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Abstract: In this paper, authors establish eight definite integral involving Struve
function and modified Struve functions using basic properties of definite integrals
and its techniques. Several closely-related results such as (for example) Generalized
hypergeometric functions are also considered. These results provide some exten-
sions in the scientific literature. Furthermore, these integrals play a significant role
in the applied Mathematics.
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1. Introduction
Struve functions are explication of the heterogeneous Bessel’s differential equa-

tion: ) 4( )+1
d2p dp wyn
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and are defined as:
IEAY 3
H,(w) = F(U%;)F(%)/o sin(w cosC)sin®!(¢)d¢

Modified Struve functions are defined as:

26)" ) /000 sin(wp)(1 + ,uz)"*%du

Ly(w) = I_(w) — m

Generalized hypergeometric function is defines as
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where the parameters by, b, - - - , b, are positive integers.

2. Main Results

(1.2)

(1.3)

(1.4)

In this section, we establish eight definite integrals involving Struve and Modi-

fied Struve functions:
Theorem 1. Fach of the following assertion holds true:
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provided that each member of the assertions (2.1) to (2.8) exists.
3. Proof.

In this section, we provide proofs for the assertions (2.1) to (2.8), as given below:
We first prove our first assertion (2.1), by considering its left hand side, and using
properties of definite integrals, we obtained:

1

/115 logt Hy(at) dt = |:7TH0(CLt)—|—CLt(7T logt Hy(at)— 2)]

a2 0
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Hence, we arrived at right hand side on assertain (2.1).
This completes our demonstration of the first assertion (2.1).
Next, we prove our second assertion (2.2), by considering its left hand side, and
further and using properties of definite integrals, we obtained:

1
/ t logt Lo(at) dt = —mLo(at)+at(m logt Ll(at)+2)}
0

a2 0



78 J. of Ramanujan Society of Mathematics and Mathematical Sciences

_ %{_ {rLo(a) +a(2)} - {nLo(0)}] = W;[_MO( e
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Hence, we arrived at right hand side on assertain (2.2).

This completes our demonstration of the first assertion (2.2).

Next, we prove our second assertion (2.3), by considering its left hand side, and
further and using properties of definite integrals, we obtained:

1
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Hence, we arrived at right hand side on assertain (2.3).

This completes our demonstration of the first assertion (2.3).

Next, we prove our second assertion (2.4), by considering its left hand side, and
further and using properties of definite integrals, we obtained:
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Hence, we arrived at right hand side on assertain (2.4).

This completes our demonstration of the first assertion (2.4).

Next, we prove our second assertion (2.5), by considering its left hand side, and
further and using properties of definite integrals, we obtained:
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Hence, we arrived at right hand side on assertain (2.5).

This completes our demonstration of the first assertion (2.5).

Next, we prove our second assertion (2.6), by considering its left hand side, and
further and using properties of definite integrals, we obtained:
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Hence, we arrived at right hand side on assertain (2.6).

This completes our demonstration of the first assertion (2.6).

Next, we prove our second assertion (2.7), by considering its left hand side, and
further and using properties of definite integrals, we obtained:
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Hence, we arrived at right hand side on assertain (2.7).

This completes our demonstration of the first assertion (2.7).

Next, we prove our second assertion (2.8), by considering its left hand side, and

further and using properties of definite integrals, we obtained:
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This completes our demonstration of assertion (2.8).
This obviously completes our proof of Theorem 1.
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4. Concluding Remarks and Observations

In our present investigation, we have made use of the Gamma function as well as
the hypergeometric and the generalized hypergeometric functions with a view de-
veloping several definite integrals involving Struve and Modified Struve functions,
respectively. The numerical approximation of these definite integrals and the cor-
responding hypergeometric functions are also presented. The results derived in this
article are believed to be new and would extend and unify those that are available
in the scientific literature.
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