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Abstract: This paper introduces a novel computational strategy devised to ad-
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concept pioneered by Lal et al. in 2022, which is grounded in the method of
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methodology, along with an evaluation of error for a specific function. To showcase
the efficacy and efficiency of the extended pseudo-Chebyshev wavelet approxima-
tion approach, significant discoveries are exemplified through a practical instance.
Furthermore, the paper establishes the error of a function associated with the class
of absolutely continuous functions using extended pseudo-Chebyshev wavelets via
orthogonal projection operators, thereby affirming these estimators as notably more
precise and theoretically optimal within the domain of wavelet analysis.
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1. Introduction

Wavelets, a relatively recent development originating in the 1980s, have wit-
nessed a significant expansion in their scope, captivating numerous researchers such
as Morlet et al.[29], Daubechies [10], Chui [8-9], Strang [39], Strang and Ngyuen
[40], Natanson [30], Meyer [27], Daubechies and Lagarias [11], Walter [43-44], Islam
et al. [13], Razzaghi and Yousefi [32], Mohammadi [28], Lal et al. [21], Lal and
Kumar [19], Malmir [22-25], Venkatesh [42], Keshavarz et al. [14], and many others
spanning both pure and applied mathematics. In addition to harmonic theory and
Fourier analysis, wavelets have been influenced by fractals and approximation the-
ory, driving their ongoing evolution. Similarly, a multitude of researchers, including
Rehman and Siddiqi [33], Strang [39], Lal and kumar [18-20], Bastin [1], Biazar
[4], Babolian [2-3], Kumar [15], Kumar et al. [17] , S. Kumar, A. K. Awasthi, S.
K. Mishra et al. [16], and others, have explored the applications of wavelet theory,
highlighting their efficacy as powerful tools in science and technology.

Orthogonal functions play a pivotal role in addressing a diverse array of prob-
lems spanning from differential and integral equations to approximation theory
and dynamical systems. This approach involves harnessing orthogonal functions to
streamline the original problems by transforming them into truncated approxima-
tions using orthogonal functions. Among these functions, Chebyshev polynomials
Tm(t), where m ≥ 0 and 0 ≤ t ≤ 1, stand out as particularly effective numerically,
as underscored in several references [5-6, 26, 34-35, 37]. In December 2018, Ricci
introduced pseudo-Chebyshev functions of fractional degree [36], with Cesarano
and Ricci further delving into their significant properties such as orthogonality and
more in their investigation [7]. In 2022, Shyam Lal and Susheel Kumr et al. [21], de-
vloped the concept of pseudo chebyshev wavelet with the help of pseudo-Chebyshev
functions of fractional degree [36]. In this paper, we generalized the concept of the
pseudo-Chebyshev wavelet technique, into the extended pseudoChebyshev wavelet
method using orthogonal projection operators

Fractals, characterized by their bounded, continuous, and nowhere-differentiable
functions, encompass phenomena such as Brownian trajectories, fractional Brown-
ian motion, typical Feynman paths, complex Bernoulli spirals, and turbulent fluid
motion. This revelation has ignited curiosity in investigating the approximation
of functions under absolute continuity using extended pseudo-Chebyshev wavelets
and their practical implications. Yet, as of now, there seems to be no effort directed
towards examining the error associated with functions related to absolute continu-
ity utilizing the orthogonal projection operator using extended pseudo-Chebyshev
wavelets.

This research paper introduces a novel approximation approach devised to eval-
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uate the error of functions associated with absolute continuity using the orthog-
onal projection operator technique. The methodology relies on extended pseudo-
Chebyshev wavelet approximation, utilizing the extended pseudo-Chebyshev wavelet
to compute approximations for functions falling within absolute continuity.

The structure of the paper is organized as follows: Section 2 provides the
preliminary findings and results. Section 3 presents the main convergence theo-
rems related to wavelet approximations, along with an algorithm for the extended
pseudo-Chebyshev wavelets, which is applied to solve problem of approximation.
Section 4 includes numerical examples that discuss the approximations and appli-
cations of extended pseudo-Chebyshev wavelets. Section 5 presents the discussions
and conclusions. Finally, the references cited in this study are listed.

2. Definitions and Preliminaries

2.1. Wavelets and Extended Multiresolution Analysis

Wavelets: An element ψ ∈ L2(R) is termed a fundamental wavelet when it meets
the condition of ’admissibility’, expressed as:

0 ≤ Cψ =

∞∫
−∞

∣∣∣ψ̂(ω)∣∣∣2
|ω|

dω <∞ [8].

Wavelets comprise a collection {ψj,k; j, k ∈ Z} of functions generated through trans-
lation and dilation of a single fundamental wavelet ψ, often referred to as the
mother wavelet. If the dilation parameter a and the translation parameter b vary
continuously, then the ensuing set of continuous wavelets is represented as:

ψa,b(t) = |a|−
1
2 ψ

(
t− b

a

)
, a ̸= 0, b ∈ R [10].

Extended Multiresolution Analysis: A family of closed subspaces W µ
n of

L2(R), n ∈ Z is termed an Extended Multiresolution Analysis if it adheres to the
following criteria [12]:

(i) W µ
n ⊂ W µ

n+1,

(ii) if ξ(x) ∈ W µ
n then ξ(2x) ∈ W µ

n+1,

(iii) ξ(x) ∈ W µ
0 if and only if ξ(x+ 1) ∈ W µ

0 ,

(iv)
∞⋃

n=−∞

W µ
n = L2(R) and

∞⋂
n=−∞

W µ
n = {0} ,
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(v) ∃ a function ϕ such that the set {ϕ(x− j); j ∈ Z} is a Riesz basis of W µ
0 .

Given that ψ ∈ L2(R),whereψj,k := µ
j
2ψ(µj − k) and

V µ
j := clos ⟨ψj,k : k ∈ Z⟩ ,

this sequences of closed subspaces provides a direct sum decomposition of L2(R)
gives a direct sum decomposition of a signals ξ i.e. ξ ∈ L2(R), implying that every
ξ ∈ L2(R) possesses a unique decomposition as:

ξ =
∑
n∈Z

ξn = · · ·+ ξ−2 + ξ−1 + ξ0 + ξ1 + ξ2 + · · · ,

where ξn ∈ V µ
n for all n ∈ Z,

described as

L2(R) = W µ
n ⊕∞

i=n V
µ
i , where W

µ
n := ⊕n−1

m=−∞V
µ
m.

The set{ψn,m; m ∈ Z} forms a Riesz basis of V µ
n . Hence,

ξ =
∑
n∈Z

⟨ξ, ϕn,m⟩ϕn,m +
∞∑
k=m

∞∑
n=−∞

⟨ξ, ψn,k⟩ψn,k [44].

2.2. Extended Pseudo Chebyshev Wavelets

An extended Pseudo Chebyshev wavelets is denoted by ψµn,m = ψµ(k,n,m), where

µ ≥ 2, and given by

ψµn,m(x) := ψµ(k,n,m)(x) =

{ √
4
πµ

k−1
2 Tm+1/2(2µ

k−1x− 2n+ 1), for n−1
µk−1 ≤ x ≤ n

µk−1 ,

0 otherwise, where m ≥ 0, n = 1, 2, 3, · · · 2k−1 and k ∈ N.

It is remarkable to note that the set of extended pseudo Chebyshev wavelets{
ψµn,m

}
is an orthonormal subset of L2

Ω (R) with respect to the weight functions
ωµk,n(x) = ω(2µk−1x− 2n+ 1), where ω(x) = 1√

1−x2 , further detailed [21].

2.3. Orthogonal Projection Operators P µ
n (f) using EPCW

An orthogonal projection operator P µ
n (f) of a function f ∈ L2

Ω(X) onto W µ
n using

EPCW, defined as [21]

P µ
n (f) =

∞∑
m=0

〈
f, ψµn,m

〉
ωµ
k,n

ψµn,m, (1)
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For each fixed, n ∈ N, where n = 1, 2, 3, · · · , µk−1 & µ ≥ 2, the expansions

〈
P µ
n f, ψ

µ
n,m

〉
=

〈
∞∑
m=0

〈
f, ψµn,m

〉
ωµ
k,n

ψµn,m, ψ
µ
n,m

〉
=

∞∑
m=0

〈
f, ψµn,m

〉
ωµ
k,n

〈
ψµn,m, ψ

µ
n,m

〉
=

∞∑
m=0

〈
f, ψµn,m

〉
ωµ
k,n

=
∞∑
m=0

Pm,µ
k,n ,

are called nth coefficients of an orthogonal projection operator for each fixed k,
where Pm,µ

k,n =
∫
Ω

fψµn,mω
µ
k,ndν and each n = 1, 2, 3, · · · , µk−1, k ∈ N, µ ≥ 0.

2.4. Extended Pseudo Chebyshev Wavelet Series

A function f ∈ L2
Ω(X) is expanded by EPCWS as [16]:

f =

µk−1∑
n=1

∞∑
m=0

〈
f, ψµn,m

〉
ωµ
k,n

ψµn,m,

=

µk−1∑
n=1

∞∑
m=0

Pm,µ
k,n ψ

µ
n,m for each fixed k ∈ N, (2)

where Pm,µ
k,n is said to be (n,m)th coefficients of an orthogonal projection oper-

ator for each fixed k ∈ N of a function f corresponding the orthonormal wavelets
ψµn,m of the wavelet series.

If the wavelet series of any function f is truncated by an orthogonal projection
operators

(
P(µk−1,M)f

)
=

µk−1∑
n=1

M∑
m=0

Pm,µ
k,n ψ

µ
n,m

then, we say that the wavelet series has sum s, for each point, if the sequences of

functions
{
P(µk−1,M)f(x)

}∞

M=0
, for each fixed k & µ, uniformly converges to s(x)

i.e.,
s = lim

M→∞
Pµk−1,M (f) for each fixed µ ≥ 2 & k, µk−1 <<∞.

It is denoted by f ≈ s say wavelet approximation of function f . The approximation
is called best wavelet approximation, if s(x) = f(x) for each points in the domain
of functions.

2.5. Error of Wavelet Approximation
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The error function Eµ
µk−1,M

(f) of pseudo Chebyshev wavelet approximation of a

signals belonging to f ∈ L2
Ω(X) by the orthogonal projection operators P µ

µk−1,M
(f)

is defined as [45], and given by

Eµ
µk−1,M

(f)(x) = inf
M

µk−1∑
n=1

∞∑
m=M

en,mψ
µ
n,m(x) = inf

P
µk−1,M

(f)

(
f(x)− P µ

µk−1,M
(f) (x)

)
.

where M is a non negative integers and k ∈ N, µ ≥ 2.
If the error function Eµ

µk−1,M
(f) of a signal f is uniformly converges to zero

function then P µ
µk−1,M

(f) is called the best wavelet approximation of a signal

f ∈ L2
Ω(X) [45].

2.6. Functions of Absolute Continuity

Let (X, ζ, ν) be the measurable space with non negative measure ν and Ω is a
finite measurable set in X. Then a function f ∈ (X, ζ, ν) is said to be function of
absolute continuity or absolutely continuous, if for every ϵ > 0 there exists a δ > 0
such that

xi, yi ∈ Ω such that
n∑
i=1

|xi − yi| < δ ≤ µ(Ω) ⇒
n∑
i=1

|fxi − fyi | < ϵ, [31].

2.7. Remarks

(i) Every Lipschitz function is absolutely continuous.

(ii) An absolutely continuous function need not be Lipschitz function.

(iii) A differentiable function with bounded derivative is a function of class of
absolutely continuous.

(iv) The class of absolutely continuous function is a real/complex linear space.

2.8. Auxiliary Lemmas

Lemma 1. A function f is a class of functions of bounded variation if and only
if f = f1 − f2 where f1 and f2 are non decreasing monotonic functions. Jordan
Decomposition Theorem: [31]

Lemma 2. Let f be a finite Lebesgue integrable function on the measurable space
Ω and g be a non negative non decreasing monotonic function on Ω. Then ∃ α ∈ Ω
such that∫

Ω

fgdν ≤ g(α)

∫
Ω

fdν. Generalized Mean Value Theorem: [31]



Error bounds of an absolutely Continuous Functions ... 49

Lemma 3. Let f be a finite Lebesgue integrable function on the measurable space
Ω and g be a non negative non increasing monotonic function on Ω. Then ∃ β ∈ Ω
such that∫

Ω

fgdν ≥ g(β)

∫
Ω

fdν Generalized Mean Value Theorem: [31]

Lemma 4. Let τ be an integer and a f : [τ,∞) → R be a real valued monotonic
decreasing function. Then

∞∫
τ

fdν ≤
∞∑
τ

f(n) ≤ f(τ) +

∞∫
τ

fdν. Cauchy Integral Test, see [38]

3. Main results
In this section, two new theorems have been established in the following forms:

Theorem 1. If X and Ω be a measurable space and f is a signal of absolute contin-
uous , then the error function Eµk−1,M(f) of the signal f by orthogonal projection
operators using pseudo-Chebyshev wavelet series (2) is uniformly converges to null
signal.
Proof of Theorem 1. Since,

∥Eµ
µk−1,M

(f)∥22 = inf
Pµ

µk−1,M
(f)

∫
Ω

∣∣∣f(t)− Pµ
µk−1,M

(f)(t)
∣∣∣2 dν = inf

M

∣∣∣∣∣∣
∣∣∣∣∣∣
µk−1∑
n=1

∞∑
m=M

eµn,mψ
µ
n,m(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= inf
M

〈
µk−1∑
n1=1

∞∑
m1=M

eµn1,m1
ψµn1,m1

(t),

µk−1∑
n2=1

∞∑
m2=M

eµn2,m2
ψµn,m(t)

〉

= inf
M

µk−1∑
n=1

∞∑
m=M

eµn,me
µ
n,m

〈
ψµn,m(t), ψ

µ
n2,m2

(t)
〉

for same values of ni = n,mj = m, i, j = 1, 2

+ inf
M

µk−1∑
n1=1

∞∑
m1=M

eµn1,m1

µk−1∑
n2=1

∞∑
m2=M

eµn2,m2

〈
ψµn1,m1

(t), ψµn2,m2
(t)

〉
for different values of ni,mj , i, j = 1, 2

= inf
M

∫
Ωn,k

µk−1∑
n=1

∞∑
m=M

∣∣eµn,m∣∣2 ∣∣∣∣ψµn,m∣∣∣∣2 dν
for same values of ni = n,mj = m, i, j = 1, 2
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+ inf
M

∫
Ωn,k

µk−1∑
n1=1

µk−1∑
n2=1

∞∑
m1=M

∞∑
m2=M

eµn1,m1
eµn2,m2ψ

µ
n1,m1

ωµk,n1
ψµn2,m2ω

µ
k,n2

dν

= inf
M

∫
Ωn,k

µk−1∑
n=1

∞∑
m=M

∣∣eµn,m∣∣2 + 0,= inf
M

µk−1∑
n=1

∞∑
m=M

∣∣eµn,m∣∣2 ν (Ωn,k) .

If f is a absolutely continuous, then by Lemma 1 there are two non negative
monotonically increasing functions f1 and f2 such that f = f1 − f2. Thus

eµn,m(f) =

∫
Ω

fψµn,mω
µ
k,ndν =

∫
Ω

(f1 − f2)ψ
µ
n,mω

µ
k,ndν,

=

∫
Ω

f1ψ
µ
n,mω

µ
k,ndν −

∫
Ω

f2ψ
µ
n,mω

µ
k,ndν = eµn,m(f1)− eµn,m(f2). (3)

Now

eµn,m(f1) ≤ f1

(
n

µk−1

) n

µk−1∫
n−1

µk−1

√
4

π
µ

k−1
2 Tm+ 1

2
(2µk−1t− 2n+ 1)ωµk,n(t)dt, by Lemma 2,

=

√
4

π

1

2µ
k−1
2

f (xi)

1∫
−1

Tm+ 1
2
(x)ω(x)dx,where f(xi) = sup

t∈Ωk,n

f(t) ≥ f1

( n

2k−1

)

=

√
4

π

1

2µ
k−1
2

f(xi)

π∫
0

cos((m+ 1/2)x)dx,

=

√
4

π

1

2µ
k−1
2

(−1)m

m+ 1/2
f(xi).

Similarly,

eµn,m(f2) =

n

µk−1∫
n−1

µk−1

f2(t)ψ
µ
n,m(t)ω

µ
k,n(t)dt

≥ f2

(
n− 1

µk−1

) n

µk−1∫
n−1

µk−1

√
4

π
µ

k−1
2 Tm+ 1

2
(2µk−1t− 2n+ 1)ωµk,n(t)dt, by Lemma 3,
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≥ f (yi)

n

µk−1∫
n−1

µk−1

√
4

π
µ

k−1
2 Tm+ 1

2
(2µk−1t− 2n+ 1)ωµk,n(t)dt,

where f(yi) = inf
t∈Ωk,n

f(t) ≤ f

(
n− 1

2k−1

)
=

√
4

π

1

2µ
k−1
2

(−1)m

m+ 1/2
f (yi) .

By eq(3), we have

eµn,m(f) ≤
√

4

π

1

2µ
k−1
2

(−1)m

m+ 1/2
(f(xi)− f(yi)) where xi, yi ∈ Ωk,n,

≤
√

4

π

1

2µ
k−1
2

(−1)m

m+ 1/2

n∑
i=1

|f(xi)− f(yi)| ,where xi, yi ∈ Ω, (4)

for each fixed k ∈ N and n = 1, 2, 3, · · · , µk−1, µ ≥ 2.

Now,

∥Eµk−1,M(f)∥22 = inf
M

µk−1∑
n=1

∞∑
m=M

∣∣eµn,m∣∣2 ν (Ωn,k) ,

≤ inf
M

µk−1∑
n=1

∞∑
m=M

∣∣∣∣∣
√

4

π

1

2µ
k−1
2

(−1)m

m+ 1/2

n∑
i=1

|f(xi)− f(yi)|

∣∣∣∣∣
2

ν(Ωn,k),

≤ inf
M

µk−1∑
n=1

∞∑
m=M

∣∣∣∣∣
√

4

π

1

2µ
k−1
2

(−1)m

m+ 1/2

n∑
i=1

|f(xi)− f(yi)|

∣∣∣∣∣
2

1

µk−1

=
1

π

µk−1∑
n=1

1

µ(k−1)

∣∣∣∣∣
n∑
i=1

|f(xi)− f(yi)|

∣∣∣∣∣
2

inf
M

∞∑
m=M

1

(m+ 1/2)2
1

µk−1

=
1

π

1

µ(k−1)

∣∣∣∣∣
n∑
i=1

|f(xi)− f(yi)|

∣∣∣∣∣
2

inf
M

∞∑
m=M

1

(m+ 1/2)2
.

Then,

∥Eµk−1,M (f)∥22 ≤ 1

πµk−1

∣∣∣∣∣
n∑
i=1

|f(xi)− f(yi)|

∣∣∣∣∣
2
 1

(M + 1/2)2
+

∞∫
M

dx

(x+ 1/2)2

 ,
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by Lemma 4

=
1

πµk−1

∣∣∣∣∣
n∑
i=1

|f(xi)− f(yi)|

∣∣∣∣∣
2(

1

(M + 1/2)2
+

1

(M + 1/2)

)
. (5)

By the eq(5) and definition of absolute continuity, 0 < ϵ′√
µ(k−1)/2 π (M+1/2)

< ϵ, for

each fixed k ∈ N & M ≥ 0,

xi, yi ∈ Ωk,n,
n∑
i=1

|xi − yi| < δ ≤ µ(Ωk,n) ⇒
n∑
i=1

|f(xi)− f(yi)| < ϵ′

⇒ ∥E2k−1,M (f)∥22 <
4 ϵ′2

π

1

µk−1 (M + 1/2)

⇒ ∥Eµk−1,M (f)∥2 <
ϵ′√

µ(k−1)/2 π (M + 1/2)

⇒ ∥Eµk−1,M (f)∥2 < ϵ.

Therefore, for each ϵ > 0 ∃ δ > 0 such that

∀ x, y ∈ Ω ⇒ ∥Eµk−1,M (f)∥2 < ϵ.

Thus the establishment of Theorem 1 is now complete.

Theorem 2. Let f be a absolutely continuous signal where Ω = (0, 1] & X = R
and the pseudo-Chebyshev wavelet series of the function f an order one i.e. k = 1
is given by

∞∑
m=0

Pm,µ
1,1 ψ

µ
1,m = P 0,µ

1,1 ψ
µ
1,0 + P 1,µ

1,1 ψ
µ
1,1 + P 2,µ

1,1 ψ
µ
1,2 + · · · .

Then there exist M ∈ N such that Pm,µ
1,1 (f) = 0, for each non negative integersm >

M.
Proof of Theorem 2

The proof for Theorem 2 can be constructed following the same reasoning used
for proving Theorem 1 with consideration for the class of absolutely continuity
signals taking k = 1, n = 1 in Theorem 1.

4. Illustrative Example
In this section, we calculate the approximation of a function

f(τ) =

{
2x1/2 − 4x3/2 + 8x5/2 + 9x7/2 − 15x9/2; x ∈ Ω,
0; x /∈ Ω.
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by the pseudo-Chebyshev wavelet approximation method.
Put in Theorem 1, k = 1, n = 1 & µ = 2, we have

P µ(f)(x) =
∞∑
m=0

〈
f, ψµ1,m

〉
ω1,1

ψµ1,m(x) =
∞∑
m=0

f 1,mψµ1,m(x) = f0,

then we say that f ≈ f0 by the orthogonal projection operators P µ
n (f) of an order

k = 1.
The calculated values of the projection operators and its errors P µ

1,1, P
µ
1,2, P

µ
1,3,

P µ
1,4, P

µ
1,5, P

µ
1,6, P

µ
1,7, E

µ
1,1, E

µ
1,2, E

µ
1,3, E

µ
1,4 Eµ

1,5 Eµ
1,6 Eµ

1,7, i.e. P µ
1,M & Eµ

1,M

for 1 ≤M ≤ 7 & µ ≥ 2, are given by Table 1 .

x 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
fx 0.0000 0.5336 0.7012 0.8991 1.1840 1.5468 1.9210 2.1799 2.1323 1.5174 0.0000

P µ
1,1fx 0.0000 0.4867 0.6883 0.8430 0.9734 1.0883 1.1922 1.2877 1.3766 1.4601 1.5391

Eµ
1,1fx 0.0000 0.0469 0.0129 0.0561 0.2106 0.4585 0.7288 0.8922 0.7557 0.0573 1.5391

P µ
1,2fx 0.0000 0.8721 1.1495 1.3051 1.3884 1.4197 1.4100 1.3661 1.2927 1.1933 1.0703

Eµ
1,2fx 0.0000 0.3385 0.4482 0.4060 0.2045 0.1271 0.5110 0.8138 0.8396 0.3242 1.0703

P µ
1,3fx 0.0000 0.2475 0.6911 1.1545 1.5624 1.8617 2.0103 1.9727 1.7176 1.2170 0.4453

Eµ
1,3fx 0.0000 0.2861 0.0101 0.2554 0.3784 0.3149 0.0893 0.2072 0.4147 0.3004 0.4453

P µ
1,4fx 0.0000 0.5479 0.6510 0.8478 1.1769 1.5882 1.9792 2.2082 2.1022 1.4606 0.0586

Eµ
1,4fx 0.0000 0.0143 0.0503 0.0513 0.0071 0.0414 0.0582 0.0283 0.0301 0.0568 0.0586

P µ
1,5fx 0.0000 0.5336 0.7012 0.8991 1.1840 1.5468 1.9210 2.1799 2.1323 1.5174 0.0000

Eµ
1,5fx 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P µ
1,6fx 0.0000 0.5336 0.7012 0.8991 1.1840 1.5468 1.9210 2.1799 2.1323 1.5174 0.0000

Eµ
1,6fx 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P µ
1,7fx 0.0000 0.5336 0.7012 0.8991 1.1840 1.5468 1.9210 2.1799 2.1323 1.5174 0.0000

Eµ
1,7fx 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1: Compare between truncated f0 =
M−1∑
m=0

Pm,µ
f ψµm and exact function f

P µ(f) =
∞∑
m=0

Pm,µ
1,1 ψ

µ
1,m

≈ 1.4747 ψµ1,0 − 0.4708 ψµ1,1 − 0.6093 ψµ1,2 − 0.3427 ψµ1,3
−0.0519 ψµ1,4 + 0 + · · ·+ 0,

≈ f
(1,5)
0 = f0 =

5−1∑
m=0

Pm,µ
f ψµm,

and

Eµ
M(f) = inf

Pµ
1,M (f)

∥P µ
1,M (f)− f∥2 = inf

M

∞∑
m=M

〈
f, ψµ1,m

〉
ωµ
1,1

ψµ1,m ≈ 0, for M ≥ 5.
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Figure 1: Graph of f and f0 =
M−1∑
m=o

f 1,mψµ1,m.
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Figure 2: Graph of error functions Eµ
1,Mf.

5. Result Discussion and Conclusions
Since, by Theorems 1 an error functions Eµk−1,M(f) and EM(f) of order

k, & k = 1 respectively, by the Extended Pseudo-Chebyshev wavelet method
using orthogonal projection operators, Pn, n = 1, 2, 3, · · · , µk−1, µ ≥ 2, are

0 ≤∥ Eµ
µk−1,M

(f) ∥2<
ϵ′√

µ(k−1)/2 π (M + 1/2)
→ 0, as k → ∞ or M → ∞, and

0 ≤∥ Eµ
M (f) ∥2<

ϵ′√
(π/2) (M + 1/2)

→ 0 as M → ∞, and
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lim
M→∞

Eµ
µk−1,M

= 0, lim
M→∞

Eµ
M = 0 and Pm,µ

f = 0, m ≥ 5.

Therefore the finding in Theorems 1 and 2, by Extended Pseudo-Chebyshev wavelet
approximations obtained from these discoveries signify the pinnacle achievements
in wavelet analysis [45]. Moreover, the numerical findings illustrated in Table 1
and Figure 1, coupled with the absolute error depicted in Table 1 and Figure 2,
further confirm the efficacy of this approach in effectively resolving the issue.
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