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1. Introduction
In [8], binary topology concept was formulated by S. Nithyanantha Jothi and

P. Thangavelu. In [2], S. Kasahara imposed the operation γ of a topology τ con-
cept. H. Ogata [10] developed a new concept of γ-open set . G. S. S. Krishnan
and K. Balachandran [3] proposed the γ-preopen sets. G. S. S. Krishnan and K.
Balachandran [4] investigated the new γ-open sets. In [5], K. Muthulakshmi and
M. Gilbert Rani introduced Binary γ-open sets in Binary topological space and
definition of Binary γ-pre-open set is introduced in [6].
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In this paper, we write some notations: BTS, bγO, bγC, bγ-p-open set, bγ-p-
closed set, BγO(N,Q), bPO, bγ-p-g-closed set, bγR, bRO, O-γ, (binary topological
space, binary gamma open set, binary gamma closed set, binary gamma pre open
set, binary gamma pre closed set, binary pre open set, binary gamma pre general-
ized closed set, binary γ-regular, binary regular operation, operation γ).

2. Preliminaries

Definition 2.1. [6] Let (X, Y,M) be a binary topological space. An operation γ
on M is a mapping γ : M → P(X) × P(Y ) such that (U, V ) ⊆ ((U, V )) for every
(U, V ) ∈ M where γ((U, V )) denotes the value of γ at (U, V ) and P(X) and P(Y )
are power sets of X and Y respectively.

Definition 2.2. [6] Let a nonempty set (A,B) ⊆ (X, Y ). A point (x, y) ∈ (A,B)
is said to be binary γ-interior of (A,B) iff there exists an binary neighborhood
(M,N) of (x, y) such that γ((M,N)) ⊆ (A,B). The set of all such binary points
is denoted by bγ-int(A,B).

(ie) bγ-int(A,B) = {(x, y) ∈ (A,B)/(x, y) ∈ (M,N) ∈ M and γ((M,N)) ⊆
(A,B)} ⊆ (A,B).

Definition 2.3. [6] Let (A,B) be a subset of (X, Y ). Then (A,B) is binary γ-open
in (X, Y,M) if and only if (A,B) = bγ-int(A,B).

Result 2.4. [[7], Result 2.19] If a BTS (H,R,M) is binary γ-regular, then bγ = M
and implies bγ-int((T, L)) = b-int((T, L)).

Proposition 2.5. [[7], Proposition 2.21] Let (H,R,M) be a BTS with an OP -γ
on M and (T, L) be a subset of (H,R), Then

1. bγ-cl(bγ-cl(T, L)) = bγ-cl((T, L))

2. bγ-int(bγ-int(T, L)) = bγ-int((T, L))

3. bγ-cl((T, L)) = (H,R)− bγ-int((H,R)− (T, L))

4. bγ-int((T, L)) = (H,R)− bγ-cl((H,R)− (T, L))

Proposition 2.6. [[7], Proposition 2.22] Let (H,R,M) be a BTS and γ be a binary
regular operation on M and let (T, L) ⊆ (H,R). Then

1. bγ-cl((T, L)) ∩ (U, V ) ⊆ bγ-cl((T, L) ∩ (U, V )) for every bγO(U, V ).

2. bγ-int((T, L) ∪ (G,H)) ⊆ bγ-int((T, L)) ∪ (G,H) for every bγC(G,H).
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3. Binary gamma pre open set (bγ-p-open set)

Definition 3.1. Let (N,Q,M) be a BTS with an O-γ on M. Then a subset
(E, S) of (N,Q) is said to be a bγ-p-open set if (E, S) ⊆ (bγ-int(bγ-cl(E, S)). The
family of all bγ-p-open set is denoted by BγPO(N,Q).

The complement of bγ-p-open set is said to be bγ-p-closed set.

This definition is given in [7]. Using this definition, we discuss some results
with an example.

Example 3.2. N = {k, t}, Q = {1, 2, 3} Binary topology M = {(ϕ, ϕ), (ϕ, {1}),
({k}, {1}), ({k}, {1, 2}), ({t}, ϕ), ({t}, {1}), ({t}, {3}), ({t}, {1, 3}), (N, {1}),
(N, {1, 2}), (N, {1, 3}), (N,Q)}

Define an O-γ on M such that for every (E, S) ∈ M,

γ((E, S)) =

{
(E, S) if (E, S) = ({t}, {1})

(E, S) ∪ ({t}, {3}) if (E, S) ̸= ({t}, {1})
BγO(N,Q) = {(ϕ, ϕ), (N,Q), ({t}, {1}), ({t}, {3}), ({t}, {1, 3}), (N, {1, 3})}

BγPO(N,Q) = {(N,Q), (ϕ, ϕ), ({t}, ϕ), ({t}, {1}), ({t}, {2}), ({t}, {3}), ({k, t},
{1}), ({k, t}, {2}), ({k, t}, {3}), ({t}, {1, 2}), ({t}, {1, 3}), ({t}, {2, 3}), (N, {1, 3}),
(N, ϕ), (N, {2, 3}), (N, {1, 2}), ({k}, Q), ({t}, Q), (ϕ,Q), (ϕ, {1, 3})}.
Remark 3.3. Let (N,Q,M) be a BTS with an O-γ on M. Then every bγO is
bγPO.
Proof. By definition of 3.1, we can proved the result.

Remark 3.4. The converse of the above result need not be true.

Example 3.5. In Example 3.2, ({t}, {2}) is bγPO. But it is not a bγO.

Theorem 3.6. The concept of bPO and bγPO are independent.

It is showing by the following example.

Example 3.7. In Example 3.2, ({k}, {1}) is bPO. But it is not a bγPO. ({t}, {2})
bγPO. But it is not a bPO. Hence bγPO and bPO are independent.

Definition 3.8. Let (E, S) be a subset of a BTS (N,Q,M) with an O-γ on M.
Then the intersection of all bγ-p-closed sets containing (E, S) is binary gamma pre
closure of (E, S) (briefly bγ-pcl((E, S))).

Definition 3.9. Let (N,Q,M) be a BTS with an O-γ on M. A subset (Y, L)
of (N,Q) is a binary γ-pre-neighbourhood of a binary point ({x}, {y}) ∈ (N,Q) if
there exists a bγ-p-open set (G,H) such that ({x}, {y}) ∈ (G,H) ⊆ (Y, L).

Theorem 3.10. Let (N,Q,M) be a BTS with an O-γ on M. Then the following
results hold for the two bγ-pcl of subsets (E, S), (C,D):
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1. If (E, S) ⊆ (C,D), then bγ-pcl(E, S) ⊆ bγ-pcl(C,D)

2. (E, S) = bγ-pcl(E, S) if and only if (E, S) is bγ-p-closed set in (N,Q,M).

3. ({x}, {y}) ∈ bγ-pcl(E, S) if and only if (E, S) ∩ (G,H) ̸= (ϕ, ϕ), for every
bγ-p-open set (G,H) of (N,Q) containing ({x}, {y}).

Proof.

1. Given (E, S) ⊆ (C,D). Clearly bγ-pcl(C,D) is the bγ-p-closed set containing
(E, S). But bγ-pcl(E, S) is the smallest bγ-p-closed set containing (E, S).
Hence bγ-pcl(E, S) ⊆ bγ-pcl(C,D).

2. Suppose (E, S) is bγ-p-closed set. Then the smallest bγ-p-closed set containing
(E, S) is (E, S) itself. Therefore (E, S) = bγ-pcl(E, S).

Conversely, assume that (E, S) = bγ-pcl(E, S). We know that bγ-pcl(E, S) is
bγ-p-closed set. Therefore (E, S) is bγ-p-closed set.

3. Suppose ({x}, {y}) ∈ bγ-pcl(E, S). Let (G,H) be a bγ-p-open set containing
({x}, {y}). Since ({x}, {y}) ∈ bγ-pcl(E, S), binary γ-pre-neighbourhood of a
binary point ({x}, {y}) ∩ (E, S) ̸= (ϕ, ϕ). (E, S) ∩ (G,H) ̸= (ϕ, ϕ).

Conversely, suppose (E, S)∩(G,H) ̸= (ϕ, ϕ) for every bγ-p-open set (G,H) of
(N,Q) containing ({x}, {y}). Since binary γ-pre-neighbourhood of a binary
point ({x}, {y}) containing ({x}, {y}), we have binary γ-pre-neighbourhood
of a binary point ({x}, {y}) ∩ (E, S) ̸= (ϕ, ϕ). Hence ({x}, {y}) ∈ bγ-
pcl(E, S).

Theorem 3.11. Let (N,Q,M) be a BTS with an O-γ on M. Then the following
properties hold for a family {(Aα, Bα)/α△}

1. ∪α∈△(bγ-pcl((Aα, Bα))) ⊆ bγ-pcl(∪α∈△((Aα, Bα))).

2. ∩α∈△(bγ-pcl(Aα, Bα)) ⊇ bγ-pcl(∩α∈△((Aα, Bα)))

Proof. 1) We know that (Aα, Bα) ⊆ ∪α∈△(Aα, Bα) for every α ∈ △. By Theorem
3.10, (1), bγ-pcl((Aα, Bα)) ⊆ bγ-pcl(∪α∈△(Aα, Bα)) for every α ∈ △, it follows that
∪α∈△(bα-pcl((Aα, Bα))) ⊆ bγ-pcl(∪α∈△(Aα, Bα)).

Theorem 3.12. The arbitrary union of bγ-p-open sets in the BTS (N,Q,M) with
an O-γ on M is bγ-p-open set.
Proof. Let {(Ak, Bk)/k ∈ △} be the family of is bγ-p-open sets. Then the every
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k(Ak, Bk) ⊆ bγ-int(bγ-cl((Ak, Bk))). ⇒ ∪k∈△(Ak, Bk) ⊆ (bγ-int(bγ-cl(Ak, Bk))) ⊆
(bγ-int(∪k∈△(bγ-cl((Ak, Bk)) ⊆ (bγ-int(bγ-cl(∪k∈△(Ak, Bk))).

∪k∈△(Ak, Bk) is a bγ-p-open set.

Result 3.13. The intersection of two bγ-p-open sets need not be bγ-p-open set.

Example 3.14. Let N = {i, j, k}, Q = {1, 2, 3} and Binary topologyM = {(ϕ, ϕ),
(N,Q), ({i}, {1}), ({k}, {3}), ({i, k}, {1, 3}), ({i, j}, {1, 2})}.

Define an O-γ on M such that for every (E, S) ⊆ M,

γ((E, S)) =

{
(E, S) if (E, S) = ({i}, {1})

(E, S) ∪ ({c}, {3}) if (E, S) ̸= ({i}, {1})
BγO(N,Q) = {(ϕ, ϕ), (N,Q), ({i}, {1}), ({k}, {3}), ({i, k}, {1, 3})}.
Here ({i, j}, {1, 3}) and ({j, k}, {1, 2}) are bγ-p-open sets.
Now ({i, j}, {1, 3}) ∩ ({j, k}, {1, 2}) = ({j}, {1})
Here ({j}, {1}) is not bγ-p-open set.

Remark 3.15. If (N,Q,M) is bγR, then the concept of bγ-p-open set and bPO
are coincide.
Proof. Using the result 2.19 [7], we get the proof.

Theorem 3.16. Let (N,Q,M) be a BTS, γ be a bRO on M and (E, S) ⊆ (N,Q).
If (E, S) is bγ-p-open set and (Y, L) is bγO, then (E, S) ∩ (Y, L) is also bγ-p-open
set.
Proof. Using proposition 2.21 [7], we get the proof.

Definition 3.17. Let (E, S) be a subset of a BTS (N,Q,M) with an O-γ on M.
Then union of all bγ-p-open sets contained in (E, S) is bγ-pre interior of (E, S)
(briefly bγ-pint((E, S))).

Proposition 3.18. Let (E, S) be a subset of a BTS (N,Q,M) with an O-γ on
M. Then,

1. bγ-pint((E, S)) is a bγ-p-open set which is contained in (E, S).

2. bγ-pint((E, S)) = (E, S) if and only if (E, S) is bγ-p-open set.

Proof.

1. Using the Definition 3.17 and Theorem 3.12, we get the proof.

2. Follows from the definition of bγ-p-open set.

Proposition 3.19. Let (E, S) be a subset of a BTS (N,Q,M) with a bRO-γ on
M. Then for any subset (E, S) of (N,Q),
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1. bγ-pcl((E, S)) = (E, S) ∪ (bγ-cl(bγ-int(E, S))).

2. bγ-pint((E, S)) = (E, S) ∩ (bγ-int(bγ-cl(E, S))).

Proof.

1. Given (E, S) ⊆ (N,Q). Consider bγ-int((E, S))∪(bγ-cl(bγ-int((E, S))). Then
by Proposition 2.22(b) [7], bγ-int((E, S)∪bγ-cl(bγ-int((E, S))) ⊆ bγ-int((E, S))
∪(bγ-cl(bγ-int((E, S))). bγ-cl(bγ-int((E, S) ∪ (bγ-cl(bγ-int((E, S)))) ⊆ bγ-
cl(bγ-int((E, S)) ∪ (bγ-cl(bγ-int((E, S)))) ⊆ bγ-cl(bγ-int(E, S)) ∪ (bγ-cl(bγ-
int((E, S)))) ⊆ bγ-cl(bγ-int(E, S)) ⊆ (E, S) ∪ (bγ-cl(bγ-int(E, S))). From
this, (E, S)∪(bγ-cl(bγ-int((E, S)))) is bγ-p-closed set. Hence bγ-pcl((E, S)) ⊆
(E, S) ∪ (bγ-cl(bγ-int((E, S)))). Now bγ-cl(bγ-int((E, S))) ⊆ bγ-cl(bγ-int(bγ-
pcl((E, S)))). We know that bγ-pcl((E, S)) is bγ-p-closed set. If follows
that bγ-cl(bγ-int(E, S))) ⊆ bγ-pcl((E, S)). This implies (E, S) ∪ bγ-cl(bγ-
int((E, S))) ⊆ bγ-pcl((E, S)). Hence bγ-pcl((E, S)) = (E, S) ∪ (bγ-cl(bγ-
int((E, S))).

2. Using proposition 2.22(a) [7] and follows the proof of (1), we can get the
result.

Proposition 3.20. Let (E, S) be a subset of a BTS (N,Q, athcalM) with a O-
γ on M. Then (E, S) ⊆ bγ-pcl((E, S)) and bγ-pcl((E, S)) is bγ-p-closed set in
(N,Q,M).
Proof. Let {(Ak, Bk)/k ∈ Ω} be the family of is bγ-p-closed sets in (N,Q,M)
containing (E, S). Then by the definition of bγ-pre closure, bγ-pcl((E, S)) =
∩k∈Ω(Ak, Bk). Since (E, S) ⊆ (Ak, Bk) for each k ∈ Ω, (E, S) ⊆ ∩k∈Ω(Ak, Bk).
Hence (E, S) ⊆ bγ-pcl((E, S)).

Proposition 3.21. Let (N,Q,M) be a BTS and γ be a bRO on M. Then for any
subset (E, S) of (N,Q),

1. bγ-pcl((bγ-int((E, S)))) = bγ-cl(bγ-int((E, S)))

2. bγ-pint(bγ-cl((E, S))) = bγ-int(bγ-cl((E, S)))

3. bγ-cl(bγ-pint((E, S))) = bγ-cl(bγ-int(bγ-cl((E, S))))

4. bγ-int((bγ-pcl((E, S)))) = bγ-int(bγ-cl(bγ-int((E, S)))).
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Proof.

1. bγ-pcl(bγ-int((E, S))) = bγ-int(E, S)) ∪ bγ-cl(bγ-int(bγ-int((E, S)))),
(by Proposition 3.19(1)) = bγ-cl(bγ-int((E, S))).

2. bγ-pint((bγ-cl(E, S))) = bγ-cl(E, S) ∩ bγ-int(bγ-cl(bγ-cl(E, S))) (by Proposi-
tion 3.19(2)) = bγ-cl((E, S)) ∩ bγ-int(bγ-cl((E, S))) = bγ-int(bγ-cl((E, S))).

3. bγ-cl(bγ-pint((E, S))) = bγ-cl(bγ-int(bγ-cl((E, S)))) (by (2))

4. bγ-int((bγ-pcl((E, S)))) = bγ-int(bγ-cl(bγ-int((E, S)))). (by (1))

Proposition 3.22. Let (E, S) be a subset of a BTS (N,Q,M) with bRO-γ on M.
Then bγ-pcl(bγ-pint((E, S))) = bγ-pint(E, S) ∪ bγ-cl(bγ-int((E, S))).
Proof. Since every bγO is bγPO, it follows as bγ-int(E, S) ⊆ bγ-pint(E, S).
Clearly bγ-pint(E, S) ⊆ (E, S). So bγ-int(E, S) ⊆ (E, S). This implies bγ-int(bγ-
pint(E, S)) = bγ-int(E, S). ........ (i)

Now bγ-pcl(bγ-pint((E, S))) = bγ-pint((E, S)) ∪ (bγ-cl(bγ-int(bγ-pint((E, S))))
(by Proposition 3.19 (1)) = bγ-pint((E, S)) ∪ (bγ-cl(bγ-int(E, S))) (by (i))

4. bγ-p-g-closed set

Definition 4.1. Let (N,Q,M) be a BTS with an O-γ on M. Then a subset
(E, S) of (N,Q) is called bγ-p-g-closed set (bγPGC) if bγ-pcl(E, S) ⊆ (Y, L) when-
ever (E, S) ⊆ (Y, L) and (Y, L) is bγ-p-open set.

Example 4.2. Let N = {r, w}, Q = {1, 2, 3} and M = {(ϕ, ϕ), (ϕ, {1}),
({r}, {1}), ({r}, {1, 2}), ({w}, ϕ), ({w}, {1}), ({w}, {3}), ({w}, {1, 3}), (N, {1}),
(N, {1, 2}), (N, {1, 3}), (N,Q)}.

Define an O-γ on M such that for every (E, S) ∈ M,

γ((E, S)) =

{
(E, S) if (E, S) = ({r}, {1})

(E, S) ∪ ({w}, {3}) if (E, S) ̸= ({r}, {1})
bγO(N,Q) = {(N,Q), (ϕ, ϕ), ({r}, {1}), ({w}, {3}), ({r, w}, {1, 3})}

bγPO(N,Q) = {({r}, {1}), ({r}, {3}), ({w}, {1}), ({w}, {3}), ({w}, {1, 3}), ({r},
{2, 3}), ({w}, {1, 2}), ({w}, {1, 3}), ({w}, ϕ), ({w}, ϕ), ({r}, {1, 2, 3}), ({w}, {1, 2, 3}),
({r, w}, {1}), ({r, w}, {2}), ({r, w}, {3}), ({r, w}, {1, 2}), ({r, w}, {1, 3}), ({r, w},
{2, 3}), ({r, w}, {1, 2, 3})}.

bγ-p-closed sets are ({w}, {2, 3}), ({w}, {1, 2}), ({r}, {2, 3}), ({r}, {1, 2}), ({w},
{1}), ({w}, {2}), ({r}, ϕ), ({r}, {2}), ({r}, {1, 2, 3}), ({w}, {1, 2, 3}), ({w}, ϕ),
({r}, ϕ), (ϕ, {2, 3}), (ϕ, {1, 3}), (ϕ, {1, 2}), (ϕ, {3}), (ϕ, {2}), (ϕ, {1}), (ϕ, ϕ).

Here all the bγ-pre closed sets are bγ-p-g-closed sets.

Theorem 4.3. Let (E, S) be a bγ-p-closed subset of a BTS (N,Q,M) with a O-γ
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on M. Then (E, S) is bγ-p-g-closed set.
Proof. Let (E, S) be an bγ-p-closed set in (N,Q,M). And let (E, S) ⊆ (G,H)
where (G,H) is bγ-p-open set in (N,Q,M). Since (E, S) is bγ-p-closed set, we have
bγ-pcl((E, S)) = (E, S). Hence bγ-pcl((E, S)) ⊆ (G,H). Hence (E, S) is bγ-p-g-
closed set.

Remark 4.4. The converse of the above theorem is not true.

Example 4.5. Let N = {k, r,m, n}, Q = {1, 2, 3, 4} and M = {(ϕ, ϕ), ({k}, {1}),
({r}, {2}), ({m}, {3}), ({k, r}, {1, 2}), ({k,m}, {1, 3}), ({r,m}, {2, 3}), ({k, r,m},
{1, 2, 3}), ({k, r, n}, {1, 2, 4}), (N,Q)}. Define an O-γ on M such that for every
(E, S) ∈ M,

γ((E, S)) =

{
b-int(b-cl(E, S) if (E, S) = ({k}, {1})

b-cl(E, S) if (E, S) ̸= ({k}, {1})
bγPO(N,Q) = {({k}, {1}), ({m}, {3}), ({k,m}, {1, 3}), ({k, r}, {1, 2}), ({k, n},

{1, 4}), ({k, r,m}, {1, 2, 3}), ({k, r, n}, {1, 2, 4}), ({k,m, n}, {1, 3, 4}), (ϕ, ϕ), (N,Q)}
bγ-p-closed sets are ({r,m, n}, {2, 3, 4}), ({r, n}, {2, 4}), ({m,n}, {3, 4}), ({r,m},

{2, 3}), ({n}, {4}), ({m}, {3}), ({r}, {2}), (N,Q), (ϕ, ϕ).

Here ({r}, {3}) is bγPGC but it is not bγ-p-closed set.

Theorem 4.6. The union of any two bγ-p-g-closed sets need not be bγ-p-g-closed
set.

Example 4.7. Let N = {u, t}, Q = {1, 2, 3} and Binary topology M = {(ϕ, ϕ),
(ϕ, {1}), ({u}, {1}), ({u}, {1, 2}), ({t}, ϕ), ({t}, {1}), ({t}, {3}), ({t}, {1, 3}), (N, {1}),
(N, {1, 2}), (N, {1, 3}), (N,Q)}. Let γ : M → P(X)× P(Y ) be defined as follows:
For every (E, S) ∈ M,

γ((E, S)) =

{
(E, S) if (E, S) = ({u}, {1})

(E, S) ∪ ({t}, {3}) if (E, S) ̸= ({u}, {1})
bγPO(N,Q) = {({u}, {1}), ({u}, {3}), ({u}, {1, 3}), ({u}, {1, 2, 3}), ({t}, {1}),

({t}, {3}), ({t}, {1, 2, 3}), ({u, t}, {1}), ({u, t}, {1, 2}), ({u, t}, {3}), ({u}, {2, 3}),
({t}, {1, 2}), ({t}, {1, 3}), ({u, t}, {1, 2}), ({u, t}, {1, 3}), ({u, t}, {2, 3}), ({u}, ϕ),
({t}, ϕ), ({u, t}, ϕ), (ϕ, {1}), (ϕ, {1, 2}), (ϕ, {1, 3}), (ϕ, ϕ), (N,Q)}.

Here ({u}, {3}) and ({t}, {1}) are bγ-p-g-closed sets, but ({u}, {3})∪({t}, {1}) =
({u, t}, {1, 3}) is not bγPGC.

Theorem 4.8. The intersection of any two bγ-p-g-closed sets need not be bγ-p-g-
closed set.

Example 4.9. In Example 4.5, ({k, n}, {1, 2}) and ({k, r}, {2, 4}) are bγ-p-g-closed
sets, but ({k, n}, {1, 2}) ∩ ({k, r}, {2, 4}) = ({k}, {2}) is not bγPGC.
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5. Conclusion
In this paper, we presented concepts of bγ-pre open sets and bγ-pre closure of a

subset in binary topological space. As a result of these findings, we are able to apply
them to other areas of general topology, including fuzzy topology, intuitionistic
topology, for example.
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