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Abstract: In this paper, we prove a couple of approximation results for local
existence and uniqueness of the solution of an initial value problem of nonlinear
first order ordinary hybrid differential equations with maxima under weaker par-
tial compactness and partial Lipschitz type conditions using the Dhage monotone
iteration method based on the recent hybrid fixed point theorems of Dhage. An
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1. Introduction
The class of differential equations with maxima is the special case of the class

of functional differential equations with delay and calls for the present value of
the unknown function depends upon the previous maximum value of the function
involved in the differential equations. Such differential equations occur in the auto-
matic control theory, signal processing and allied areas of mathematics. A variety
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of results concerning the solution of such kind of differential equations such as ex-
istence, uniqueness, stability and controllability etc., are available in the literature.
See Bainov and Hristova [2], Otrocol [22], Otrocol and Rus [23], Dhage and Otrocol
[17], Dhage and Dhage [8, 9, 10, 11] and references therein. The usual existence
and uniqueness result are generally proved under compactness and Lipschitz type
conditions, whereas differential inequalities are proved under certain monotonicity
conditions. Very recently, the approximations results for existence and uniqueness
of solutions are proved under partial compactness and partial Lipschitz type con-
ditions. But in that case one has to assume the existence of either a lower or an
upper solution of the related differential equations. Here, we prove the approxima-
tion results for local solution of an IVP of nonlinear first order hybrid differential
equation with maxima without the requirement of lower or upper solution as well
as usual compactness and Lipschitz type conditions as done in Dhage and Dhage
[14, 15, 16] which is the main motivation of the present paper.

The rest of the paper is organized as follows. Section 2 deals with the statement
of the problem and Section 3 deals with the auxiliary results and main hybrid fixed
point theorems involved in the Dhage iteration method. The hypotheses and main
approximation results for the local existence and uniqueness of solution are given
in Section 4. The approximation of the Ulam-Hyer stability is discussed in Section
5 and a couple of illustrative examples are presented in Section 6. Finally, some
concluding remarks are mentioned in Section 7.

2. Statement of the Problem
Given a closed and bounded interval J = [t0, t0 + a] in R for some t0, a ∈ R

with a > 0, we consider the initial value problem (in short IVP) of nonlinear first
order ordinary hybrid differential equation (HDE) with maxima,

x′(t) = f
(
t, x(t),Mx(t)

)
, t ∈ J,

x(t0) = α0 ∈ R,

}
(1)

where Mx(t) = max
ξ∈[t0,t]

x(ξ) and the function f : J×R×R → R satisfies some hybrid,

that is, mixed hypotheses from algebra, analysis and topology to be specified later.

Definition 2.1. A function x ∈ C(J,R) is said to be a solution of the HDE
(1) with maxima if it satisfies the equations in (1) on J , where C(J,R) is the
space of continuous real-valued functions defined on J . If the solution x lies in a
neighborhood N (x0) of some point x0 ∈ C(J,R), then we say it is a local solution
or neighborhood solution (in short nbhd solution) of the HDE (1) with maxima on
J .
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Remark 2.1. It is well-known that an open ball B(x, r) in C(J,R) centered at
a point x of radius r > 0 is a neighborhood of the point x, so if a solution x∗ of
the HDE (1) with maxima lies in a closed ball B(x, r) in C(J,R), then it is a local
solution in view of the fact that B(x, r) ⊂ B(x, r+ ϵ) for every ϵ > 0. Note that the
idea of local or nbhd-solution is different from the usual notion of a local solution
as mentioned in Coddington [3].

The HDE (1) with maxima is well-known in the subject of nonlinear analysis
and is very widely studied in the literature for a variety of different aspects of the
solution by using different methods form analysis and topology, in particular from
nonlinear functional analysis. When f(t, x, y) = f(t, x), HDE (1) reduces to

x′(t) = f
(
t, x(t)

)
, t ∈ J,

x(t0) = α0 ∈ R,

}
(2)

and when f(t, x, y) = f(t, y), the HDE (1) reduces to

x′(t) = f
(
t,Mx(t)

)
, t ∈ J,

x(t0) = α0 ∈ R,

}
(3)

The HDE (2) has been discussed in Dhage and Dhage [14] while HDE (3) is
new to the literature as far as approximation of the local solution is concerned.
Therefore the approximation results of this paper include the similar results for
the HDEs (2) and (3) as special cases. The existence of local solution of the
HDE (1) is proved by using the Schauder fixed point principle, see for example,
Coddington [3], Lakshmikantham and Leela [21], Granas and Dugundji [18] and
references therein. The approximation result for uniqueness of solution is proved
by using the Banach fixed point theorem under a Lipschitz condition which is
considered to be very strong in the area of nonlinear analysis. But to the knowledge
the present authors, the approximation result for local existence and uniqueness
theorems without using the Lipschitz condition is not discussed so far in the theory
of nonlinear differential equations. In this paper, we discuss the approximation
results for local existence and uniqueness of solution of the considered HDE (1)
with maxima under weaker Lipschitz condition via construction of the algorithms
based on the monotone iteration method and a hybrid fixed point theorem of Dhage
[7]. Also see Dhage et al. [12] and references therein.

3. Auxiliary Results
We place the problem of HDE (1) in the function space C(J,R) of continuous,

real-valued functions defined on J . We introduce a supremum norm ∥ · ∥ in C(J,R)
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defined by
∥x∥ = sup

t∈J
|x(t)|, (4)

and an order relation ⪯ in C(J,R) by the cone K given by

K = {x ∈ C(J,R) | x(t) ≥ 0 ∀ t ∈ J}. (5)

Thus,
x ⪯ y ⇐⇒ y − x ∈ K, (6)

or equivalently,
x ⪯ y ⇐⇒ x(t) ≤ y(t) ∀ t ∈ J.

It is known that the Banach space C(J,R) together with the order relations ⪯
becomes an ordered Banach space which we denote for convenience, by

(
C(J,R), K

)
.

We denote the open and closed spheres centered at x0 ∈ C(J,R) of radius r, for
some r > 0, by

Br(x0) = {x ∈ C(J,R) | ∥x− x0∥ < r} = B(x, r),

and
Br[x0] = {x ∈ C(J,R) | ∥x− x0∥ ≤ r} = B(x, r),

receptively. It is clear that Br[x0] = Br(x0). Let M > 0 be a real number. Denote

BM
r [x0] =

{
x ∈ Br[x0]

∣∣ |x(t1)− x(t2)| ≤ M |t1 − t2| for t1, t2 ∈ J
}
. (7)

Then, we have the following result.

Lemma 3.1. The set BM
r [x0] is compact in C(J,R).

Proof. By definition, Br[x0] is a closed and bounded subset of the Banach space
C(J,R). Moreover, BM

r [x0] is an equicontinuous subset of C(J,R) in view of the
condition (4). Now, by an application of Arzelá-Ascoli theorem, BM

r [x0] is compact
set in C(J,R) and the proof of the lemma is complete.

It is well-known that the hybrid fixed point theoretic technique is very much
useful in the subject of nonlinear analysis for dealing with the nonlinear equations
qualitatively. See Granas and Dugundji [18] and the references therein. Here, we
employ the Dhage monotone iteration method or simply Dhage iteration method
based on the following two hybrid fixed point theorems of Dhage [7] and Dhage et
al. [12].

Theorem 3.1. [Dhage [7]] Let S be a non-empty partially compact subset of a
regular partially ordered Banach space

(
E, || · ∥,⪯,

)
with every chain C in S is
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Janhavi set and let T : S → S be a monotone nondecreasing, partially continuous
mapping. If there exists an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0,
then the hybrid mapping equation T x = x has a solution ξ∗ in S and the sequence
{T nx0}∞0 of successive iterations converges monotonically to ξ∗.

Theorem 3.2. [Dhage [7]] Let Br[x] denote the partial closed ball centered at
x of radius r, in a regular partially ordered Banach space

(
E, || · ∥,⪯,

)
and let

T : E → E be a monotone nondecreasing and partial contraction operator with
contraction constant q. If there exists an element x0 ∈ X such that x0 ⪯ T x0 or
x0 ⪰ T x0 satisfying

∥x0 − T x0∥ ≤ (1− q)r, (8)

for some real number r > 0, then T has a unique comparable fixed point x∗ in
Br[x0] and the sequence {xn}∞n=0 of successive iterations converges monotonically
to x∗. Furthermore, if every pair of elements in X has a lower or upper bound,
then x∗ is unique.

Remark 3.1. We note that every pair of elements in a partially ordered set (poset)
(E,⪯) has a lower or upper bound if (E,⪯) is a lattice, that is, ⪯ is a lattice order
in E. In this case the poset (E, ∥ · ∥,⪯) is called a partially lattice ordered
Banach space. There do exist several lattice partially ordered Banach spaces
which are useful for applications in nonlinear analysis. For example, every Banach
lattice is a partially lattice ordered Banach space. The details of the lattice structure
of the Banach spaces appear in Birkhoff [1].

As a consequence of Remark 3.1, we obtain

Theorem 3.3. Let Br[x] denote the partial closed ball centered at x of radius r for
some real number r > 0, in a regular partially lattice ordered Banach space

(
E, || ·

∥,⪯,
)
and let T : E → E be a monotone nondecreasing and partial contraction

operator with contraction constant q. If there exists an element x0 ∈ X such that
x0 ⪯ T x0 or x0 ⪰ T x0 satisfying (8), then T has a unique fixed point ξ∗ in Br[x0]
and the sequence {T nx0}∞0 of successive iterations converges monotonically to ξ∗.

If a Banach X is partially ordered by an order cone K in X, then in this case
we simply say X is an ordered Banach space which we denote it by (X,K).
Similarly, an ordered Banach space (X,K), where partial order ⪯ defined by the
con K is a lattice order, then (X,K) is called the lattice ordered Banach space.
Clearly, an ordered Banach space

(
C(J,R), K

)
of continuous real-valued functions

defined on the closed and bounded interval J is lattice ordered Banach space, where
the coneK is given byK = {x ∈ CJ,R) | x ⪰ 0}. The details of the cones and their
properties appear in Guo and Lakshmikantham [19]. Then, we have the following
useful results concerning the ordered Banach spaces proved in Dhage [5,6].
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Lemma 3.2. [Dhage [5,6]] Every ordered Banach space (X,K) is regular.

Lemma 3.3. [Dhage [5,6]] Every partially compact subset S of an ordered Banach
space (X,K) is a Janhavi set in X.

As a consequence of Lemmas 3.2 and 3.3, we obtain the following hybrid fixed
point theorem which we need in what follows.

Theorem 3.4. [Dhage [7] and Dhage et al. [12]] Let S be a non-empty partially
compact subset of an ordered Banach space (X,K) and let T : S → S be a partially
continuous and monotone nondecreasing operator. If there exists an element x0 ∈ S
such that x0 ⪯ Tx0 or x0 ⪰ Tx0, then T has a fixed point x∗ ∈ S and the sequence
{xn}∞n=0 of successive iterations converges monotonically to x∗.

Theorem 3.5. [Dhage [7]] Let Br[x] denote the partial closed ball centered at x
of radius r for some real number r > 0, in an ordered Banach space

(
X,K

)
and

let T : (X,K) → (X,K) be a monotone nondecreasing and partial contraction
operator with contraction constant q. If there exists an element x0 ∈ X such that
x0 ⪯ T x0 or x0 ⪰ T x0 satisfying (8), then T has a unique comparable fixed point x∗

in Br[x0] and the sequence {xn}∞n=0 of successive iterations converges monotonically
to x∗. Furthermore, if every pair of elements in X has a lower or upper bound,
then x∗ is unique.

Theorem 3.6. Let Br[x] denote the partial closed ball centered at x of radius
r for some real number r > 0, in a lattice ordered Banach space

(
X,K

)
and let

T : (X,K) → (X,K) be a monotone nondecreasing and partial contraction operator
with contraction constant q. If there exists an element x0 ∈ X such that x0 ⪯ T x0

or x0 ⪰ T x0 satisfying (8), then T has a unique fixed point ξ∗ in Br[x0] and the
sequence {T nx0}∞0 of successive iterations converges monotonically to ξ∗.

The details of the notions of partial order, Janhavi set, regularity, monotonicity,
partial continuity, partial closure, partial compactness and partial contraction etc.
and related applications appear in Dhage [4, 5, 6], Dhage and Dhage [8], Dhage et
al. [12, 13] and references therein.

4. Local Approximation Results
We consider the following set of hypotheses in what follows.

(H1) The function f is continuous and bounded on J × R× R with bound Mf .

(H2) There exist constants ℓ1 > 0 and ℓ2 > 0 such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ ℓ1(x1 − y1) + ℓ2(x2 − y2)

for all x1, x2, y1, y2 ∈ R with x1 ≥ y1, x2 ≥ y2, where (ℓ1 + ℓ2) a < 1.
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(H3) f(t, x, y) is nondecreasing in x and y for each t ∈ J .

(H4) f(t, α0, α0) ≥ 0 for all t ∈ J .

Then we have the following useful lemma.

Lemma 4.1. If h ∈ L1(J,R), then the IVP of ordinary first order linear differential
equation

x′(t) = h(t), t ∈ J, x(t0) = α0, (9)

is equivalent to the integral equation

x(t) = α0 +

∫ t

t0

h(s) ds, , t ∈ J. (10)

Theorem 4.1. Suppose that the hypotheses (H1), (H3) and (H4) hold. Further-
more, if Mfa ≤ r and Mf ≤ M , then the HDE (1) with maxima has a solution x∗

in BM
r [x0], where, x0 ≡ α0, and the sequence {xn}∞n=0 of successive approximations

defined by
x0(t) = α0, t ∈ J,

xn+1(t) = α0 +

∫ t

t0

f
(
s, xn(s),Mxn(s)

)
ds, t ∈ J,

 (11)

where n = 0, 1, . . .; is monotone nondecreasing and converges to x∗.
Proof. Set X = C(J,R). Clearly, X is an ordered Banach space. Let x0 be a
constant function on J such that x0(t) = α0 for all t ∈ J and define a closed ball
BM

r [x0] in X defined by (6). By Lemma 3.1, BM
r [x0] is a compact subset of X.

By Lemma 4.1, the HDE with maxima (1) is equivalent to the nonlinear hybrid
integral equation (HIE)

x(t) = α0 +

∫ t

t0

f
(
s, x(s),Mx(s)

)
ds, t ∈ J. (12)

Now, define an operator T on BM
r [x0] into X by

T x(t) = α0 +

∫ t

t0

f
(
s, xn(s),Mxn(s)

)
ds, t ∈ J. (13)

We shall show that the operator T satisfies all the conditions of Theorem 3.4
on BM

r [x0] in the following series of steps.

Step I: The operator T maps BM
r [x0] into itself.
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Firstly, we show that T maps BM
r [x0] into itself. Let x ∈ BM

r [x0] be arbitrary
element. Then,

|T x(t)− x0(t)| =
∣∣∣∣∫ t

t0

f
(
s, xn(s),Mxn(s)

)
ds

∣∣∣∣
≤

∫ t

t0

∣∣f(s, xn(s),Mxn(s)
)∣∣ ds

< Mf

∫ t0+a

t0

ds

= Mfa ≤ r.

Taking the supremum over t in the above inequality yields

∥T x− x0∥ ≤ Mfa ≤ r

which implies that T x ∈ Br[x0] for all x ∈ BM
r [x0]. Next, let t1, t2 ∈ J be arbitrary.

Then, we have

|T x(t1)− T x(t2)| ≤
∣∣∣∣∫ t2

t1

|f
(
s, xn(s),Mxn(s)

)
| ds

∣∣∣∣
≤ Mf |t1 − t2|
≤ M |t1 − t2|.

Therefore, T x ∈ BM
r [x0] for all x ∈ BM

r [x0] As a result, we have T
(
BM

r [x0]
)
⊂

BM
r [x0].

Step II: T is a monotone nondecreasing operator.

Let x, y ∈ BM
r [x0] be any two elements such that x ⪰ y. Then, from continuity

of the function y we have an element ξ∗ ∈ [t0, t] such that y(ξ∗) = max
ξ∈[t0,t]

y(ξ). But

x(ξ∗) ≥ y(ξ∗). Consequently, Mx(t) ≥ My(t) for each t ∈ J . Hence,

T x(t) = α0 +

∫ t

t0

f
(
s, x(s),Mx(s)

)
ds

≥ α0 ++

∫ t

t0

f
(
s, y(s),My(s)

)
ds

= T y(t),

for all t ∈ J . So, T x ⪰ T y, that is, T is monotone nondecreasing on BM
r [x0].
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Step III: T is partially continuous operator.

Let C be a chain in BM
r [x0] and let {xn} be a sequence in C converging to a

point x ∈ C. Then, Mxn → Mx in view of the inequality

|Mxn(t)−Mx(t)| ≤ ∥xn − x∥

for all t ∈ J . Then, by dominated cnonvergence theorem, we have

lim
n→∞

T xn = lim
n→∞

[
α0 +

∫ t

t0

f
(
s, xn(s),Mxn(s)

)
ds

]
= α0 + lim

n→∞

∫ t

t0

f(s, xn(s),Mxn(s)) ds

= α0 +

∫ t

t0

[
lim
n→∞

f(s, xn(s),Mxn(s))
]
ds

= α0 +

∫ t

t0

f
(
s, x(s),M(s)

)
ds

= T x(t)

for all t ∈ J . Therefore, T xn → T x pointwise on J . As {T xn} ⊂ BM
r [x0], T xn is

an equicontinuous sequence of points in X. As a reult, we have that T xn → T x
uniformly on J . Hence T is partially continuous operator on BM

r [x0].

Step IV: The element x0 ∈ BM
r [x0] satisfies the order relation x0 ⪯ T x0 .

Since (H4) holds, one has

x0(t) = α0 +

∫ t

t0

f(s, x0(s), x0(s)) ds

≤ x0(t) +

∫ t

t0

f(s, α0, α0) ds

= α0 +

∫ t

t0

f(s, x0(s), x0(s)) ds

= T x0(t)

for all t ∈ J . As a result, we have x0 ⪯ T x0. This shows that the constant function
x0 in BM

r [x0] serves as to satisfy the operator inequality x0 ⪯ T x0.

Thus, the operator T satisfies all the conditions of Theorem 3.4, and so T has
a fixed point x∗ in BM

r [x0] and the sequence {T nx0}∞n=0 of successive iterations
converges monotone nondecreasingly to x∗. This further implies that the HIE
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(12) and consequently the HDE with maxima (1) has a local solution x∗ and the
sequence {xn}∞n=0 of successive approximations defined by (11) converges monotone
nondecreasingly to x∗. This completes the proof.

Next, we prove an approximation result for existence and uniqueness of the
solution simultaneously under weaker form of Lipschitz condition.

Theorem 4.2. Suppose that the hypotheses (H1), (H2) and (H4) hold. Further-
more, if

Mfa ≤
[
1− (ℓ1 + ℓ2)a

]
r, (ℓ1 + ℓ2) a < 1, (14)

for some real number r > 0, then the HDE with maxima (1) has a unique solution
x∗ in Br[x0] defined on J , where x0 ≡ α0, and the sequence {xn}∞n=0 of successive
approximations defined by (11) converges monotone nondecreasingly to x∗.
Proof. Set (X,K) =

(
C(J,R),⪯

)
which is a lattice w.r.t. the lattice operations

meet and join defined by x ∧ y = min{x, y} and x ∨ y = max{x, y} respectively,
and so every pair of elements of X has a lower and an upper bound. Let x0 be a
constant function on J such that x0(t) = α0 for all t ∈ J and consider closed sphere
Br[x0] centred at x0 ∈ C(J,R) of radius r, for some fixed r > 0, in the partially
ordered Banach space (X,K).

Define an operator T on X into X by (13). Clearly, T is monotone nondecreas-
ing on X. To see this, let x, y ∈ X be two elements such that x ⪰ y. Then, by
hypothesis (H2),

T x(t)− T y(t) =

∫ t

t0

[
f
(
s, x(s),Mx(s)

)
− f(s, y(s)),My(s)

]
ds ≥ 0,

for all t ∈ J . Therefore, T x ⪰ T y and consequently T is monotone nondecresing
on X.

Next, we show that T is a partial contraction on X. Let x, y ∈ X be such that
x ⪰ y. Then, by hypothesis (H2), we obtain

|T x(t)− T y(t)| =

∣∣∣∣∫ t

t0

[
f
(
s, x(s),Mx(s)

)
− f

(
s, y(s),My(s)

)]
ds

∣∣∣∣
≤

∣∣∣∣∫ t

t0

[
ℓ1(x(s)− y(s)) + ℓ2(Mx(s)−My(s))

]
ds

∣∣∣∣
=

∫ t

t0

[
ℓ1|x(s)− y(s)|+ ℓ2|Mx(s)−My(s)|

]
ds

<

∫ t0+a

t0

(ℓ1 + ℓ2)∥x− y∥ ds

= a (ℓ1 + ℓ2)∥x− y∥
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for all t ∈ J , where (ℓ1 + ℓ2) a < 1. Taking the supremum over t in the above
inequality yields

∥T x− T y∥ ≤ (ℓ1 + ℓ2) a ∥x− y∥

for all comparable elements x, y ∈ X. This shows that T is a partial contraction
on X with contraction constant k a. Furthermore, it can be shown as in the proof
of Theorem 4.1 that the element x0 ∈ BM

r [x0] satisfies the relation x0 ⪯ T x0 in
view of hypothesis (H4). Finally, by hypothesis (H1) and condition (14), one has

∥x0 − T x0∥ = sup
t∈J

∣∣∣∣∫ t

t0

f
(
s, x0, x0

)
ds

∣∣∣∣
≤ sup

t∈J

∫ t

t0

|f(s, α0, α0)| ds

≤ Mfa

≤
[
1− (ℓ1 + ℓ2)a

]
r

which shows that the condition (8) of Theorem 3.5 is satisfied. Hence T has a
unique fixed point x∗ in Br[x0] and the sequence {T nx0}∞n=0 of successive iterations
converges monotone nondecreasingly to x∗. This further implies that the HIE
(12) and consequently the HDE with maxima (1) has a unique local solution x∗

defined on J and the sequence {xn}∞n=0 of successive approximations defined by
(11) converges monotone nondecreasingly to x∗. This completes the proof.

Remark 4.1. The conclusion of Theorems 4.1 and 4.2 also remains true if we
replace the hypothesis (H4) with the following one.

(H4) The function f satisfies f(t, α0, α0) ≤ 0 for all t ∈ J .

In this case, the HDE (1) with maxima has a local solution x∗ defined on J and
the sequence {xn}∞n=0 of successive approximations defined by (11) is monotone
nonincreasing and converges to the solution x∗.

Remark 4.2. If the initial condition in the equation (1) is such that α0 > 0, then
under the conditions of Theorem 4.1, the HDE (1) with maxima has a local positive
solution x∗ defined on J and the sequence {xn}∞n=0 of successive approximations
defined by (11) converges monotone nondecreasingly to the positive solution x∗.
Similarly, under the conditions of Theorem 4.2, the HDE (1) with maxima has a
unique local positive solution x∗ defined on J and the sequence {xn}∞n=0 of successive
approximations defined by (11) converges monotone nondecreasingly to the unique
positive solution x∗.
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5. Approximation of Local Ulam-Hyers Stability
The Ulam-Hyers stability for various dynamic systems has already been dis-

cussed by several authors under the conditions of classical Schauder fixed point
theorem (see Huang et al. [20], Tripathy [24] and references therein). Here, in the
present paper, we discuss the approximation of the Ulam-Hyers stability of local
solution of the HDE (1) with maxima under the conditions of hybrid fixed point
principle stated in Theorem 3.5. We need the following definition in what follows.

Definition 5.1. The HDE (1) with maxima is said to be locally Ulam-Hyers stable
if for ϵ > 0 and for each local solution y ∈ Br[x0] of the inequality∣∣y′(t)− f

(
t, y(t),My(t)

)∣∣ ≤ ϵ, t ∈ J,

y(t0) = α0 ∈ R,

}
(∗)

there exists a constant Kf > 0 such that∣∣y(t)− ξ(t)
∣∣ ≤ Kfϵ (∗∗)

for all t ∈ J , where ξ ∈ Br[x0] is a local solution of the HDE with maxima (1)
defined on J , where x0 ≡ α0. The solution ξ of the HDE with maxima (1) is called
Ulam-Hyers stable local solution on J .

Theorem 5.1. Assume that all the hypotheses of Theorem 4.2 hold. Then the
HDE (1) with maxima has a unique Ulam-Hyers stable local solution x∗ ∈ Br[x0],
where x0 ≡ α0, and the sequence {xn}∞n=0 of successive approximations given by
(11) converges monotone nondecreasingly to x∗.
Proof. Let ϵ > 0 be given and let y ∈ Br[x0] be a solution of the functional
inequality (*) on J , that is, we have∣∣y′(t)− f

(
t, y(t),My(t))

∣∣ ≤ ϵ, t ∈ J,

y(0) = α0 ∈ R+.

}
(15)

By Theorem 4.2, the HDE (1) with maxima has a unique local solution ξ ∈
Br[x0]. Then by Lemma 3.1, one has

ξ(t) = α0 +

∫ t

t0

f
(
s, ξ(s),Mξ(s)

)
ds, t ∈ J. (16)

Now, by integration of (15) yields the estimate:∣∣∣∣y(t)− α0 −
∫ t

t0

f
(
s, y(s),My(s)

)
ds

∣∣∣∣ ≤ a ϵ, (17)
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for all t ∈ J .
Next, from (16) and (17) we obtain

∣∣y(t)− ξ(t)
∣∣ = ∣∣∣∣y(t)− α0 −

∫ t

t0

f
(
s, ξ(s),Mξ(s)

)
ds

∣∣∣∣
≤

∣∣∣∣y(t)− α0 −
∫ t

t0

f
(
s, y(s),My(s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t

t0

f
(
s, y(s),My(s)

)
) ds−

∫ t

t0

f
(
s, ξ(s),Mξ(s)

)
ds

∣∣∣∣
≤ a ϵ+

∫ t

t0

∣∣f(s, y(s),My(s)
)
− f

(
s, ξ(s),Mξ(s)

)∣∣ ds
≤ a ϵ+ (ℓ1 + ℓ2) a(∥y − ξ∥).

Now, taking the supremum over t, we obtain

∥y − ξ∥ ≤ a ϵ+ (ℓ1 + ℓ2)a∥y − ξ∥

or

∥y − ξ∥ ≤
[

a ϵ

1− (ℓ1 + ℓ2)a

]
where, (ℓ1 + ℓ2)a < 1. Letting Kf =

[
a

1− (ℓ1 + ℓ2)a

]
> 0, we obtain

∣∣y(t)− ξ(t)
∣∣ ≤ Kfϵ

for all t ∈ J . As a result, ξ is a Ulam-Hyers stable local solution of the HDE with
maxima (1) on J and the sequence {xn}∞n=0 of successive approximations defined
by (11) converges monotone nondecreasingly to ξ. Consequently the HDE with
maxima (1) is a locally Ulam-Hyers stable on J . This completes the proof.

Remark 5.1. If the given initial condition in the equation (1) is such that α0 > 0,
then under the conditions of Theorem 5.1, the HDE with maxima (1) has a unique
Ulam-Hyers stable local positive solution x∗ defined on J and the sequence {xn}∞n=0

of successive approximations defined by (11) converges monotone nondecreasingly
to x∗.

6. The Examples
In this section we give a couple of example to illustrate the absttract ideas

invlved in our results, Theorems 4.1 and 4.2.
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Example 6.1. Given a closed and bounded interval J = [0, 1] in R, consider the
IVP of nonlinear first order HDE with maxima,

x′(t) = tanh x(t) + tanhMx(t), t ∈ [0, 1]; x(0) =
1

4
. (18)

Here α0 = 1
4
and f(t, x, y) = tanhx + tanh y for (t, x, y) ∈ [0, 1] × R × R. We

show that f satisfies all the conditions of Theorem 4.1. Clearly, f is bounded on
[0, 1] × R × R with bound Mf = 2 and so the hypothesis (H1) is satisfied. Also
the function f(t, x, y) is nondecreasing in x and y for each t ∈ [0, 1]. Therefore,
hypothesis (H3) is satisfied. Moreover, f(t, α0, α0) = f(t, 1

4
, 1
4
) = 2 tanh(1

4
) ≥ 0 for

each t ∈ [0, 1], and so the hypothesis (H4) holds. If we take r = 2 and M = 1,
all the conditions of Theorem 4.1 are satisfied. Hence, the HDE with maxima (18)
has a local solution x∗ in the closed ball B1

1 [
1
4
] of C(J,R) which is positive in view

of Remark 4.2. Furthermore, the sequence {xn}∞n=0 of successive approximations
defined by

x0(t) =
1

4
, t ∈ [0, 1],

xn+1(t) =
1

4
+

∫ t

0

[tanhxn(s) + tanhMxn(s)] ds, t ∈ [0, 1],

converges monotone nondecreasingly to x∗.

Example 6.2. Given a closed and bounded interval J = [0, 1] in R, consider the
IVP of nonlinear first order HDE with maxima,

x′(t) =
1

4

[
tan−1 x(t) + tan−1Mx(t)

]
, t ∈ [0, 1]; x(0) =

1

4
. (19)

Here α0 =
1

4
and f(t, x, y) =

1

4

[
tan−1 x+tan−1 y

]
for (t, x, y) ∈ [0, 1]×R×R.

We show that f satisfies all the conditions of Theorem 4.2. Clearly, f is bounded
on [0, 1] × R × R with bound Mf = 22

28
and so, the hypothesis (H1) is satisfied.

Next, let x1, x2, y1, y2 ∈ R with x1 ≥ y1, x2 ≥ y2, Then there exist a constants ξ1
and ξ2 with x1 < ξ < y1 satisfying

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤
1

4

[
1

1 + ξ2
(x1 − y1) +

1

1 + ξ2
(x2 − y2)

]
for all t ∈ [0, 1]. So the hypothesis (H2) holds with ℓ1 =

1
4
· 1
1+ξ21

(x1 − y1) and ℓ2 =
1
4
· 1
1+ξ22

(x2−y2). Moreover, f(t, α0, α0) = f
(
t, 1

4
, 1
4

)
= 1

4
tan−1

(
1
4

)
+ 1

4
tan−1

(
1
4

)
≥ 0
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for each t ∈ [0, 1], and so the hypothesis (H4) holds. If we take r = 2, then we
have

Mfa =
11

14
≤

(
1− 1

2

)
· 2 =

[
1− (ℓ1 + ℓ2)a

]
r

and so, the condition (14) is satisfied. Thus, all the conditions of Theorem 4.2 are
satisfied. Hence, the HDE with maxima (19) has a unique local solution x∗ in the
closed ball B2[

1
4
] of C(J,R). This further in view of Remark 4.2 implies that the

HDE with maxima (19) has a unique local positive solution x∗ and the sequence
{xn}∞n=0 of successive approximations defined by

x0(t) =
1

4
, t ∈ [0, 1],

xn+1(t) =
1

4
+

∫ t

0

tan−1 xn(s) ds++

∫ t

0

tan−1Mxn(s) ds, t ∈ [0, 1],

converges monotone nondecreasingly to x∗. Moreover, the unique local positive
solution x∗ is Ulam-Hyers stable on [0, 1] in view of Definition 5.1. Consequently
the HDE with maxima (19) is a locally Ulam-Hyers stable on the interval [0, 1].

7. The Conclusion
Finally, while concluding this paper, we remark that unlike the Schauder fixed

point theorem we do not require any convexity argument in the proof of main
existence theorem, Theorem 4.1. Similarly, we do not require the usual Lipschitz
condition in the proof of uniqueness theorem, Theorem 4.2, but a weaker one sided
or partial Lipschitz condition is enough to serve the purpose. However, in both the
cases we are able to achieve the existence of local solution by monotone convergence
of the successive approximations which otherwise is not possible usual compact-
ness and Lipschitz type condition. This indicates the advantage of our new Dhage
monotone iteration method over the earlier methods using Schauder and Banach
fixed point principles. Similarly, the Dhage mnotone iteration method is also useful
in obtaining the local approximate Ulan-Hyer stable solution via monotonic conver-
gence of the sequence of successive approximations under weaker partial Lipschitz
type condition. The quoted numerical examples in Section 6 indicate the validity
of our hypotheses and abstract results of this paper. Moreover, the differential
equation (1) with maxima considered in this paper is of very simple form, how-
ever other complex nonlinear IVPs of HDE with maximas may be considered and
the present study can also be extended to such sophisticated nonlinear differen-
tial equations with maxima with appropriate modifications. These and other such
problems form the further research scope in the subject of nonlinear differential
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and integral equations with applications. Some of the results in this direction will
be reported elsewhere.
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