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Abstract: In this paper we study the Riesz basis property and the exponential
stability of a damped Euler-Bernoulli beam system with variables coefficients. The
beam is clamped at one end and controlled at the free end by a force control in
velocity and angular velocity. The exponential stability of the system is obtained
using the Riesz basis approach.
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1. Introduction
We study the fundamental Riesz Basis Property and the exponential stability

of a damped flexible Euler-Bernoulli beam. The beam is clamped at one end and
controlled at the free end by a control force in velocity and angular velocity. The
vibrations are described by the following system :

m(x)ytt + (EI(x)yxx)xx + γ(x)yt = 0, 0 < x < 1, t > 0, (1)
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y(0, t) = yx(0, t) = 0, t > 0, (2)

EI(1)yxx(1, t) = −βyxt(1, t) t > 0, (3)

(EI(.)yxx(., t))x(1) = αyt(1, t) t > 0, (4)

with initial conditions

y(x, 0) = y0(x), 0 ⩽ x ⩽ 1, (5)

yt(x, 0) = y1(0), 0 ⩽ x ⩽ 1, (6)

where α, β are two positive constants. y(x, t) stands for a transversal deviation of
the beam at position x and time t; a subscript letter denotes the partial derivation
with respect that variable. The length of the beam is chosen to be unity, EI(x)
is the stiffness of the beam, m(x) is the mass density and γ(.) is a continuous
coefficient function of feedback damping. The Riesz basis property means that the
eigenvectors of the system form a Riesz basis for the Hilbert space, the state space,
which is one of the fundamental properties of linear vibrating systems.

Our work is based on the study in [1] where the authors studied the above
system without damping and numerically obtained exponential stability. In this
work, we will use the same approach as in [17], where the authors showed the
exponential stability of such a system, but with variable coefficients subjected to
force controls in position and velocity. In [17] and [4], the authors used the method
of Wang to show the exponential stability of the systems studied.

Different recent methods have been used to study several types of Euler Bernoulli
beam system see Kumarasamy [12] and Hasanov ([9, 10]). We adapt the asymp-
totic technique in our study. There are two main steps in the study of systems with
variable coefficients. The first step is to transform the first equation of the system
to be studied into a uniform equation by a successive transformation of space, and
state. The second step is to determine an asymptotic expression of the values of
the system using these uniform equations. This basic idea comes mainly from the
work of Birkhoff [2] and [3]. This approach has been used to study Euler-Bernoulli
beam equations with variable coefficients (See B.Z Guo [6], Guo and Wang [7], J.
M. Wang [18] or J. M. Wang, G. Q. Xu and S. P. Yung [21]).

We use a result due to Wang and al. [19], which studies the problem at the
eigenvalues of the beam in the form of an equation ordinary differential L(f) = λf
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with boundary conditions λ-polynomial . In our work we disrupted the system
studied in [1] by adding velocity and angular velocity controls. The content of this
work is as follows :
In Section 2, we convert the system (1)-(4) into an evolution problem in an ap-
propriate Hilbert space, and then prove that the system is associated with a C0-
semigroup of linear operators with a compact solvent generator. The problem is
thus well formulated. Asymptotic expressions for eigenvalues and eigenfunctions
are also given. Sections 3 and 4 are devoted to proving the fundamental Riesz Basis
Property and the exponential stability of the system (1)-(4), respectively.

2. Eigenvalue problem
We introduce the following usual Sobolev spaces:

H2
E(0, 1) = {u ∈ H2 : u(0) = ux(0) = 0}.

Consider Hilbert space
H = H2

E(0, 1)× L2(0, 1)

Spaces L2(0, 1) and Hk(0, 1) are defined as follows:

L2(0, 1) =

{
u : [0, 1] → C |

∫ 1

0

| u |2 dx <∞
}

Hk(0, 1) =
{
u : [0, 1] → C | u, u(1), ..., u(k) ∈ L2(0, 1)

}
Either w = (f1, f2)

T et v = (g1, g2)
T elements of H.

Hilbert’s Space H = H2
E(0, 1) × L2(0, 1) is therefore provided with the inner-

product

⟨w, v⟩ =
∫ 1

0

m(x)f2(x)g2(x)dx+

∫ 1

0

EI(x)f ′′
1 (x)g

′′
1(x)dx, (7)

and ∥.∥H is its associated norm.
Either Aγ an unbounded linear operator and D(Aγ) its domain of operator. We
have:

D (Aγ) =

{
{(f, g)T ∈ (H4(0, 1) ∩H2

E(0, 1))×H2
E(0, 1) :

− E(1)f ′′ (1) = βg′(1), (EI (.) f ′′ (.))′ (1) = αg(1)

}
. (8)

Knowing that:
m(x)ytt + (EI(x)yxx)xx + γ(x)yt = 0.

We draw

ytt = − 1

m(x)
((EI(x)yxx)xx + γ(x)yt).
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Then: Set z = (y, yt) which implies that zt = (yt, ytt) then
zt = (yt,− 1

m(x)
((EI(x)yxx)xx + γ(x)yt)

set

Aγ(f, g)
T =

(
g(x),− 1

m(x)
((EI(x)f ′′(x))′ + γ(x)g(x))

)T

We can now write the system (1)− (4) as a first-order evolution problem. of first
order {

d
dt
z(t) = Aγz(t)

z(0) = z0 ∈ H initial condition,
(9)

where z(t) = (y, yt)
T , z(0) = (y0, y1)

T .
In [1] the authors have shown that the operator A0 denotes the undamped case
γ(x) = 0 is m-dissipative and therefore generates a semigroup of contractions. Set

Γγ(f, g)
T = Aγ(f, g)

T − A0(f, g)
T = (0,

−γ(x)g(x)
m(x)

)T ∀(f, g) ∈ D(Aγ).

Aγ = Γγ + A0

Theorem 2.1. Let Aγ and A0 be the operators defined above. A0 is m-dissipative
and generates a CO-semigroup on H denoted by {T (t)}t≥0 from which Aγ generates
a C0-semigroup {eAγt}t≥0 on H denoted by {S(t)}t≥0.
Proof. Γγ is a bounded linear operator on H.
For any (f, g)T ∈ D(Aγ) we have:

⟨Γγ(f, g), (f, g)⟩ = ⟨(0,− γ(x)

m(x)
g(x))T , (f, g)T ⟩.

⟨Γγ(f, g), (f, g)⟩ = −
∫ 1

0

γ(x)

m(x)
|g(x)|2dx.

As γ(.) is a continuous function on [0, 1], we have:

|⟨Γγ(f, g), (f, g)⟩|⟨≤M(

∫ 1

0

[|g(x)|2 + |f ′′(x)|2]dx)

M = sup
x∈[0,1]

| γ(x)
m(x)

|

Where from
|⟨Γγ(f, g), (f, g)⟩|⟨≤M∥(f, g)T∥2H.
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So Γγ is a bounded operator on H.
Since the operator A0 generates a C0-semigroup of contractions noted {T (t)}t≥0 =
{eA0t}t≥0 on H (see [1]), such as

∥ T (t) ∥≤ Ceωt. for M, ω ∈ R and t ∈ R+

and that Γγ is a bounded operator on H.
Then Aγ = Γγ + A0 is a generator of a C0-semigroup of contractions denoted
{S(t)}t≥0 = {eAγt}t≥0 on H, such as

∥ S(t) ∥≤ Ce(ω+C∥Γγ∥)t for M, ω ∈ R and t ∈ R+

And this, thanks to the perturbation theorem of a generator of a semigroup by a
bounded linear operator. (See Theorem 1 ([14])).

Next, let’s show that the spectrum σ(Aγ) consists entirely of isolated eigenval-
ues.

Theorem 2.2. The operator Aγ has a compact resolvent and 0 ∈ ρ(Aγ). Therefore
the spectrum σ(Aγ) consists entirely of isolated eigenvalues.
Proof. Clearly we only need to prove that 0 ∈ ρ(Aγ) and that A−1

γ is compact
on H. For ψ = (g1, g2) ∈ H we look for a unique ϕ = (f1, f2) ∈ D(Aγ) such as :
Aγϕ = ψ
In other words, such that the following equations are verified:

f2(x) = g1(x) g1 ∈ H2
E(0, 1) (10)

− 1

m(x)
((EI(x)f1(x)

′′(x))′ + γ(x)f2(x)) = g2(x) (11)

f1(0) = f
′

1(0) = 0 (12)

EI(1)f
′′

1 (1) = −βf ′
2(1) (13)

EI(1)f
′′′

1 (1) = αf2(1) (14)

Using the equation (11) :

−EI(x)f (4)
1 (x)− γ(x)f2(x) = m(x)g2(x)
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we have :

f
(4)
1 (x) = − γ(x)

m(x)
f2(x)−

m(x)

EI(x)
g2(x)

By integration we obtain for all 0 ≤ x ≤ 1∫ 1

x

f
′′′′

1 (r)dr = −
∫ 1

x

[− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)]dr

Which give:

f
′′′

1 (1)− f
′′′

1 (x) = −
∫ 1

x

[− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)]dr

From equation (4) we obtain:

α

EI(1)
f2(1)− f

′′′

1 (x) = −
∫ 1

x

[− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)]dr

as
f2(x) = g1(x)

f
′′′

1 (x) = −
∫ 1

x

[− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)]dr +

α

EI(1)
g1(1)

By a new integration we have:∫ 1

x

f
′′′

1 (η)dη =

∫ 1

x

∫ 1

η

[− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)]drdη +

∫ 1

x

α

EI(1)
g1(1)dη

f
′′

1 (1)− f
′′

1 (x) =

∫ 1

x

∫ 1

η

[− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)]drdη +

α

EI(1)
g1(1)[η]

1
x

using equation (3) we have:

− β

EI(1)
f ′
2(1)−f ′′

1 (x) =

∫ 1

x

∫ 1

η

[− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)]drdη+

α

EI(1)
g1(1)(1−x)

f ′′
1 (x) = −

∫ 1

x

∫ 1

η

[
− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)

]
drdη

− α

EI(1)
g1(1)(1− x)− β

EI(1)
g′1(1)
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0

f
′′

1 (ξ)dξ = −
∫ x

0

∫ 1

ξ

∫ 1

η

[
− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)

]
drdηdξ

− α

EI(1)
g1(1)

∫ x

0

(1− ξ)dξ − β

EI(1)
g′1(1)

∫ x

0

dξ

f ′
1(x)− f ′

1(0) = −
∫ x

0

∫ 1

ξ

∫ 1

η

[
− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)

]
drdηdξ

− α

EI(1)
g1(1)

∫ x

0

(1− ξ)dξ − β

EI(1)
g′1(1)

∫ x

0

dξ

From equation (2) we obtain:∫ s

0

f
′

1(x)dx = −
∫ s

0

∫ x

0

∫ 1

ξ

∫ 1

η

[− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)]drdηdξdx

− α

EI(1)
g1(1)

∫ s

0

∫ x

0

(1− ξ)dξdx− β

EI(1)
g′1(1)

∫ s

0

∫ x

0

dξdx

f1(x) = −
∫ x

0

∫ s

0

∫ 1

ξ

∫ 1

η

[
− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)

]
drdηdξds

− α

EI(1)
g1(1)

∫ x

0

∫ s

0

(1− ξ)dξds− β

EI(1)
g′1(1)

∫ x

0

∫ s

0

dξds

Then,

(f1, f2)
T ∈ D(Aγ)

Therefore

F = (f1(x), f2(x))
T = A−1

γ G = (B(x), g1(x))
T

with

B(x) = −
∫ x

0

∫ s

0

∫ 1

ξ

∫ 1

η

[
− γ(r)

m(r)
f2(r)−

m(r)

EI(r)
g2(r)

]
drdηdξds

− α

EI(1)
g1(1)(

1

2
x2 − 1

6
x3)− β

EI(1)
g′1(1)x

2

Hence

F = (f1(x), f2(x))
T = A−1

γ G = (B(x), g1(x))
T
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Eventually A−1
γ exists, hence 0 ∈ ρ(Aγ). Then Sobolev’s injection theorem implies

that A−1
γ is a compact operator on H.

Therefore the spectrum σ(Aγ) consists entirely of isolated eigenvalues.

Our work shall make use of the following result fromWang [19], which deals with
the eigenvalue problem of beams in the form of an ordinary differential equation
L(u) = λu with λ polynomial boundary conditions see Shkalikov [15]; Tretter [16].
Since the operator Aγ is m-dissipative, so the operator I − Aγ is an isomorphism
to D (Aγ) on H and the resolvent of Aγ is linear continuous operator on H, then
Sobolev’s embedding theorem implies that Aγ has compact resolvent. Therefore,
the spectrum σ (Aγ) consists entirely of isolated eigenvalues. Now we are ready
to study the eigenvalue problem of Aγ. Let λ ∈ σ (Aγ) and Φ = (ϕ,Ψ) be an
eigenfunction of Aγ corresponding to λ. Then we have Ψ = λϕ and ϕ satisfies the
following equation :

λ2m(x)ϕ (x) + (EI (x)ϕ′′ (x))′′ + γ (x)ϕ (x) = 0, 0 < x < 1,
ϕ (0) = ϕ′ (0) = 0

ϕ′′ (1) = − λβ
EI(1)

ϕ′ (1)

ϕ′′′ (1) =
αλ

EI (1)
ϕ (1) .

(15)

Expanding (74) yields

ϕ(4) (x) +
2EI ′ (x)

EI (x)
ϕ′′′ (x) +

EI ′′ (x)

EI (x)
ϕ′′ (x) + λ

γ (x)

EI (x)
ϕ (x) +

λ2m (x)

EI (x)
ϕ (x) = 0, 0 < x < 1,

ϕ′′ (1) = − λβ
EI(1)

ϕ′ (1)

ϕ′′′ (1) =
αλ

EI (1)
ϕ (1) .

(16)
In order to simplify our computations, we introduce a spatial scale transformation
in x :

f (z) = ϕ (x) , z =
1

h

∫ x

0

(
m (ζ)

EI (ζ)

) 1
4

dζ (17)

where

h =

∫ 1

0

(
m (ζ)

EI (ζ)

) 1
4

dζ (18)
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Then, (17) together with its boundary conditions can be transformed into

f (4) (z) + a (z) f ′′′ (z) + b (z) f ′′ (z) + c (z) f ′ (z) + λh4
γ (x)

m (x)
f (x) +

λ2h4f (z) = 0, 0 < z < 1,
f (0) = f ′ (0) = 0

z2x (1) f
′′ (1) + zxx (1) f

′ (1) + λβ
EI(1)

z′ (1) f ′ (1) = 0

f ′′′ (1) +
3zxx (1)

z2x (1)
f ′′ (1) +

zxxx (1)

z3x (1)
f ′ (1)− λα

EI(1)
f (1) = 0,

(19)
with

a (z) =
6zxx
z2x

+
EI ′ (x)

zxEI (x)
(20)

b (z) =
3z2xx
z4x

+
6zxxEI

′ (x)

z3xEI (x)
+

EI ′ (x)

z2xEI (x)
+

4zxx
z3x

(21)

c (x) =
zxxxx
z4x

+
2zxxxEI

′ (x)

z4xEI (x)
+
zxxEI

′′ (x)

z4xEI (x)
(22)

zx =
1

h

(
m (x)

EI (x)

) 1
4

, z4x =
1

h4
m (x)

EI (x)
(23)

and

zxx =
1

4h

(
m (x)

EI (x)

)−3
4 d

dx

(
m (x)

EI (x)

) 1
4

. (24)

If we define

d (x) =
γ (x)

m (x)

The equation in (20) is for any 0 < z < 1

f (4) (z) + a (z) f ′′′ (z) + b (z) f ′′ (z) + c (z) f ′ (z) + λh4d (x) f (x) + λ2h4f (z) = 0.

This can be further simplified by applying another invertible transformation :

g (z) = exp

(
1

4

∫ z

0

a (ζ) dζ

)
f (z) , 0 < z < 1, (25)
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and we arrive at the following eigenvalue problem that is equivalent to the origins
one :

g(4) (z) + b1 (z) g
′′ (z) + c1 (z) g

′ (z) + d1g (z) + λh4d (x) g (x) +
λ2h4g (z) = 0, 0 < z < 1,
g (0) = g′ (0) = 0
g′′ (1) + b11g

′ (1) + b12g (1) = 0
g′′′ (1) + b21g

′′ (1) + b22g
′ (1) + b23g (1) = 0,

 .

(26)
where

b1 (1) = −3

2
a′(z)− 3

8
a2(z) + b(z) (27)

c1(z) =
1

8
a3(z)− 1

2
a(z)b(z)− a′(z) + c(z) (28)

d1(z) =
3

16
a′2(z)− 1

4
a′′′(z) +

3

32
a′(z)a2(2)− 3

256
a4(z) +

b(z)

(
1

16
a2(z)− 1

4
a′(z)

)
− a(z)c(z)

4
(29)

b11 = −1

2
a(1) +

zxx(1)

z2x(1)
+

(βλ)

EI(1)
zx(1) (30)

b12 =

1

16
z2x(1)a

2(1)− 1

4
z2x(1)a

′(1)− 1

4
zxx(1)a(1)

z2x(1)
− (βλzx(1)a(1))

4EI(1)
(31)

b21 = −3

4
a(1) +

3zxx(1)

z2x(1)
+

EI ′(1)

zx(1)EI(1)
(32)

b22 = −3

4
a′(1)+

3

16
a2(1)− 3zxx(1)a(1)

2z2x(1)
− a(1)EI ′(1)

EI(1)zx(1)
+
zxxx(1)

z3x(1)
+
zxx(1)EI

′(1)

z3x(1)EI(1)
(33)

b23 = −1

4
a′′(1) +

3

16
a′(1)a(1)− 1

64
a3(1)− 3zxx(1)a

′(1)

4z2x(1)
+

3zxx(1)a
2(1)

16z2x(1)
−

zxxx(1)a(1)

4z3x(1)
− (αλ)

z3x(1)EI(1)
− zxxx(1)a(1)EI

′(1)

4z3x(1)EI(1)
+

a′(1)EI(1)

4zx(1)EI(1)
. (34)

To further solve the eigenvalue problem (1)−(4), we follow the procedure in Birkhoff
([2], [3]) and Naimark (1967) [11] and divide the complex plane into eight distinct
sectors,

Sk =

{
z ∈ C :

kπ

4
≤ arg z ≤ (k + 1) π

4

}
, k = 0, 1, 2, ..., 7 (35)
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and let ω1, ω2, ω3, ω4 be the roots of equation θ
4 +1 = 0 that are arranged so that

Re (ρω1) ≤ Re (ρω2) ≤ Re (ρω3) ≤ Re (ρω4) , ∀ρ ∈ Sk. (36)

Obviously, in sector S1, we can choose ω1 = exp(i
3

4
π) = −

.
√
2

2
+

.
√
2

2
i, ω2 =

exp(i
1

4
π) =

.
√
2

2
+

.
√
2

2
i, ω3 = exp(i

5

4
π) = −

.
√
2

2
−

.
√
2

2
i, ω4 = exp(i

7

4
π) =

.
√
2

2
−

.
√
2

2
i,

which satisfy the inequalities in (37) and choices can also be made for other sec-
tors. In the rest of this section, we shall derive the asymptotic behavior of the
eigenvalue of the sectors S1 and S2 because the same will hold for the other sectors

with similar proofs. Setting λ =
ρ2

h2
, in each sector Sk, we have the following result

about the asymptotic fundamental solutions of system (1)− (4) .

Lemma 2.1. For ρ ∈ Sk with ρ large enough, the equation : g(4) (z)+b1 (z) g
′′ (z)+

c1 (z) g
′ (z) + d1g (z) + ρ2h2d (z) g (z) + ρ4g (z) = 0, 0 < z < 1, has four linearly

independent asymptotic fundamental solutions,

Φs (z, ρ) = exp ρωsz

(
1 +

Φs,1 (z)

ρ
+O

(
ρ−2

))
, s = 1, 2, 3, 4 (37)

and hence their derivatives for s = 1, 2, 3, 4 and j = 1, 2, 3 are given by

dj

dzj
Φs (z, ρ) = (ρωs)

j exp ρωsz

(
1 +

Φs,1 (z)

ρ
+O

(
ρ−2

))
(38)

where

Φs,1 (z) = − 1

4ω3
s

∫ z

0

ω2
sb (ζ) dζ, Φs,1 (0) = 0 for s = 1, 2, 3, 4 (39)

and

Φs,1 (z) = − 1

4ωs

∫ 1

0

b1 (ζ) dζ −
h2

4ω3
s

∫ 1

0

d (ζ) dζ =
1

ωs

µ1 +
1

ω3
s

µ2, (40)

with µ1 = −1

4

∫ 1

0
b1 (ζ) dζ et µ2 = −h

2

4

∫ 1

0
d (ζ) dζ.

Proof. The proof is a direct result in Birkhoff ([2], [3]) and Naimark [13] from
which we deduce the required results (38) and (39).

Lemma 2.2. For ρ ∈ S1, if we set δ = sin π
4

=
.√2
2
, then we have following

inequalities :

Re (ρω1) ≤ − |ρ| δ, Re (ρω4) ≥ |ρ| δ, ω4 = −ω1 and eρω1 = O
(
ρ−2

)
when |ρ| → +∞.
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Furthermore, substituting (38) and (39) into the boundary conditions (27), we
obtain asymptotic expressions for the boundary conditions for large enough |ρ| :

U4 (Φs, ρ) = Φs (0, ρ) = 1 +O
(
ρ−2

)
= [1]2 , s = 1, 2, 3, 4, (41)

U3 (Φs, ρ) = Φ′
s (0, ρ) = ρωS

(
1 +O

(
ρ−2

))
(42)

U3 (Φs, ρ) = ρωS [1]2 , s = 1, 2, 3, 4 (43)

U2 (Φs, ρ) = (ρωS)
2 eρωS [1 + ((ζ21 + ζ22ω

−2
s )ω−2

s + (ζ23ω
2
s + ζ24

+ζ25ω
−2
s )ρ−1ω−3

s + ζ26ρω
−3
s ]2 (44)

U1 (Φs, ρ) = (ρωS)
3 eρωS

[
1 + ζ11ω

−2
s + (µ1 + b21(1))ρ

−1ω−1
s + (ζ12 + ζ13ω

−2
s )ρ−1ω−3

s

]
2

(45)

ζ21 =
βµ1

zx(1)h2EI(1)
− βa(1)

4h2zx(1)EI(1)
(46)

ζ23 = µ1 −
1

2
a(1) +

zxx(1)

z2x(1)
+

α

zx(1)EI(1)
(47)

ζ25 = − βa(1)µ2

4zx(1)h2EI(1)
(48)

ζ24 = µ2 −
βa(1)µ1

4zx(1)h2EI(1)
(49)

ζ12 = µ2 −
α

z3x(1)h
2EI(1)

(50)

ζ22 =
βµ2

zx(1)h2EI(1)
(51)

ζ26 =
β

zx(1)h2EI(1)
(52)

Theorem 2.3. ([13], [11]) For n = 2m, ρ ∈ S0 and l ∈ 0, 1, .... An asymptotic
expansion of the characteristic determinant ∆(ρ) is given by:

∆ = ργ exp(ρΩ)([Θ−1(ρ)]l exp(−ρωm) + [Θ0(ρ)]l + [Θ1(ρ)]l exp(ρωm))

γ = Σn
j=1kjΩ = Ωm+2 + ...+ Ωm

and

Θi(ρ) = Θi0 +
Θi1

ρ
+ ...+

Θil

ρl−1
, i = −1, 0, 1
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For constants Θi0,Θi1, the same representations are also true in all other sectors
Sk.
From the asymptotic developments of the characteristic determinant, we can now
define the notions of regularity, strong regularity, almost regularity and the nor-
malized boundary conditions.

Definition 2.1. We say that the boundary conditions of the problem are strongly
regular if the zeros of the characteristic determinant ∆(ρ) are asymptotically simple
and different from each other by a positive number δ > 0 that is to say:

Θ2
00 − 4Θ−10Θ10 ̸= 0.

Note that λ =
ρ2

h2
̸= 0 is the eigenvalue (1) − (4) if and only if ρ satisfies the

characteristic determinant

∆ (ρ) =

∣∣∣∣∣∣∣∣
U4 (Φ1, ρ) U4 (Φ2, ρ) U4 (Φ3, ρ) U4 (Φ4, ρ)
U3 (Φ1, ρ) U3 (Φ2, ρ) U3 (Φ3, ρ) U3 (Φ4, ρ)
U2 (Φ1, ρ) U2 (Φ2, ρ) U2 (Φ3, ρ) U2 (Φ4, ρ)
U1 (Φ1, ρ) U1 (Φ2, ρ) U1 (Φ3, ρ) U1 (Φ4, ρ)

∣∣∣∣∣∣∣∣ = 0, (53)

Substituting the asymptotic expressions of the boundary conditions into (58) and
using lemma 2.2 we obtain

∆(ρ) =

∣∣∣∣∣∣∣∣
[1]2 [1]2

ρω1 [1]2 ρω2 [1]2
0 (ρω2)

2
eρω2

[
1 + (ζ21 + ζ22ω

−2
2 )ω−2

2 + F + ζ26ρω
−3
2

]
2

0 (ρω2)
3
eρω2

[
1 + ζ11ω

−2
2 + (µ1 + b21(1))ρ

−1ω−1
2 + (ζ12 + ζ13ω

−2
2 )ρ−1ω−3

2

]
2

[1]2
ρω3 [1]2

(ρω3)
2 eρω3

[
1 + (ζ21 + ζ22ω

−2
3 )ω−2

3 + F + ζ26ρω
−3
3

]
2

(ρω3)
3 eρω3

[
1 + ζ11ω

−2
3 + (µ1 + b21(1))ρ

−1ω−1
3 + (ζ12 + ζ13ω

−2
3 )ρ−1ω−3

3

]
2

0
0

(ρω4)
2 eρω4

[
1 + (ζ21 + ζ22ω

−2
4 )ω−2

4 + F + ζ26ρω
−3
4

]
2

(ρω4)
3 eρω4

[
1 + ζ11ω

−2
4 + (µ1 + b21(1))ρ

−1ω−1
4 + (ζ12 + ζ13ω

−2
4 )ρ−1ω−3

4

]
2

∣∣∣∣∣∣∣∣ .
In sector S1, the choices are : ω

2
1 = −i, ω2

2 = i, ω2
3 = i, ω2

4 = −i, ω−4
3 −ω−4

4 = 0,
ω−4
2 − ω−4

4 = 0, ω−1
2 ω4 = −i, ω3 = −ω2, ω4 − ω3 = .

√
2, ω1 − ω3 = .

√
2i,

ω2 − ω1 =
.
√
2, ω4 − ω2 = −i .

√
2, ω−2

2 − ω−2
4 = −2i, ω−2

3 − ω−2
4 = −2i, ω2

3ω
2
4 = 1,
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ω2
2ω

2
4 = 1,

a straightforward simplification will arrive at the following result, which also true
on all other sectors Sk (see Naimark,[13] 1967, pp.56− 74).

Theorem 2.4. Let ∆(ρ) be the characteristic determinant of the eigenvalue prob-
lem (27). In sector S1, an asymptotic expression of ∆(ρ) is given by :

∆(ρ) =
{
2
√
2ζ26ρ

7eρω4{eρω2 + ie−ρω2 +
[
µ3e

ρω2 + µ4e
−ρω2

]
ρ−1 +O

(
ρ−2

)}
, (54)

where{
µ3 =

√
2

2ζ26
(1 + ζ21 − ζ22 − ζ11 + ζ11 × ζ21 + ζ11 × ζ22 + ζ26(µ1 + b21)− ζ26 × ζ12 − ζ11 × ζ13) ,

µ4 =
√
2

2ζ26
(1− ζ21 − ζ22 + ζ11 + ζ11 × ζ21 − ζ11 × ζ22 − ζ26(µ1 + b21)− ζ26 × ζ12 + ζ26 × ζ13)

(55)

Thus, the boundary eigenvalue problem (27) is strongly regular.
Proof. Using the expressions of the fourth roots of −1 given we have :

∆ (ρ) =
{
2
√
2ζ26ρ

7eρω4{eρω2 + ie−ρω2 +
[
µ3e

ρω2 + µ4e
−ρω2

]
ρ−1 +O

(
ρ−2

)}
, (56)

According to the theorem 2.3 and definition 2.1 above we have

Θ2
00 = 0,Θ−10 = 2

√
2ζ26i,Θ10 = 2

√
2ζ26

and
Θ2

00 − 4Θ−10Θ10β
2i ̸= 0

Therefore the boundary conditions of the eigenvalue problem are strongly regular.
Which means that the eigenvalues are simple and different from each other accord-
ing to the definition 1.
Using the final determinant ∆(ρ), we can derive an asymptotic expression of the
problem values. ∆(ρ) = 0 Implies that :

2
√
2ζ26ρ

7eρω4{eρω2 + ie−ρω2 +
[
µ3e

ρω2 + µ4e
−ρω2

]
ρ−1 +O

(
ρ−2

)
} = 0

which equivalent to

eρω2 + ie−ρω2 +
[
µ3e

ρω2 + µ4e
−ρω2

]
ρ−1 +O

(
ρ−2

)
= 0 (57)

and can be rewritten as

eρω2 + ie−ρω2 +O
(
ρ−1

)
= 0. (58)
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Note that the following equation :

eρω2 + ie−ρω2 = 0

has solutions

ρn =

(
n+

3

4

)
πi

ω2

, n = 1, 2, .... (59)

Let ρ̃n be the solutions of (59). Applying Rouché’s theorem see Naimark [13], 1967,
p.70 to (59), we get the following expression

ρ̃n = ρn + αn =

(
n+

3

4

)
πi

ω2

+ αn, αn = O
(
n−1

)
, n = N,N + 1, ... (60)

where N is a large positive integer. Substituting ρ̃n into (58), and using the fact
that eρω2 = −ie−ρω2 , we obtain

eαnω2 − e−αnω2 + µ3ρ̃n
−1eαnω2 − iµ4ρ̃n

−1e−αnω2 +O
(
ρ̃n

−2
)
= 0.

Expanding the exponential function according to its Taylor series, we get

αn = − µ3

2ω2ρn
− µ4

2ω2ρn
i+O

(
n−2

)
, n = N,N + 1, ...

Therefore, we have

ρ̃n =

(
n+

3

4

)
πi

ω2

+
µ3

2

(
n+

3

4

)
π

i− µ4

2

(
n+

3

4

)
π

+O
(
n−2

)
, n = N,N + 1, ...

Note that λn =
ρ2n
h2

̸= 0, ω2 = ei
π
4 and ω2

2 = i. So we have

λn = −
.
√
2

2h2
(µ4 + µ3) +

1

h2

[
.
√
2

2
(µ3 − µ4) +

(
n+

3

4

)2

π2

]
i+O

(
n−1

)
, (61)

where n = N,N + 1, ... with N large enough. The same proof can be applied to
sector S2 because the eigenvalues of the problem (27) can obtained by a similar
calculation with the choices

ω1 = exp(i
1

4
π) =

.
√
2

2
+

.
√
2

2
i, ω2 = exp(i

3

4
π) = −

.
√
2

2
+

.
√
2

2
i,
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ω3 = exp(i
7

4
π) =

.
√
2

2
−

.
√
2

2
i, ω4 = exp(i

5

4
π) = −

.
√
2

2
−

.
√
2

2
i,

so that inequality (37) holds :

Re (ρω1) ≤ Re (ρω2) ≤ Re (ρω3) ≤ Re (ρω4) , ∀ρ ∈ S2.

Hence, in sector S2, we have the following asymptotic expression of ∆ (ρ) :

∆ (ρ) = −
{
2
√
2ζ26ρ

7eρω4{eρω2 − ie−ρω2 −
[
µ3e

ρω2 + µ4e
−ρω2

]
ρ−1 +O

(
ρ−2

)}
,

(62)
By a calculation similar to the one done in sector S1, we have the following:

ρ̃n =

(
n+

3

4

)
πi

ω2

− µ3

2

(
n+

3

4

)
π

i− µ4

2

(
n+

3

4

)
π

+O
(
n−2

)
, n = N,N + 1, ...

(63)

with N large enough. In the sector S2,using λ
2
n ̸= 0, ω2 = ei

3
4
Π and ω2

2 = −i, we
have:

λn = −
.
√
2

2h2
(µ4 + µ3)−

1

h2

[
.
√
2

2
(µ3 − µ4) +

(
n+

3

4

)2

π2

]
i+O

(
n−1

)
, (64)

where n = N,N + 1, ... with N large enough.
Here we notice that the eigenvalues generated in the other sectors Sk coincide

with those of the sectors S1 and S2. By combining the first expression of λn with
the second expression of λn we obtain the result on the following eigenvalues.

Theorem 2.5. Let Aλ be defined above. Then an asymptotic expression of the
eigenvalues of the problem (2.10) is given by:

λn = −
.
√
2

2h2
(µ4 − µ3)±

1

h2

[
.
√
2

2
(µ4 + µ3) +

(
n+

3

4

)2

π2

]
i+O

(
n−1

)
, (65)

where n = N,N + 1, ... with N large enough.
In addition, the eigenvalues λn(n = N,N + 1, ...) with sufficiently large modulus
are simple and distinct except for a finite number of them, and satisfy

µ4 − µ3 = −2
.
√
2µ2 +

√
2h

βEI (1)

(
m (1)

EI (1)

)−3
4

(66)
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We have

µ2 = −h
2

4

∫ 1

0

d (ζ) dζ, d (x) =
γ (x)

m (x)
,
dz

dx
=

1

h

(
m (x)

EI (x)

) 1
4

, (67)

so,

µ2 = −h
2

4

∫ 1

0

γ (x)

m (x)

1

h

(
m (x)

EI (x)

) 1
4

dx = −h
4

∫ 1

0

γ (x)

m (x)

(
m (x)

EI (x)

) 1
4

dx. (68)

Moreover, λn (n = N,N + 1, ...) with sufficiently large modulus are simple and
distinct except for finitely many of them, and satisfy

lim
n→+∞

Reλn = − 1

2h

∫ 1

0

γ (x)

m (x)

(
m (x)

EI (x)

) 1
4

dx− αβ +m(1)EI (1)

hβEI (1)

(
m (1)

EI (1)

)−3
4

.

(69)
Lemma 2.3. (Wang [21]) A sequence {Φ(n) : n ≥ 1} in a Hilbert space H, is a
Riesz basis if and only if there exists a bounded invertible linear operator and with
bounded inverse T on H such that:

T Φn = en, n ≥ 1

where {en : n ≥ 1} is an orthonormal basis of H.
3. Riesz Basis Property

In this subsection, we discuss the Riesz basis property of the eigenfunctions
of operator Aγ of the system (9). We begin with showing that the generalized
eigenfunctions of Aγ form an unconditional basis in Hilbert state space H. For this
aim, we introduce a transformation L via

L (f, g) = (ϕ, ψ)

where

ϕ (x) = f (x) , ψ (x) = g (x) , z =
1

h

∫ x

0

(
m (ζ)

EI (ζ)

) 1
4

dζ, (70)

with

h =

∫ 1

0

(
m (ζ)

EI (ζ)

) 1
4

dζ. (71)
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It is easily seen that L is a bounded invertible operator on H. Now we define the
following ordinary differential operator :

L (f) = f (4) (z) + a (z) f ′′′ (z) + b (z) f ′′ (z) + c (z) f ′ (z) ,

µ (z) = h2d (z) = h2
γ (x)

m (x)
B1 (f) = f (0) , B2 (f) = f ′ (0) ,
B3 (f) = z2x (1) f

′′ (1) + zxx (1) f
′ (1) = 0

B4 (f) = f ′′′ (1) +
3zxx (1)

z2x (1)
f ′′ (1) +

zxxx (1)

z3x (1)
f ′ (1)− (α + λβ)

z3x (1)EI (1)
f (1) = 0,

(72)
where the coefficients are given by (21)-(25). Let A, η ∈ σ (A) be an eigenvalue
of A and (f, g) be an eigenfunction, then we have g = ηf and f will satisfy the
following equation :

f (4) (z) + a (z) f ′′′ (z) + b (z) f ′′ (z) + c (z) f ′ (z) + ηu (z) f (z) + η2f (z) = 0,

with boundary conditions Bj (f) = 0, j = 1, 2, 3, 4. Now by taking λ =
η

h2
and

L (f, g) = (ϕ (x) , ψ (x))

we see that ψ = λϕ and ϕ satisfies the equation
λ2m(x)ϕ (x) + (EI (x)ϕ′′ (x))′′ + γ (x)ϕ (x) = 0, 0 < x < 1,
ϕ (0) = ϕ′ (0) = 0

ϕ′′ (1) = − λβ
EI(1)

ϕ′ (1)

ϕ′′′ (1) =
αλ

EI (1)
ϕ (1) .

(73)

From where we have the following result η ∈ σ(A) ⇔ λ ∈ σ(Aγ).

Theorem 3.1. Consider the operator Aγ of the system (9). Then the eigenvalues
of the operator Aγ are all simple, except for a finite number of them, and the
generalized eigenfunctions of the operator Aγ form a Riesz basis for Hilbert space
H.
Proof. In the previous section, we know that the problem with eigenvalues (20) has
its strongly regular boundary conditions according to Theorem 0.4. and Definition
0.1., which implies that the eigenvalues are separate and simple except for a finite
number of them. So the first assertion is true. Then, the strong regularity of
the boundary conditions ensures that the sequence of generalized eigenfunctions
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Fn = (fn, ηnfn)
T of the operator A forms a Riesz basis for H = H. Since T is

bounded and invertible on H = H, it follows that Ψn = (ϕn, λnϕn)
T = T Fn also

forms a Riesz basis on H (see [21])

Theorem 3.2. Let TA(t)t≥0 be a C0−semigroup in a Hilbert space H and A its
infinitesimal generator. Suppose that : (i) B is bounded on H,
(ii) the eigenvectors of A form a Riesz basis in H
(iii) the spectrum σ(A) = λn of A is discrete and formed of simple eigenvalues for n
sufficiently large (we recall that A+B is an infinitesimal generator of C0 -semigroup
TA+Bt≥0. Then the optimal energy decay rate is determined by the spectral abscissa
of the operator associated with the C0−semi-group TA+Bt≥0.
Proof. In the previous section we showed that the boundary conditions of the
eigenvalue problem are strongly regular.
So the eigenvalues are separate and simple, except for a finite number of them.
So the first assertion is true. Consequently the strong regularity of the boundary
conditions ensures that the sequence of generalized eigenfunctions
F = (fn, ηnfn)

T of the operator A forms a Riesz basis for H = H. Since T is
bounded and invertible on H = H, it follows that ψn = (ϕn, λnϕn)

T = T Fn also
forms a Riesz basis on H.

We are now able to study the exponential stability of the system (9). Since the
Riesz basis property implies that the optimal rate of energy decay is determined
by the spectral abscissa of the system operator (see Theorem 0.8) and that (40)
describes the asymptote of σ(Aγ), for any sufficiently small ε > 0, there is only a
finite number of eigenvalues of Aγ in the following half-plane:

Σ : Re(λ) > − 1

2h

∫ 1

0

γ (x)

m (x)

(
m (x)

EI (x)

) 1
4

dx− αβ +m(1)EI (1)

hβEI (1)

(
m (1)

EI (1)

)−3
4

+ ε.

(74)
We have two stability results which describe the influence of the γ coefficient func-
tion of friction on the exponential stability of the system. See (see Curtain and
Zwart [5]).

4. Exponential stability

The following theorem gives conditions for obtaining the exponential stability
of the system (1)− (4).

Theorem 4.1. If γ is continuous and positive or zero on the interval [0, 1] , then
the system (1) − (4) is exponentially stable for all β ≥ 0 and α > 0. In this case
there are the constants M > 0 and ω > 0 such that the energy
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E(t) =
1

2

∥∥(y, yt)T∥∥2

H

of the system (1)− (4) satisfied

E(t) ≤ME(0) exp(−ωt), ∀t ≥ 0

For any initial condition (y(x, 0), yt(x, 0))
T ∈ H.

Proof. Aγ is a dissipative operator and {exp(Aγt)}t≥0 is a contraction semigroup
on H. To obtain exponential stability, it remains to show that there is no eigenvalue
on the imaginary axis.
Let λ = ir where r ∈ R∗, be an eigenvalue of the operator Aγ on the imaginary
axis.
Let Ψ = (ϕ, ψ)T be the corresponding eigenfunction. So ψ = λϕ.
We have γ(x) ≥ 0 and for any u = (f, g)T ∈ D (Aγ) ,

⟨Aγu, u⟩H =

〈(
g (x) ,− 1

m (x)
(EI (x) f ′′ (x))′′ + γ (x) g (x)

)
, (f, g)

〉
=

∫ 1

0
− (EI(x)f ′′ (x))′′ g (x) + EI (x) f ′′ (x)g′′ (x)− γ (x) |g (x)|2 dx+ αf (1) g (1),

=
∫ 1

0
EI(x)

[
f ′′ (x)g (x)′′ − f ′′ (x) g′′ (x)

]
− γ (x) |g (x)|2 dx+ αf (1) g (1),

Re ⟨Aγu, u⟩H = −
∫ 1

0

γ (x) |g (x)|2 dx− β |g (1)|2 ≤ 0. (75)

Thus Aγ is dissipative and {exp(Aγt)}t≥0 is a contraction semi-group on H.
Furthermore, the spectrum of Aγ admits the following asymptote:

Reλ ∼ − 1

2h

∫ 1

0

γ (x)

m (x)

(
m (x)

EI (x)

) 1
4

dx− αβ +m(1)EI (1)

hβEI (1)

(
m (1)

EI (1)

)−3
4

.

If we can show that there are no eigenvalues on the imaginary axis then we will
obtain exponential stability of the system studied because we will have Reλ < 0.
Let λ = ir with r ∈ R∗ be an eigenvalue of the operator Aγ on the imaginary axis
and Ψ = (ϕ, ψ)T a corresponding eigenfunction, then ψ = λϕ.

We have Re⟨AγΨ,Ψ⟩H = −(α | ψ(1) |2 +β | ψx(1) |2 +
∫ 1

0
γ(x) | ψ(x) |2 dx)

0 =∥ Ψ ∥2H Re(λ) = Re⟨AγΨ,Ψ⟩H = −α | ψ(1) |2 −β | ψx(x) |2 −
∫ 1

0
γ(x) | ψ(x) |2

dx Since γ(x) ≥ 0 and ψ(x) are continuous with α > 0 and β > 0 we obtain

ψ(1) = 0, ψ′(1) = 0 and γ(x) | ψ(x) |2= 0 ∀x ∈ [0, 1]. (76)
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Then ϕ(1) = 0 because ψ = λϕ.
The ϕ function satisfies the following differential equation: λ2m(x)ϕ (x) + (EI (x)ϕ′′ (x))′′ + λγ (x)ϕ (x) = 0, 0 < x < 1,

ϕ (0) = ϕ′ (0) = ϕ′′ (1) = ϕ′′′ (1) = 0.
ϕ (x) = 0, ∀x ∈ I

(77)
Note that ϕ satisfies the linear differential equation (77) and has an infinity of zeros
in the open interval ]0.1[.
Therefore, ϕ = 0 by uniqueness of the solution of linear ordinary differential equa-
tions(See [17]). There are therefore no eigenvalues on the imaginary axis and we
obtain Re(λ) < 0.

From Theorem 0.7 and as the optimal rate of decay of the energy of the system
is determined by the spectral abscissa of the system operator, we deduce that the
system (1)− (4) is exponentially stable.
Next, still using an idea from Wang [20], we study the situation where the contin-
uous function γ(.) changes sign in [0, 1].
We have the following theorem:

Theorem 4.2. Let γ continue on [0,1] γ = γ+ − γ−

γ+(x) = max {γ(x), 0} , γ−(x) = max {−γ(x), 0} ,

and let Aγ+(f, g) = (g(x),−γ+(x)g(x)−fxxxx(x))τ ∀ (f, g)T ∈ D(Aγ+) = D(Aγ)
and

Γ−(f, g) = (0, γ−(x)g(x))
τ , ∀(f, g)τ ∈ H.

So Aγ can be written as: Aγ = Aγ+ + Γ−
Let S(Aγ) = sup {Reλ/λ ∈ σ(Aγ+)}.
If we have the following condition:

max
x∈[0,1]

{γ−(x)} <| S(Aγ+) |,

then we obtain the exponential stability of the system (9).
Proof. Γ− is a self-adjoint operator. Set

∥ Γ− ∥= max
x∈[0,1]

{γ−(x)}

According to the Theorem and according to the definition of the operator Aγ+,
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{eAγ+t}t⩾0 is a semi-group of contractions and S(Aγ+) < 0.
Moreover, thanks to the theory of semigroup perturbation for linear operators.
We obtain λ ∈ ρ(Aγ) as long as Reλ > S(Aγ+)+ ∥ Γ− ∥. We also have the follow-
ing important result:

ω(Aγ) = S(Aγ) ⩽ S(Aγ+)+ ∥ Γ− ∥ .
So for us to have exponential stability we must have

S(Aγ+)+ ∥ Γ− ∥< 0.

Which implies that
∥ Γ− ∥<| S(Aγ+) | .

Therefore, we can conclude the exponential stability system (9) if

max
x∈[0,1]

{γ−(x)} <| S(Aγ+) |

5. Conclusion
In this paper, we studied the exponential stability of an Euler-Bernouilli beam

with variable coefficients, damped and subjected to force control in velocity and
angular velocity. We used the method developed by wang and al [17], because this
method is adapted to Euler-Bernoulli beams with variable coefficients. We have
therefore obtained interesting results on the of the Riesz basis property and the
exponential stability of the system studied. In our study we found that this method
is not suitable in the case where EI(x) = m(x) = 1. These results obtained in
this article can be verified by a numerical method by the finite element or finite
difference method.
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