
J. of Ramanujan Society of Mathematics and Mathematical Sciences
Vol. 12, No. 1 (2024), pp. 83-92

DOI: 10.56827/JRSMMS.2024.1201.7 ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

PRIMARY IDEALS IN Γ−SEMIRINGS

Tilak Raj Sharma

Department of Mathematics,
Himachal Pradesh University,

Regional Centre Khaniyara Dharamshala - 176218,
Himachal Pradesh, INDIA

E-mail : trpangotra@gmail.com

(Received: Aug. 20, 2024 Accepted: Dec. 23, 2024 Published: Dec. 30, 2024)

Abstract: From an algebraic point of view, Γ− semirings provide the most nat-
ural generalization of the theory of semirings. In this paper, we summarize the
semiring theoretic results concerning the primary ideals and their radicals to non-
commutative Γ− semirings.
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1. Introduction
As a generalization of Γ−rings, the idea of Γ− semiring was presented by Rao

[7]. Later it was discovered that Γ− semiring additionally gives an algebraic home
to the set of rectangular matrices over a semiring. Dutta and Sardar [2] presented
the thought of operator semiring of a Γ− semiring in 2002 and by utilizing the
connection between the operator semiring and the Γ− semiring, they enriched
the theory of Γ− semiring and demonstrated the outcomes regarding prime ideals
and prime radicals of a Γ− semiring via its operator semirings which incorporates
various characterizations of prime ideals and prime radicals.

The motivation of this paper is [8] where Sharma et.al received a substitute
way to generalize primary ideals from commutative semirings to non-commutative
semirings by replacing the role of elements with ideals. In this paper, we define
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primary ideals in terms of their ideals and prove some fundamental outcomes con-
cerning the primary ideals and their radicals for noncommutative Γ− semirings by
making suitable changes in some of the results of [8].

2. Preliminaries

Recall from [7] that if (R,+) and (Γ,+) be two commutative semigroups then
R is called a Γ− semiring if there exists a mapping R × Γ ×R → R denoted by
xαy for all x, y ∈ R and α ∈ Γ satisfying
(i) xα(y + z) = xαy + xαz.
(ii) (y + z)αx = yαx+ zαx.
(iii) x(α + β)z = xαz + xβz.
(iv) xα(yβz) = (xαy)βz for all x, y, z ∈ R and α, β ∈ Γ.
Let A and B be semirings and let R = Hom(A,B) and Γ = Hom(B,A) denote
the sets of homomorphisms from A to B and B to A respectively. Then R is a
Γ− semiring with operations of pointwise addition and composition of mappings.
Further, let M be a Γ− ring and R be the set of ideals of M . Define addition in
the natural way and if A,B ∈ R, γ ∈ Γ, let AγB denote the ideal generated by
{xγy|x, y ∈ M}. Then R is a Γ− semiring.

A Γ− semiring R is said to be commutative if xγy = yγx for all x, y ∈ R and
for all γ ∈ Γ. A Γ− semiring R is said to have a zero element if 0γx = 0 = xγ0
and x + 0 = x = 0 + x for all x ∈ R and γ ∈ Γ. R is said to have an identity
element if there exists γ ∈ Γ such that 1γx = x = xγ1 for all x ∈ R. ϕ ̸= I ⊆ R is
said to be left (right) ideal of R if I is subsemigroup of (R,+), xγy ∈ I (yγx ∈ I)
for all x ∈ R, y ∈ I and γ ∈ Γ. If I is both the left and right ideal of R then I
is an ideal of R. M ⊂ R is said to be the maximal ideal if there does not exist
any other proper ideal of R containing M properly. An ideal P of R is k−ideal if
y ∈ P , x+ y ∈ P , x ∈ R implies that x ∈ P . Let H ̸= ϕ. Then H is an m−system
of R if cα1rα2d ∈ H, for any c, d ∈ H, r ∈ R and α1, α2 ∈ Γ.

All through here, R will signify with ‘0’ and ‘1’ as zero and identity element
except if in any case expressed.

3. Primary ideals in a non-commutative Γ− semiring

Here, we introduce the idea of primary ideals in a Γ−semiring R which are
characterized similarly as that of the prime just by replacing the role of elements
with ideals. This methodology empowers us to demonstrate some basic results
concerning the primary ideals and their radicals for a Γ− semiring R.

Definition 3.1. An ideal P of a Γ− semiring R is said to be prime ideal if
AΓB ⊆ P implies that either A ⊆ P or B ⊆ P , for any two ideals A and B of R.
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Definition 3.2. An ideal P of a Γ− semiring R is said to be semiprime if AΓA ⊆
P implies that A ⊆ P , for any ideal A of R.

Definition 3.3. For any ideal P of a Γ− semiring R, the prime radical of P is
defined as the intersection of all prime ideals of R containing P . It is denoted by
r(P ).

In [1], the authors considered a semiring R with 1 and for any ideal I of R
define r(I) = {a ∈ R | an ∈ I for some positive integer n} and call it radical of
I. The radical so defined has a nice property that if I is subtractive then r(I) is
subtractive( [1], Proposition 2.19). But because of non-commutativity, we follow
J.S. Golan [5] and have the following definition.

Definition 3.4. For an ideal A of a Γ−semiring R, the radical of A is defined
as r(A) = {s ∈ R | every m− system containing s meets A } ⊆ radical A, where
radical A is defined in [1]. In the special case when R is commutative Γ− semiring,
the inclusion “ ⊆ ” above is equality.

The following theorem is proved in [3], using “via operator semirings of a Γ−
semiring”. As a consequence, we have prove the following result in terms of prime
radicals for Γ− semirings.

Theorem 3.5. Let A and B be two ideals of a Γ− semiring R. Then
(i) if A ⊆ B then r(A) ⊆ r(B).
(ii) r(r(A)) = A.
(iii) r(A+B) = r(r(A) + r(B)). (iv) r(A ∩B) = r(A) ∩ r(B) = r(AΓB).
Proof. (i) Let r(A) =

⋂
i{Pi | Pi is prime, A ⊆ Pi} and r(B) =

⋂
i{P ′

i | P ′
i is prime

and B ⊆ P ′
i}, where Pi and P ′

i are prime ideals of R. Now, r(A) =
⋂

i{Pi | Pi is
prime, A ⊆ Pi} ⊆

⋂
i{Pi | Pi is prime and B ⊆ Pi} = r(B), since A ⊆ B .

The proof of (ii) and (iii) are obvious.
(iv) Since A∩B ⊆ A and A∩B ⊆ B, by (i) we have r(A∩B) ⊆ r(A)∩r(B). Further,
r(A) ∩ r(B) =

{⋂
i{Pi | Pi , A ⊆ Pi}

}⋂{⋂
i{Qi | Qi , B ⊆ Qi}

}
=

⋂
i{Ti | Ti

either A ⊆ Ti or B ⊆ Ti}. Let P be any prime such that P ⊇ A ∩B. Then surely
AΓB ⊆ A∩B ⊆ P proves the reverse inclusion. Again, since AΓB ⊆ A∩B implies
that r(AΓB) ⊆ r(A ∩B) ⊆ r(A) ∩ r(B). Furthermore, the primeness of P implies
that r(A) ∩ r(B) ⊆ r(AΓB), which completes the result.

The accompanying result, which is taken as a definition of the prime radical in
[4] for weak primary decomposition of right Noetherian right k -Γ− semiring, is
likewise referenced in [5], however for completeness we state the following results,
the proofs of which are easy and straight forward.

Theorem 3.6. Let A be an ideal of a Γ− semiring R. Then r(A) equals the
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intersection of all the prime ideals of R containing A.

Corollary 3.7. The prime radical of an ideal A of R is an ideal.

A primary ideal in the case of commutative rings, commutative semirings, and
semigroups is defined in terms of elements. For example, in instance of semigroup
S, let I be any ideal of S, then redical of I is rad(I) = {s ∈ S | ns ∈ I, n ∈ Z+ }.
Additionally an appropriate ideal P of S is primary if a+ b ∈ P with a, b ∈ S and
a /∈ P implies that b ∈ rad(P ). For more details on primary ideals and radicals of
semigroups, one can see [6]. But here we follow [8] and define the primary ideal of
a Γ− semiring (not necessarily commutative) regarding its ideals.

Definition 3.8. An ideal P of R is primary if for any two ideals A and B of R,
AΓB ⊆ P implies that either A ⊆ P or B ⊆ r(P ).

Every prime ideal are primary ideal. We also recall.

Definition 3.9. Let M (̸= ϕ) and S be two sets such that M ⊆ S ⊆ R. Then S
is an m−system with respect to M if a ∈ S, b ∈ M , r ∈ R we have aγrβb ∈ S,
β, γ ∈ Γ.

Definition 3.10. Let R be a Γ− semiring and I be any ideal of R. Define r(I) =
{x ∈ R | (xα)n−1x ∈ I for all α ∈ Γ and for some positive integer n} and call it
radical of I.

The radical so defined in a Γ− semiring has also a nice property as in semirings
that if I is a k− ideal then r(I) is also a k− ideal. We now state the following
three results referred from [3].

Proposition 3.11. [3] Let S be Γ− semiring and P be a proper ideal of S. If
x ∈ r(P ) then (xγ)n−1x ∈ P , for all γ ∈ Γ and for some positive integer n,
((xγ)0x = x).

Theorem 3.12. [3] For a commutative Γ− semiring S, r(Q) = {s ∈ S : (sγ)n−1s ∈
Q for some positive integer n and for all γ ∈ Γ}, where Q is a proper ideal of S.

Theorem 3.13. [3] For a proper ideal Q of a Γ− semiring S, r(Q) = {s ∈ S |
every m-system in S which contains s has a nonempty intersection with Q}.
Now, it is easy to verify the following semiring theoretic results for a Γ− semiring.

Theorem 3.14. For an ideal P ⊊ R the following statements are equivalent:
(i) P is primary.
(ii) If a, b ∈ R, (a)Γ(b) ⊆ P then either a ∈ P or b ∈ r(P ), where (a) = RΓaΓR,
(b) = RΓbΓR.
(iii) If aΓRΓb ⊆ P then a ∈ P or b ∈ r(P ).
(iv) P c is an m-system with respect to r(P )c, where P c = R\P and r(P )c = R\r(P.
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Theorem 3.15. Let A ⊆ R. Then the following statements are equivalent:
(i) A is semiprime.
(ii) A =

⋂
i{Pi | Pi is prime, A ⊆ Pi}.

(iii) A = r(A).
Proof. The result follows from [ c.f. [9], Theorem 3.20 ] and Theorem 3.5.
The following example from [8] is also held for Γ− semirings.

Example 3.16. [8] Let R = {N∪{∞},⊕,⊙}, where x⊕y = max(x, y) and x⊙y =
min(x, y). Then R is a Γ− semiring with identity ∞. Let At = {0, 1, 2......, t}.
Then At is semiprime. Thus, by Theorem 3.15, that At = r(At.

Corollary 3.17. For any ideal A ⊆ R, r(A) is the smallest semiprime ideal of R
which contains A.
Proof. It follows by using Theorem 3.5((i), (ii)) and Theorem 3.15.

Theorem 3.18. Let R be a Γ−semiring and A,B be two ideals of R. Then B is
prime radical of A and A is primary if and only if
(i) A ⊆ B and B is semiprime.
(ii) If b ∈ B, then every m-system containing b intersect A.
(iii) Let a, b ∈ R, aΓRΓb ⊆ A, then a ∈ A or b ∈ B.
Proof. Suppose that all given conditions are satisfied. Let a /∈ A and b /∈ r(A),
then by definition 3.3, there must be an m−system S containing b such that S does
not intersect A. Therefore, by (ii), b /∈ B and hence by (iii), aΓRΓb ⊈ A. Thus,
A is primary. Using Corollary 3.17, B ⊆ r(A). Moreover, the semiprime character
of B together with theorem 3.4(i) gives that r(A) ⊆ r(B) = B.
Converse follows from Corollary 3.17, Definition 3.3. and Theorem 3.14.

Theorem 3.19. Let A,B be ideals of a commutative Γ− semiring R for which
(i) A ⊆ B.
(ii) If b ∈ B then every m-system containing b intersect A.
(iii) B is maximal.
Then B is a prime radical of A and A is primary.
Proof. The maximality of B implies that B is prime (c.f. [9], Corollary 3.18),
and hence B is semiprime. Let aΓRΓb ⊆ A and b /∈ B. Consider the ideal
RΓbΓR generated by b. Since b ∈ RΓbΓR and b /∈ B, B + RΓbΓR ⊋ B. Hence,
by maximality of B, R = B + RΓbΓR. Therefore, 1 = c +

∑
i riγibβir

′
i, r′i ∈

R, c ∈ B, γi, βi ∈ Γ. This implies that 1 = c + l ∈ RΓbΓR, l =
∑

i riγibβir
′
i.

Since c ∈ r(A), (cγ)n−1c ∈ A for some n ⩾ 1. Raising the above equality to
the nth power, 1 = (cγ)n−1c + (lβ)n−1l + X(l), where X(l) is the sum of the
terms containing b and (lβ)n−1l, X(l) ∈ RΓbΓR as RΓbΓR is an ideal of R. Now,
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a = aγ1 = aγ(cγ)n−1c + aγ(lβ)n−1l + aγX(l), where aγ(cγ)n−1c ∈ A, aγ(lβ)n−1l
and aγX(l) ∈ RΓbΓR. But aΓRΓb ⊆ A, So, by Theorem 3.18, a ∈ A.

Theorem 3.20. (i) Let P1, P2, ..., Pn be primary ideals of R and r(Pi) = B(i =
1, 2, ..., n). Then

(a) P = ∩iPi is primary and r(P ) = B.

(b) Let P = P1ΓP2Γ...ΓPn. If B is maximal then r(P ) = B and P is primary.

(c) Let P =
∑n

i Pi. If B is maximal then r(P ) = B and P is primary.

(ii) If A is primary, B = r(A) and U ⊈ A, U is an ideal of R, then A : U is
primary and r(A : U) = B , where A : U = {r ∈ R|UΓr ⊆ A}.
Proof. (i)(a) It is sufficient to verify all the conditions of Theorem 3.18, for P , B.
The first part of Theorem 3.18 is obvious for P and B. To prove theorem Theorem
3.18(ii), let b ∈ B and S be an m−system containing b. Since r(Pi) = B for all
(i = 1, 2, ...., n), S intersect each Pi. Let d1 ∈ S ∩P1, d2 ∈ S ∩P2, ....., dn ∈ S ∩Pn .
For d1, d2, ...., dn ∈ S there exist r1, r2, ......, rn−1 such that d = d1γ1r1γ2d2....dn ∈ S,
γi ∈ Γ, i = 1, 2, ..., n. d ∈ P and hence S intersect each P . Now, to prove Theorem
3.18(iii), let a, b ∈ R such that a /∈ P and b /∈ B . Therefore, a /∈ Pi for some i.
Thus, aΓRΓb ⊈ Pi because Pi is primary and r(Pi) = B and hence aΓRΓb ⊈ P .
(i)(b) and (i)(c) are obvious consequences of Theorem 3.19.
(ii) It again suffices to verify the three conditions of Theorem ?? for A : U and B.
To verify Theorem 3.18(i), To show A : U ⊆ B , we observe that UΓ(A : U) ⊆ A
and U ⊈ A. Therefore, A : U ⊆ r(A) = B because A is primary. B being the
prime radical of A is semiprime. This completes the first part of Theorem 3.18
for A : U and B. To check Theorem 3.18(ii), let b ∈ B and S be an m−system
containing b. Then S intersects A as A is primary and B = r(A) (c.f. Theorem
3.18, that is, there exists d ∈ S ∩ A. Since d ∈ A , UΓd ⊆ A and so d ∈ A : U .
This shows S intersect A : U . Finally, for Theorem 3.18(iii), let a /∈ A : U and
b /∈ B. The former implies that c ∈ U exists such that cγA /∈ A, γ ∈ Γ. Therefore,
for cγa /∈ A and b /∈ B , r ∈ R we have cγaβrαb /∈ A. Hence, aβrαb /∈ A : U , that
is, aβrαb /∈ A : U , α, β, γ ∈ Γ.

Corollary 3.21. Let M be a maximal ideal of a Γ− semiring R. Then (MΓ)n−1M
is primary and r((MΓ)n−1M) = M .
Proof. Since M is maximal, therefore by Theorem 3.20 (i)(b) and Theorem 3.15,
r((MΓ)n−1M) = r(MΓMΓ....ΓM) = r(M) = M and so (MΓ)n−1M is primary.

Definition 3.22. A Γ− semiring R is left Noetherian if and only if it satisfies the
ascending chain conditions on left ideals. Similarly, we can define right Noetherian.
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Theorem 3.23. Let R be a Noetherian Γ− semiring.
(i) Let r(A) = B, for any two ideals A,B of R. Then for n ≥ 1, (BΓ)n−1B ⊆ A.
(ii) If A is primary, then r(A) is prime.
Proof. (i) R being Noetherian, so we have M ⊂ R, maximal with respect to
(MΓ)n−1M ⊆ A for some n ≥ 1. Clearly M is semiprime. Moreover, M ⊆ B
since (MΓ)n−1M ⊆ A ⊆ B and B = r(A) However, B being smallest prime ideal
containing A (c.f. Corollary 3.17), it follows that M = B.

(ii) On contrary, suppose that r(A) is not prime. Then B ⊈ r(A), C ⊈ r(A) and
BΓC ⊆ r(A), B,C are ideals of R. By (i), for n ≥ 1 we have, (r(A)Γ)n−1r(A) ⊆ A.
Thus, BΓC ⊆ r(A) implies that ((BΓC)Γ)n−1(BΓC) ⊆ A. Since C ⊈ r(A), and A
is primary so (BΓC)Γ(BΓC)Γ...ΓB ⊆ A. Again, since B ⊈ r(A), and A is primary

implies that (BΓC)Γ(BΓC)Γ
(n− 1)times

.
(BΓC) ⊆ A. Repeating the process we

finally get B ⊆ A. But this is a contradiction. Hence, r(A) is prime.

Definition 3.24. Let R1 and R2 be two Γ− semirings. Then f : R1 → R2 be a
Γ− homomorphism if f(x + y) = f(x) + f(y) and f(xγy) = f(x)γf(y) for all
x, y ∈ R1 and γ ∈ Γ.

Let R1 and R2 be two Γ− semirings and T : R1 → R2 be an onto Γ− homo-
morphism. Let KT = {a ∈ R1| there exist b, c ∈ R1 such that a = b + c and
T (b) = T (c)}. Then KT is an ideal of R1 containing KerT , where KerT = {a ∈
R1 | T (a) = 0}.

Finally, we have

Theorem 3.25. Let T : R1 → R2 be an onto homomorphism of two Γ− semirings
R1 and R2. Let A ⊆ R1 for which both A and r(A) are k−ideals and KT ⊆ A. Then
A is primary if and only if T (A) is primary when this is so, r(T (A)) = T (r(A)).
Proof. Since T (A) ⊆ T (r(A)) as A ⊆ r(A). First we show that T (r(A)) is
semiprime, let a ∈ R2 such that a /∈ T (r(A)). Then no preimage c of a is in r(A).
By semiprimeness of r(A), we have r1 ∈ R1, γ ∈ Γ for which cγr1γc /∈ r(A). If x is
any pre image of T (cγr1γc) = T (c)ΓT (r1)ΓT (c) = aΓT (r1)Γa , then T (cγr1γc) =
T (x) implies that x+ cγr1γc ∈ KT ⊆ A ⊆ r(A). Therefore x /∈ r(A), for otherwise
k−ideal character of r(A) gives the contradiction cγr1γc ∈ r(A). Consequently
aΓT (r1)Γa /∈ T (r(A)). Thus T (r(A)) is semiprime and we are through with the
verification of condition (i) of Theorem 3.18. To verify the condition (ii) of Theorem
3.18, let b ∈ T (r(A)), S2 is an m-system in R2 containing b. Let S = T−1(S2) ⊆ R1,
then S is an m-system in R1. Since b ∈ T (r(A)), there exists a ∈ r(A) so T (a) = b.
Moreover, b ∈ S2 implies that c ∈ S gives that T (c) = b. Thus, T (a) = T (c)
implying a+ c ∈ KT ⊆ A ⊆ r(A). Since a+ c ∈ r(A) and r(A) is k−ideal, we get
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c ∈ r(A). Thus, every m−system containing c, in particular S intersects A non-
trivially. That is, there exists d ∈ S ∩A and hence T (d) ∈ S2 ∩ T (A) and we have
verified condition (ii) of theorem 3.18. Finally, for condition (iii) of theorem 3.18,
let a /∈ T (A) and b /∈ T (r(A)). Then obviously no pre-image l of a is in A and no
pre-image m of b is in r(A). Therefore, by primary character of A, r1 ∈ R1 we have
lγr1γm /∈ A. If y is any pre image of T (lγr1γm) = T (l)ΓT (r1)ΓT (m) = aΓT (r1)Γb,
then T (lγr1γm) = T (y) implies that y + lγr1γm ∈ KT ⊆ A. Therefore y /∈ A,
for otherwise k−ideal character of A gives the contradiction lγr1γm ∈ A, for all
γ ∈ Γ. Consequently aΓT (r1)Γb /∈ T (A). Thus T (A) is primary.

For the converse, let T (A) be primary and r(T (A)) = T (r(A). To show A is
primary, let a /∈ A and b /∈ r(A), a, b ∈ R1. Then as above using the k−ideal
character of A together with KT ⊆ A, we get T (a) /∈ T (r(A)). By a similar
argument T (b) /∈ T (r(A)) as r(A) is also k−ideal. Since T (A) is primary and
r(T (A)) = T (r(A)), we have r2 ∈ R2 for which T (a)Γr2ΓT (b) /∈ T (A). As T
is onto, so r1 ∈ R1 gives that T (r1) = r2. Therefore, for all γ ∈ Γ, T (aγr1γb) =
T (a)ΓT (r1)ΓT (b) = T (a)Γr2ΓT (b) /∈ T (A). Thus, we have shown that aγr1γb /∈ A,
for all γ ∈ Γ, that is aΓR1Γb ⊈ A, proving that A is primary.
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