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Abstract: This paper presents a novel numerical approach, which is based on
the Method of Lines. This method semi-discretizes the problem and produces a
system of ordinary differential equations (ODEs) in time. To solve this system, a
stiff solver, BDF2, is used, which yields very precise results. The linearization is
handled by the Taylor series method. To validate the numerical method, various
test examples are considered. These formulas find extensive applications across
various scientific and engineering domains.
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1. Introduction
In this paper, we focus on the one-dimensional Fisher equation,

∂u

∂t
= D

∂2u

∂x2
+ αu(1− u), 0 ≤ x ≤ 1, t > 0, (1)
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with initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1

and the boundary conditions

u(0, t) = f1(t), 0 ≤ t ≤ T

u(1, t) = f2(t), 0 ≤ t ≤ T

A smooth function of the variables is defined as u0(x), f1, and f2, where u(x, t)
population density, D is coefficient factor and α is the reactive factor. The non-
linear reaction-diffusion equation was originally introduced by Fisher in 1937 [10].
The Fisher equation is commonly known as the KPP equation, an abbreviation
for Kolmogorov-Petrovsky-Piscounov. However, the Fisher equation is the more
well-known name for it. Equation (1) characterizes a nonlinear model of a phys-
ical system featuring linear diffusion and nonlinear evolution, as described in [1].
Numerous disciplines, including science and industry, have made significant use
of Fisher’s equation [11], [2], [4], [5], [15]. The interplay between diffusion and
reaction is thus described by equation (1) [6].

The mathematical features of Fisher’s equation have been thoroughly discussed
in the literature. The overviews of Fisher’s equation provided by Brazhnik and
Tyson [28], Izadi and Srivastava [16], Kawahara and Tanaka [18], and Larson [19]
are highly informative and well-regarded. Subsequently, numerous researchers have
conducted numerical solutions for Fisher’s equation. To investigate numerical ap-
proaches for Fisher’s equation, Parekh and Puri [23] and Twizell et al. [27] intro-
duced both implicit and explicit finite difference algorithms. The modified form
of a nonlinear Fisher’s reaction-diffusion equation solved by radial basis functions
(RBFs) based on differential quadrature methods (DQMs) [13]. The Fisher equa-
tion in bounded domains, By Faedo–Galerkin’s method and with a homogeneous
Dirichlet conditions [12], The Fisher equation is solved by extended homogeneous
balance method and it is used to solve many non-linear equation liker Fisher’s
equation and Burgers-Fisher equation [9]. The Fisher’s equation is solved by the
Lie symmetries of the generalized Fisher equation in [25].
Many researchers have worked to create numerical methods for solving partial
differential equations (PDEs). The domain is discretized into a limited number
of areas, backward differentiation formulas are the numerical techniques used to
compute the solutions of PDEs. Several numerical solutions of equation (1) were
studied under initial and boundary conditions see [26], [8], [24], [7], [14], [17] [29].
In this study, we utilize the Method of Lines (MOL) to tackle the one-dimensional
Fisher equation, and we compute spatial derivatives using finite difference methods.
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Consequently, the suggested approach [22], converts non-linear partial differential
equations into a system of nonlinear ordinary differential equations over time. A
Taylor series expansion and the Backward Differentiation Formula of Order Two
(BDF-2) will be used to solve this problem. The proposed scheme is more effective
because linear algebraic equations are immediately solved after being expanded
using the Taylor series method. The accuracy of the suggested technique in both
space and time is of order two.
This paper is organized into seven sections. The first section introduces the topic.
The second section details the numerical scheme. In the third section, we present
the stability analysis. The fourth section covers the Backward Differentiation For-
mula of order two (BDF2). Section five discusses the results and examples. The
sixth section provides the conclusion, and the seventh section lists the abbrevia-
tions.

2. Numerical Scheme
We employ a regular grid to divide the solution domain of equation (1). The

space between [0, 1] is divided into N equal subintervals, and the time interval [0, T ]
is divided into M equal subintervals. In the spatial dimension, we set the mesh
width as ∆x = 1/N , and the points xj are defined as xj = j∆x for j = 0, 1, ..., N .
For the temporal dimension, we set tl as tl = l∆t for l = 0, 1, ...,M , where ∆t =
T/M represents the mesh width in time.

2.1. Method of Lines(MOL)
The numerical techniques used in this paper involve linearization, BDF2 (Back-

ward Differentiation Formula), and the Method of Lines (MOL). The method of
lines (MOL), which is a semi-discretization technique, discretizes only in the spatial
dimension. We approximate a spatial derivative using a central difference scheme,
resulting in N + 1 equally spaced points and a spacing interval of ∆x = 1/N , we
get

∂u

∂t
(xj, t) =

uj+1(t)− uj−1(t)

2∆t
, j = 1, 2, ...., N

∂2u

∂x2
(xj, t) =

uj−1(t)− 2uj(t) + uj+1(t)

(∆x)2
, j = 1, 2, ...., N

Substituting into Fisher equation Eq. (1), we establish a set of initial conditions
for a system of nonlinear ordinary differential equations. These initial conditions
include the boundary conditions, u0(t) = 0, uN(t) = 0 and consider D = 1

duj(t)

dt
=

uj−1(t)− 2uj(t) + uj+1(t)

(∆x)2
+ αuj(1− uj)
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uj(0) = u0(xj), j = 1, 2, ...., N − 1

When uj(t) = u(xj, t), these differential equations can be formulated in the matrix
form of size (N − 1)× (N − 1),

dU

dt
= F (U, t), (2)

U(0) = U0

Where, U(t) = [u1(t), ..., uN(t)]
T .

With the following elements fj, F is a function of U that exhibits non-linearity.

fj(u1, u2, ..., uN−1,t) = λuj−1(t) + uj(α− αuj − 2λ) + λuj+1(t) (3)

Where, λ = 1
(∆x)2

, j = 1, 2, ..., N − 1

The set of ordinary differential equations (2) forms a nonlinear system, which
can be resolved by time integration. With a time step of ∆t = 1/M , we divide
the time period into M + 1 equally spaced intervals. Following is the Backward
Differentiation Formula for the time integration of order two.

Theorem 1. Investigating the initial value problem (IVP) involves treating F(U, t)
as a continuous function and exploring it in the following manner:

dU

dt
= F (U, t), U(t0) = a,

Allows for the existence of a solution denoted as U = f(t) within the interval
|(t− t0)| ≤ δ, where δ > 0.

Proof. Considering the functions defined as follows:

fj(u1, u2, ..., uK−1,t) = λuj−1(t) + uj(α− αuj − 2λ) + λuj+1(t),

Given that j ranges from 1 to l− 1, and recognizing that the functions are clearly
continuous, we can confidently assert the existence of a solution for this Initial
Value Problem (IVP).

Theorem 2. Let C1 denote the set of functions that are differentiable and have
continuous first derivatives.

If F(U, t) ∈ C1, then a unique solution exists for the initial value problem (IVP).
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Proof. The partial derivatives of the functions described in equation (4) can be
expressed as follows:

∂fj
∂uj

= α− 2αuj − 2λ, j = 1, 2, ..., K − 1, (4)

∂fj
∂uj+1

= λ, j = 1, 2, ..., K − 1, (5)

∂fj
∂uj−1

= λ, j = 1, 2, ..., K − 1, (6)

∂fj
∂ui

= 0, j = 1, 2, ..., K − 1, i ̸= j − 1, j, j + 1. (7)

Every partial derivative of the function is in existence and remains continuous
across the entire domain, thereby confirming that F(U, t) ∈ C1. Consequently,
the IVP possesses a distinct solution.
The forthcoming section will explore an examination of the stability of the nonlinear
system.

3. Stability Analysis
In the context of nonlinear stability analysis, Lyapunov’s stability theory stands

out as a fundamental mathematical instrument. To assess stability, a significant
approach involves determining the eigenvalues of the Jacobian matrix at the equi-
librium point of a nonlinear autonomous system.
When we look at the nonlinear system described in Eq. (3), because it operates on
its own without external influences, we observe the following:

dU

dt
= F (U),

U(0) = U0

In the context where F represents a nonlinear function of U, the elements fj can
be expressed as follows:

fj(u1, u2, ..., uK−1,t) = λuj−1(t) + uj(α− αuj − 2λ) + λuj+1(t),

For j = 1, 2, . . . , K − 1, we can expand F as a Taylor series centered around the
equilibrium point U∗ = 0.

F (U) ≈ F (U∗) + F (U∗)(U − U∗)

≈ f ′(U∗)U
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We will investigate the system’s stability as described in Equation (5) by employing
Lyapunov’s Indirect Method.

3.1. Lyapunov’s Indirect Method
Consider the equilibrium point at x = 0 for the equation ẋ = f(x). Here,

f : D −→ Rk is a continuously differentiable function, and D represents a neigh-
borhood around the origin. let

A =
∂f

∂x
|x=0

then
1. The origin exhibits asymptotic stability when the real part of each eigenvalue
λi of matrix A satisfies Re(λi) ≤ 0.
2. The origin is deemed unstable if there exists at least one eigenvalue Ai of matrix
A such that Re(λi) > 0.
For the nonlinear system described in Equation (5), we can provide the Jacobian
matrix as follows:

F (U (l+1)) = F (U (l)) + J
(l)
F (U (l+1) − U l) +O(∆t2) (8)

Where,

J
(l)
F =

 ( ∂f1
∂u1

)(l) ( ∂f1
∂u2

)(l) . . . ( ∂f1
∂ul−1

)(l)

...

(∂fl−1

∂u1
)(l) (∂fl−1

∂u2
)(l) . . . ( ∂fl−1

∂ul−1
)(l)


The Jacobian matrix, denoted as matrix ’A’ and evaluated at the equilibrium point,
can be represented as a tridiagonal matrix, and its specific form is:

A =


P1 λ
λ P2 λ

. . . . . . . . .

λ Pl−2 λ
λ Pl−1


Given that Pj = α− 2αuj − 2λ, where j = 1, 2, ..., l − 1.

4. Backward Differentiation Formula of order two (BDF2)

U (l+1) =
4

3
U (l) − 1

3
U l−1 +

2

3
(∆t)F (U l+1, tl+1), l = 2, ...,M (9)
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Referring to BDF1 [21], we obtain the solution at the initial time level denoted as
U1, which is the first-order backward differentiation formula.

U (l+1) = U l + (∆t)F (U l+1, tl+1), l = 0, 1, ...,M − 1

U0 represents the initial condition, and U(l) is a vector denoted as [u
(l)
1 , u

(l)
2 , . . . , u

(l)
l−1].

Because the system (3) exhibits non-linearity, it necessitates the solution of a non-
linear algebraic equation at each time step. One way to handle this issue is by
utilizing the linearization technique. linearization through the Taylor series,

F (U (l+1)) = F (U (l)) + J
(l)
F (U (l+1) − U l) +O(∆t2) (10)

Where,

J
(l)
F =

 ( ∂f1
∂u1

)(l) ( ∂f1
∂u2

)(l) . . . ( ∂f1
∂uN−1

)(l)

...

(∂fN−1

∂u1
)(l) (∂fN−1

∂u2
)(l) . . . ( ∂fN−1

∂uN−1
)(l)


at the lth time level, is the Jacobian matrix. Equation (9) is substituted in Equation
(10) to provide,

U (l+1) =
4

3
U (l) − 1

3
U l−1 +

2∆t[F (U (l)) + J
(l)
F (U (l+1))− U (l)]

3
, l = 2, ...,M (11)

(I − 2∆t

3
J
(l)
F )U (l+1) = (

4

3
I − 2∆t

3
J
(l)
F )U (l) +

2∆t

3
F (U (l))− 1

3
(U (l))

U (l+1) =(I − 2∆t

3
J
(l)
F )−1(

4

3
I − 2∆t

3
J
(l)
F )U (l)

+ (I − 2∆t

3
J
(l)
F )−12∆t

3
F (U (l))− (I − 2∆t

3
J
(l)
F )−11

3
(U (l))

(12)

Here, J
(l)
F represents the Jacobian matrix at the lth time step. The mentioned

approach becomes linearized as a consequence. Avoid Newton’s method, we only
need to solve the computationally faster Equation (12), which consists of linear
algebraic equations at each time step.

5. Results and Discussion
To illustrate the efficiency and suitability of the proposed numerical approach,

multiple test experiments were carried out. For different α values and varying final
time points, we have compared the calculated solution with the exact solution to
evaluate their consistency.
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Example 1. Consider the Fisher Equation (1) for α = 1 and α = 6

ut = uxx + αu(1− u),

subject to the initial condition

u(x, 0) =
1

(1 + e
√

α
6
x)2

where the exact solution is presented in [27] given by

u(x, t) =
1

(1 + e
√

α
6
x− 5

6
αt)2

.

Table 1: Numerical and exact results (BDF-2) for Example-1 are compared at
different points of space at ∆t = 0.000005, final time T = 1 and α = 1

Determined Result Exact solution

x N = 20 N = 40 N = 80 N = 100

0 0.271254811 0.271254811 0.271254811 0.271254811 0.271254811

0.1 0.260738368 0.260738402 0.260738411 0.260738412 0.260738428

0.2 0.250420991 0.250421051 0.250421066 0.250421068 0.250421096

0.3 0.240311552 0.240311630 0.240311650 0.240311652 0.240311688

0.4 0.230418230 0.230418319 0.230418341 0.230418344 0.230418385

0.5 0.220748486 0.220748579 0.220748602 0.220748605 0.220748648

0.6 0.211309043 0.211309133 0.211309156 0.211309158 0.211309201

0.7 0.202105868 0.202105949 0.202105969 0.202105971 0.202106010

0.8 0.193144165 0.193144228 0.193144244 0.193144246 0.193144276

0.9 0.184428366 0.184428403 0.184428412 0.184428413 0.184428430

1 0.175962132 0.175962132 0.175962132 0.175962132 0.175962132
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Table 2: Numerical and exact results (BDF-2) for Example-1 are compared at
different points of space at ∆t = 0.000005, final time T = 1 and α = 6

Determined Result Exact solution

x N = 20 N = 40 N = 80 N = 100

0 0.387455619 0.387455619 0.387455619 0.387455619 0.387455619

0.1 0.358425003 0.358426076 0.358426345 0.358426377 0.358426914

0.2 0.329980634 0.329982645 0.329983147 0.329983208 0.329984205

0.3 0.302312544 0.302315293 0.302315981 0.302316063 0.302317425

0.4 0.275597376 0.275600623 0.275601435 0.275601532 0.275603147

0.5 0.249993802 0.249997280 0.249998151 0.249998255 0.250000000

0.6 0.225638652 0.225642075 0.225642931 0.225643034 0.225644772

0.7 0.202643927 0.202646993 0.202647760 0.202647852 0.202649430

0.8 0.181094865 0.181097255 0.181097853 0.181097925 0.181099172

0.9 0.161049109 0.161050483 0.161050827 0.161050868 0.161051594

1 0.142536957 0.142536957 0.142536957 0.142536957 0.142536957

Table 3: The error (BDF-2) at different points in the space of Example-1 is com-
pared with the exact solution at ∆t = 0.000005, final time T = 1 for α = 1

Absolute errors

x N = 20 N = 40 N = 80 N = 100

0.1 6.030E-08 2.56E-08 1.70E-08 1.59E-08

0.2 1.052E-07 4.48E-08 2.97E-08 2.79E-08

0.3 1.364E-07 5.82E-08 3.86E-08 3.63E-08

0.4 1.552E-07 6.63E-08 4.41E-08 4.14E-08

0.5 1.624E-07 6.95E-08 4.63E-08 4.35E-08

0.6 1.580E-07 6.78E-08 4.52E-08 4.25E-08

0.7 1.413E-07 6.07E-08 4.05E-08 3.81E-08

0.8 1.110E-07 4.78E-08 3.20E-08 3.01E-08

0.9 6.470E-08 2.79E-08 1.87E-08 1.76E-08
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Table 4: The error (BDF-2) at different points in the space of Example-1 is com-
pared with the exact solution at ∆t = 0.000005, final time T = 1 for α = 6

Absolute errors

x N = 20 N = 40 N = 80 N = 100

0.1 1.9114E-06 8.3800E-07 5.6970E-07 5.3750E-07

0.2 3.5711E-06 1.5606E-06 1.0579E-06 9.9760E-07

0.3 4.8803E-06 2.1315E-06 1.4440E-06 1.3615E-06

0.4 5.7717E-06 2.5246E-06 1.7124E-06 1.6149E-06

0.5 6.1977E-06 2.7196E-06 1.8495E-06 1.7451E-06

0.6 6.1205E-06 2.6974E-06 1.8410E-06 1.7382E-06

0.7 5.5034E-06 2.4375E-06 1.6703E-06 1.5783E-06

0.8 4.3062E-06 1.9166E-06 1.3187E-06 1.2470E-06

0.9 2.4853E-06 1.1110E-06 7.6710E-07 7.2590E-07

Figure 1: Solution at ∆t = 0.000005,
N = 20 for α = 1

Figure 2: Solution at ∆t = 0.000005,
N = 40 for α = 1

Figure 3: Solution at ∆t = 0.000005,
N = 80 for α = 1

Figure 4: Solution at ∆t = 0.000005,
N = 100 for α = 1
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Figure 5: Solution at ∆t = 0.000005,
N = 20 for α = 6

Figure 6: Solution at ∆t = 0.000005,
N = 40 for α = 6

Figure 7: Solution at ∆t = 0.000005,
N = 80 for α = 6

Figure 8: Solution at ∆t = 0.000005,
N = 100 for α = 6

Figure 9: Absolute errors at ∆t =
0.000005, for α = 1

Figure 10: Absolute errors at ∆t =
0.000005, for α = 6
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Table 5: Numerical and exact results for Example-1 are compared at ∆t = 0.00005,
N = 20 for α = 6

T x DQM [3], [20] Present

Method

Exact Solution

0.5 0.25 0.81847 0.818403 0.818393

0.75 0.72592 0.725835 0.725824

1.0 0.25 0.98293 0.982920 0.982919

0.75 0.97208 0.972073 0.972071

Table 6: Numerical and exact results for Example-1 are compared at ∆t = 0.001,
T = 0.25 for α = 6

value of

x

SIS [6] Present

Method

Exact Solution

0.00 0.2627 0.262654 0.262654

0.25 0.2027 0.202584 0.202649

0.50 0.1516 0.151554 0.151602

0.75 0.1101 0.110053 0.110099

1.00 0.0778 0.077777 0.077777

Example 2. Consider the generalized form in the range [0, 1] as follows:

ut = uxx + u(1− uη) (13)

with an initial condition

u(x, 0) = {1
2
tanh(− η

2
√
2η + 4

x) +
1

2
}

2
η (14)

The exact solution is discussed in [30], [3] for by

u(x, t) = {1
2
tanh(− η

2
√
2η + 4

(x− η + 4√
2η + 4

t)) +
1

2
}

2
η . (15)
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Table 7: Numerical and exact solutions (BDF-2) for Example-2 are compared at
various ”spatial points” and at ∆t = 0.0005, final time T = 1 for η = 1

Determined Result Exact solution

x N = 20 N = 40 N = 80 N = 100

0 0.271254811 0.271254811 0.271254811 0.271254811 0.271254811

0.1 0.260736853 0.260736886 0.260736895 0.260736895 0.260738428

0.2 0.250418342 0.250418400 0.250418415 0.250418417 0.250421096

0.3 0.240308101 0.240308176 0.240308195 0.240308198 0.240311688

0.4 0.230414285 0.230414371 0.230414392 0.230414395 0.230418385

0.5 0.220744344 0.220744433 0.220744455 0.220744458 0.220748648

0.6 0.211305002 0.211305089 0.211305110 0.211305113 0.211309201

0.7 0.202102247 0.202102325 0.202102344 0.202102346 0.202106010

0.8 0.193141319 0.193141380 0.193141395 0.193141397 0.193144276

0.9 0.184426699 0.184426734 0.184426743 0.184426744 0.184428430

1 0.175962132 0.175962132 0.175962132 0.175962132 0.175962132

Table 8: Absolute error (BDF-2) at different points in the space of Example-2 is
compared with the exact solution at ∆t = 0.0005, final time T = 1 for η = 1

Absolute errors

x N = 20 N = 40 N = 80 N = 100

0.1 8.4660E-07 1.5415E-06 1.5328E-06 1.5329E-06

0.2 2.2096E-06 2.6955E-06 2.6809E-06 2.6791E-06

0.3 3.2119E-06 3.5117E-06 3.4928E-06 3.4906E-06

0.4 3.8822E-06 4.0141E-06 3.9927E-06 3.9902E-06

0.5 4.2402E-06 4.2152E-06 4.1929E-06 4.1902E-06

0.6 4.2913E-06 4.1122E-06 4.0906E-06 4.0879E-06

0.7 4.0240E-06 3.6848E-06 3.6654E-06 3.6631E-06

0.8 3.4090E-06 2.8963E-06 2.8810E-06 2.8792E-06

0.9 2.4008E-06 1.6962E-06 1.6871E-06 1.6869E-06
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Figure 11: Solution at ∆t = 0.0005,
N = 20, and η = 1 for Example-2

Figure 12: Solution at ∆t = 0.0005,
N = 40, and η = 1 for Example-2

Figure 13: Solution at ∆t = 0.0005,
N = 80, and η = 1 for Example-2

Figure 14: Solution at ∆t = 0.0005,
N = 100, and η = 1 for Example-2

Figure 15: Absolute error at ∆t = 0.0005 and η = 1. for Example-2
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Table 9: Numerical and exact results for Example-2 are compared at different
points of space at ∆t = 0.00005, N = 20 and η = 1

T x DQM

[3], [20]

CFD6

[3], [20]

Present

Method

Exact

Solution

0.5 0.25 0.33412 0.334094 0.334094 0.334094

0.75 0.27838 0.278353 0.278353 0.278353

1.0 0.25 0.45576 0.455739 0.455739 0.455739

0.75 0.39544 0.395411 0.395411 0.395411

In this paper, the Fisher equation is solved both logically and numerically using
the proposed scheme BDF2. Comparison between numerical results and the exact
solution with different numbers of partitions on the X-axis is presented in Tables
1 and 2 for different values of α = 1 and 6 for Example-1, and in Table 5 for α = 1
for Example-2. Our proposed scheme signifies consistency as the numerical results
get closer to the exact solution when the number of partitions is increased. Tables
3 and 4 represent absolute errors for two values of α = 1 and 6 for Example-1,
while Table 6 also represents absolute errors for α = 1 for Example-2. The table
of absolute errors also indicates that as the number of partitions increases, the
numerical results get closer to the exact solution. Figures 1 to 8 and 11 to 14
represent numerical results at different nodes for Examples 1 and 2. Additionally,
Figures 9, 10 and 15 illustrate graphs of absolute errors at different nodes for both
Example-1 and Example-2. In Tables 5 and 9, we conducted comparisons with
existing numerical methods as detailed in references [3], [20]. The present method
was compared at different time levels (T = 0.5 and 1) for α = 6 for both Example-1
and Example-2. Similarly, in Table 6, we conducted a comparison with existing
numerical methods as detailed in reference [6], comparing at the time level T = 0.25
and for α = 6 for Example-1. It is clear that our present method provides more
accuracy result compared to the existing methods in references [3], [20] and [6].

6. Conclusions
An attempt has been made to solve Fisher’s equation using a second-order

backward differentiation formula. The numerical method compares the Method
of Lines and the second-order backward differentiation formula. The Method of
Lines decomposes the Fisher’s equation into a system of nonlinear ODEs, which is
subsequently solved by BDF2. The Taylor series based linearization technique is
used to handle the non-linearity. Several test examples are solved by the proposed
numerical method for various values of α. The computational results are quite
precise and exhibit good consistency with the exact solution. The results are also
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compared with a few existing methods and they are found to be more precise and
accurate. The linearization technique used in the paper reduces both the cost
and computation time, making the current numerical strategy more effective than
previous schemes described in the literature.

7. Abbreviations
ODE - Ordinary Differential Equation
BDF2 - Backward Differentiation Formula of Order Two
RBF - Radial Basis Functions
DQM - Differential Quadrature Method
PDE - Partial Differential Equation
MOL - Method of Lines
SIS - Semi-Implicit Scheme
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