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Abstract: In our earlier article [9] “On new three-term recurrence relations for the
3-j coefficient”, we derived six new three-term recurrence relations of fundamental
importance in the Quantum Theory of Angular Momentum. In this article, we
derive new four term recurrence relations for the 3-j coefficient, as a direct conse-
quence of the recurrence relations for the 3F2(a; b; z) given in Tamara Antonova,
Roman Dymtryshyn and Serhii Sharyn (2021) [1]. The derived 4-term recurrence
relations for the 3-j coefficient are new.
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1. Introduction
It has been shown [7] that(

j1 j2 j3
m1 m2 m3

)
= δm1+m2+m3,0(−1)j1−j2−m3

3∏
i,k=1

[
Rik!

(J + 1)!

]1/2
× (−1)σ(pqr) [Γ(1− A, 1−B, 1− C,D,E)]−1

× 3F2(A, B, C; D, E; 1)

(1)
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where,

A = −R2p, B = −R3q, C = −R1r, D = 1 +R3r −R2p E = 1 +R2r −R3q

and

Γ(x, y, · · · ) = Γ(x)Γ(y) · · ·

for all permutations of (pqr) = (123), and

σ(pqr) =

{
R3p −R2q, for even permutations,

R3p −R2q + J, for odd permutations.

with J = j1 + j2 + j3. The defining relation for the numerator and denominator
parameters Rik’s are the elements of the Regge(1959) 3× 3 square symbol:

∥Rik∥ =

∥∥∥∥∥∥
−j1 + j2 + j3 j1 − j2 + j3 j1 + j2 − j3

j1 −m1 j2 −m2 j3 −m3

j1 +m1 j2 +m2 j3 +m3

∥∥∥∥∥∥ (2)

2. The 3F2(1) and the 3-j coefficient
It has been shown (RS-KSR) that (1) can be inverted to write the 3F2(1) in

terms of the 3-j coefficient as:

3F2(A, B, C; D, E; 1) = (−1)D−E Γ(D,E)

×
[

Γ(1− A, 1−B, 1− C, s− 1)

Γ(D − A,D −B,D − C,E − A,E −B,E − C)

]1/2(
j1 j2 j3
m1 m2 m3

)
,

(3)

where s = D + E − A−B − C is called the parameter excess.
In this article, we show that corresponding to the four-term recurrence
relations for the 3F2(1), there exist two four-term recurrence relations for the 3-j
coefficient, which are new.

From the following three-term recurrence relations ((5) and (6) of [1]):

3F2(A, B, C; D, E; 1) = 3F2(A, B + 1, C; D, E + 1; 1)

−(E −B)AC

(E + 1)DE
. 3F2(A+ 1, B + 1, C + 1; D + 1, E + 2; 1)

(4)

3F2(A, B, C; D, E; 1) = 3F2(A, B, C + 1; D + 1, E; 1)

−(D − C)AB

(D + 1)DE
. 3F2(A+ 1, B + 1, C + 1; D + 2, E + 1; 1)

(5)
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Antonova et.al. [1] show that the following four-term recurrence relation holds:

3F2(A, B, C; D, E; 1) = 3F2(A, B + 1, C + 1; D + 1, E + 1; 1)

− (D − C)AB

(D + 1)DE
.3F2(A+ 1, B + 1, C + 1; D + 2, E + 1; 1)

− (E −B)(C + 1)A

(D + 1)(E + 1)E
.3F2(A+ 1, B + 1, C + 2; D + 2, E + 2; 1)

(6)

The other four-term recurrence relation derived from ((4), (7) of [1]) is:

3F2(A, B, C; D, E; 1) = 3F2(A+ 1, B, C + 1; D + 1, E + 1; 1)

− (E − C)AB

(E + 1)DE
.3F2(A+ 1, B + 1, C + 1; D + 1, E + 2; 1)

− (D − A)(C + 1)B

(D + 1)(E + 1)E
.3F2(A+ 1, B + 1, C + 2; D + 2, E + 2; 1)

(7)

In section 3, the recurrence relations used to derive the new four-term recurrence
relations for 3-j coefficient are presented.

3. The Recurrence Relations for the 3-j coefficient
The recent article of Petreolle, Sokal and Zhu [4] [1]. To start with, the first

four-term recurrence relation for the 3F2(1) is:

3F2(A, B, C; D, E; 1) = 3F2(A, B + 1, C + 1; D + 1, E + 1; 1)

− (D − C)AB

(D + 1)DE
.3F2(A+ 1, B + 1, C + 1; D + 2, E + 1; 1)

− (E −B)(C + 1)A

(D + 1)(E + 1)E
.3F2(A+ 1, B + 1, C + 2; D + 2, E + 2; 1)

(8)

and the corresponding four-term recurrence relation for the 3-j coefficient is:

[(j2 +m2)(j1 + j2 − j3)]
1/2

(
j1 j2 j3
m1 m2 m3

)
=

(1− j1 + j3 −m2)

[(1 + j1 − j2 + j3)(1 + j3 +m3)]1/2

(
j1 j2 − 1

2
j3 +

1
2

m1 m2 − 1
2

m3 +
1
2

)
+

(j2 +m2)[(j1 −m1)(1 + j2 −m2)]
1/2

[(1− j1 + j2 + j3)(1 + j3 +m3)]1/2

×
(
j1 − 1

2
j2 j3 +

1
2

m1 +
1
2

m2 − 1 m3 +
1
2

)
(9)



72 J. of Ramanujan Society of Mathematics and Mathematical Sciences

+
(1− j1 − j2 + j3)(1− j1 + j3 −m2)(1 + j3 −m3)(j1 −m1)

1/2

[(1− j1 + j2 + j3)(1 + j3 +m3)(1 + j1 − j2 + j3)(1 + j3 −m3)]1/2

× 1

(j1 + j2 − j3 − 1)1/2

(
j1 − 1

2
j2 − 1

2
j3 + 1

m1 +
1
2

m2 − 1
2

m3

)
Corresponding to the second four-term recurrence relation for the 3F2(1):

3F2(A, B, C; D, E; 1) = 3F2(A+ 1, B, C + 1; D + 1, E + 1; 1)

− (E − C)AB

(E + 1)DE
3F2(A+ 1, B + 1, C + 1; D + 1, E + 2; 1)

− (D − A)(C + 1)B

(D + 1)(E + 1)E
3F2(A+ 1, B + 1, C + 2; D + 2, E + 2; 1)

(10)

we have the second four-term recurrence relation for the 3-j coefficient as:

[(j1 −m1)(j1 + j2 − j3)]
1/2

(
j1 j2 j3
m1 m2 m3

)
=

(1− j1 + j3 −m2)(1− j2 + j3 +m1)

[(1− j1 + j2 + j3)(1 + j3 −m3)]1/2

(
j1 − 1

2
j2 j3 +

1
2

m1 +
1
2

m2 m3 − 1
2

)
+

(j1 −m1)(2− j2 + j3 +m1)[(1 + j1 +m1)(j2 +m2)]
1/2

(2− j1 + j3 −m2)[(1 + j1 − j2 + j3)(1 + j3 −m3)]1/2

×
(

j1 j2 − 1
2

j3 +
1
2

m1 + 1 m2 − 1
2

m3 − 1
2

)
+

(1− j1 − j2 + j3)(1− j1 + j3 −m2)[(j2 +m2)(1 + j3 +m3)]
1/2

[(1− j1 + j2 + j3)(1 + j1 − j2 + j3)(j1 + j2 − j3 − 1)(1 + j3 −m3)]1/2

×
(
j1 − 1

2
j2 − 1

2
j3 + 1

m1 +
1
2

m2 − 1
2

m3

)
.

(11)

4. Numerical verification
A numerical verification of the new recurrence relations has been done for the

two new recurrence relations. To illustrate the methodology adopted, shown below
are the details for the first recurrence relation (9), for

j1 = 2, j2 = 2, j3 = 1,m1 = 1,m2 = −1,m3 = 0.

Using the tables of Rotenberg et.al. [5], for the lhs and the rhs of (9) the value
obtained is − 1√

10
. This is also the value for the lhs and the rhs of (11).
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5. Conclusion
In this article, we have derived two new recurrence relations for the 3-j co-

efficient, which are a consequence of the existing six recurrence relations for the

3F2(1) hypergeometric function. Such recurrence relations are of significance and
relevance in numerical computations of matrix elements of tensor-operators which
arise in Atomic, Molecular and Nuclear Physics studies.

It is to be noted that we have derived from the two three-term recurrence
relations (11) and (21) for the 3F2(1) in [9], the new four-term recurrence relation
(9) for the 3-j coefficient.

And from the two three-term recurrence relations (17) and (19) for the 3F2(1)
in [9] another new four-term recurrence relation (11) for the 3-j coefficient has been
derived.

However, from the two three-term recurrence relations (13) and (15) for the

3F2(1) in [9], no new recurrence relation can be derived for the 3-j coefficient.
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