (CRT). Our system employs a unique approach to
key generation, encryption, and decryption processes. By utilizing a set of distinct
primes and a random integer grater than and co-prime to each prime, alongside
ASCII numerical values for message units, we have demonstrated a robust method
for securing digital communication. The Chinese Remainder Theorem plays a piv-
otal role in aggregating encrypted components into a single number during decryp-
tion, ensuring confidentiality and integrity without revealing the modulus. With
an expanded key space and computationally efficient encryption and decryption
processes, our cryptosystem strikes a balance between security and performance.
Also, we have provided a Python implementation of our algorithm for practical
communication purposes. The security of our system relies on the secrecy of the
primes and the random integer, offering a balance between computational efficiency
and cryptographic strength. As future work, this approach can be extended from
primes to integers with co-prime conditions and additional constraints to achieve
greater security.

However, the proposed cryptosystem, while secure, faces higher computational
complexity in encryption and decryption due to modular arithmetic and the Chi-
nese Remainder Theorem. Additionally, managing a key structure involving k
distinct primes poses challenges. Scalability issues, such as longer ciphertexts and
greater processing times with increasing k, and potential implementation vulnera-
bilities further limit the practicality of the cryptosystem for certain applications.

Overall, our proposed cryptosystem presents a promising avenue for secure com-
munication in the digital age, emphasizing the importance of leveraging mathemat-
ical principles in cryptographic design.
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