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Abstract: In this manuscript, Existence of conformal n-Einstein solitons on LP-
Kenmotsu manifold is discussed. We have studied conformal n-Einstein solitons on
3-dimensional LP-Kenmotsu manifold where the Ricci tensors are Coddazi type and
cyclic parallel under certain restriction of the Ricci tensor. We have also discussed
second order parallel symmetric tensors admitting conformal 7-Einstein solitons
on 3-dimensional LP-Kenmotsu manifolds. We also use torse-forming vector fields
in addition to conformal n-Einstein solitons on 3-dimensional LP-Kenmotsu man-
ifolds. Finally, in 3-dimensional LP-Kenmotsu manifold, we have a non-trivial
example.
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1. Introduction
The concept of Lorentzian para-Sasakian manifold (LP-Sasakian manifold) are
introduced by K. Motsumoto [10]. Mihai and Rosca [12] defined the equvalent
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concept independently and they found several important results on this manifold.
In addition to this LP-Sasakian manifolds had been studied by Matsumoto and
Mihai [11], Mihai, Shaikh and De [13]|, Venkatesha and Bagewadi [24], Venkate-
sha, Pradeep Kumar and Bagewadi [25, 26] and obtained several results of these
manifolds.

The Ricci flow is an evolution equation for metrics on a Riemannian manifold is
given as

a _ *

where S is the Ricci tensor of Riemannian metric g(t). A Ricci soliton emerges as
the limit of the solutions of the Ricci flow [7, 23]. A Pesudo-Riemannian metric g,
defined on a manifold M", is called a Ricci soliton, such that

]_ *
§£v*§ +S8 = Mg

*
where £y, denotes the Lie-derivative along the vector field V,, § is the Ricci tensor
of g and A, is a constant. The Ricci soliton considered to be decreasing, state or
growing depending on whether \; is negative, zero or positive. Several geometers
have investigated Ricci soliton [8, 21].
The concept of Einstein soliton was developed by G. Catino and L. Mazzieri [2]
in 2016, which initiate self-similar solutions to the Einstein flow, it is provided by
o} X0
— =-2(S—-—=9),
*
where S is the Ricci tensor, g is a Riemannian metric and o is the scalar curvature.
The equation of the n-Einstein soliton [1] is given as

L£:0+28+ (20 —0)g + 2 @7 = 0. (1.1)

For i, = 0, the data (g, &, \;) is called Einstein soliton.
The notion of conformal 7-Ricci soliton introduced by M. D. Siddiqui [19] is
defined as

ot 2
L£:G+ 25 + [QM— (p+ﬁ>] g+ 2mnen=0, (1.2)

where A1, 1 are constants, p is a scalar non-dynamical field (time dependent scalar
field) and n is the dimension of manifold. For u; = 0, conformal n-Ricci soliton



Characterizations of Conformal n-FEinstein solitons ... 367

becomes conformal Ricci soliton and studied by many geometers [5, 15, 16, 22].
S. Roy, S. Dey and A. Bhattacharyya [17] introduced conformal Einstein soliton,
which is given as

* 2
0.+ 28 + {2)\1—a+<p+ﬁ>]§:0. (1.3)

Furthermore, an n-dimensional Riemannian manifold M"™ is known as conformal
n-Einstein soliton [2] if

x 2
25§I+25+[2A1—0+(p+ﬁ)]§+2u1ﬁ®ﬁ20. (1.4)

Einstein solitons are considered by many authors in different contents [6, 9, 18].

In this manuscript, we study conformal n-Einstein solitons on LP-Kenmotsu
manifold. We arrange our work in the following manner. In Section 2, we give the
definition of LP-Kenmotsu manifolds. Section 3 deals with the study of conformal
n-Einstein solitons on LP-Kenmotsu 3-manifold. The properties of second order
parallel symmetric tensors are studied in Section 4. In Section 5, we have studied
the nature of conformal n-Einstein solitons on LP-Kenmotsu 3-manifold whose
vector field is torse-forming. In Section 6, we have contrived conformal n-Einstein
solitons in LP-Kenmotsu 3-manifold in terms of Codazzi type and cyclic parallel
Ricci tensor and characterized the nature of manifold. Finally, we construct some
non-trival example to prove the existence of conformal 7n-Einstein solitons on LP-
Kenmotsu manifolds in Section 7.

2. Lorentzian Para-Kenmotsu manifolds

Let M"™ be an n-dimensional Lorentzian almost paracontact metric manifold.
If it is equipped with structure (@,f .7, 3), where 5 is a unit vector field , ¢ is a
(1,1)-tensor field , 77 is a 1-form on M" and ¢ is a Lorentzian metric, satisfying

F=I+7®f fog=0, 7 =-1, @) =0, (2.1)
§(G1,$Ga2) = §(G1,G2) + 71(G1)71(G2), (2.2)
P(G1,G2) = p(Ga,G1) = 3(G1, $G2), (2.3)

for all G1,G, € XM. A Lorentzian almost paracontact manifold M" is called
Lorentzian para-Kenmotsu manifold [14] if

(V6,8)Gs = —§(5Gr, Go)€ — 71(G2) 3G, (2.4)
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%glé = —G1 —ii(G1)é, (2.5)
(Veui)Ga = —3(G1.G2) — 7(G1)i(Ga). (2.6)
In LP-Kenmotsu manifold M", the following relations holds:
R(G1, Go)E = i1(Ga)G1 — 71(G1)Gn, (2.7)
HR(G1,G2)G5) = §(Ga, G5)ii(G1) — 3(Gr, Ga)i(G), (2.8)
R(E.G1)Ga = §(G1, Go) — i1(G2)Gn, (2.9)
RE G1)E = G +7(G)E, (2.10)
5(G1,€) = 2ii(G), (2.11)
Qf = 2%, (2.12)
S5(3G1, $G) = 5(Gr. Ga) + 27i(G1)i(Ga). (2.13)

* *
for all G, Go, G3 € X M; where R is the curvature tensor, S is the Ricci tensor and
Q is the Ricci operator.
Definition 2.1. A 3-dimensional LP-Kenmotsu manifold M™ is said to be an

n-Finstein manifold if its Ricci tensor S s of the form

S(G1,Ga) = ag(G1, G2) + b71(G1)71(G2) (2.14)
for all G, Gy € XM and smooth functions a,b on the manifold M™.

3. Conformal n-Einstein Soliton on 3-dimensional LP-Kenmotsu mani-
folds

Let us consider a LP-Kenmotsu 3-manifold M"™ equipped with conformal 7-
Einstein soliton (§,&, Ay, pt1), then (1.4) can be written as

(£:9)(G1,Go) +28(G1, Ga) + [»1 ot (p + %)} 3(G1,Gn)

+ 211m(G1)7(G2) = 0,
for all Gi,Gy, € X M. We know that

(3.1)

(£60)(G1,Ga) = 3V, Ga) + §(G1, V). (3.2)
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Using equation (2.5), we get
(£69)(G1,G2) = —2[3(G1, G2) + 71(G1)71(G2)]- (3.3)
In view of (3.1) and (3.3), we get

5(01.0,) - [g - (g ; %) S 1] §(G1,G2) — (m — DAG)IG).  (34)

This shows that the manifold M" is an n-Einstein manifold.
Replacing G; by &, we find that

5(G1,6) = {% — (g + %) — M+ ul] (Gy). (3.5)

Using identity (2.11) in (3.5), we get

2
o= (p—kﬁ) + 442  — 2. (3.6)

Contracting Eq. (3.4) along G; and Gs, we get
2
023(p+—)+6)\1—4—2u1. (3.7)
n

Now combining equations (3.6) and (3.7), we have

A1:2—(g+1). (3.8)

n

Thus the above discussion leads to the following theorem:

Theorem 3.1. If a LP-Kenmotsu 3-manifolds M™ bearing a conformal n-Einstein
soliton (g,é,)\l,m) then the manifold becomes an n-Finstein manifold and scalar
curvature o = 3 (p+ %) + 6A1 — 4 — 2py. Furthermore, the soliton is shrinking,
steady or expanding according as; (’% + %) <2, (’5? + %) =2 or (g + %) > 2.

Now, we suppose a LP-Kenmotsu 3-manifold M"™ that admits a conformal 7-
Einstein soliton (g, Vi, A1, 1) such that V, is parallel to 5 ie. V, = bg, where
b is a function on M", then the equation (1.4) yields

bG(V,E, Ga) + (G10)71(Ga) + bG(G1, Vg, €) + (Gab)if(Ga) + 28(Gn, )

* {”1 —ot (p + %)1 §(G1.Ga) + 241il(G1)il(G2) = 0. 39
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Using equation (2.5) in the above equation (3.9) to get

[2)\1 —2b—o+ (p + %)] 3(G1,G2) + (G1b)7(G2) (310)

+ (Ga2b)71(G1) + 2§(g1, Ga) + 2(pu1 — b)7(G1)1(G2) = 0.

Now, taking G, = ¢ into the identity (3.10) we have
9 . o
20 (e 2) = 2 G0 + @60 - (G) 42566 =0 G.)

Again taking G; = £ in (3.11) and using equation (2.11) we have

~ o p 1
b=——M\— =4+ — 2. 3.12
§ 5 1 (2 + n) + p1 + ( )
Using (3.12) in equation (3.11), we have
o p 1 .
db=|——M\—|=+— 21 n. 1
[2 ! <2+n)+u1+ ]n (3.13)

Applying exterior derivative in equation (3.13), we obtain

o p 1 _
S W A H 92 = 0. .14
{2 A (2+n)+u1—i— }dn 0 (3.14)

Since dn # 0, we have

2

In view of (3.15) and (3.13), gives db = 0 i.e. the function b is constant, then (3.10)
reduces to

* 1
S(Gr.Go) = {g M +b— (g + 5)} (G1,G»)

+ (b — p1)71(G1)7(G2)-

Thus, we leads to the following theorem:

(3.16)

Theorem 3.2. If M" be a LP-Kenmotsu manifolds admitting a conformal n-
FEinstein soliton (G, Vi, A1, p1) such that V. is pointwise collinear with é, then V,
18 constant multiple ofg and the M™ becomes an n-Einstein manifold of constant
scalar curvature o = 2\ + (p + %) — 2y — 4.
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4. Second order parallel symmetric tensors and conformal n-Einstein

solitons on 3-dimensional LP-Kenmotsu manifolds

Definition 4.1. [3] A symmetric tensor h of second order is said to be a parallel
tensor if Vh=0, where V is a covariant differentiation operator with respect to the

metric tensor g.

Let h is a symmetric tensor field of type (0,2) which we suppose to be parallel
with respect to V, i.e. Vh=0. Taking the Ricci commutation identity [20], we have

V2h(g1, G2; Gs, 94) - V2h(gl7 Ga; G, g3) =0,

for all Gy, Gs,Gs, Gy € X(M). From the above equation we get

h(ﬁ(gh G2)Gs,Gy) + h(g:s,ﬁ(gl, G2)G4) = 0.

Putting G; = G = G4 = € in (4.2) and using (2.10), we have
h(Ga, &) + 71(G2) (€, €) = 0.
Differentiating (4.3) covariantly along G;, we have
Vi, (1(G2,€)) + Vg, (71(G2)h(E, €)) = 0.
Expanding the equation (4.4) and using (2.1), (2.2) and (2.5), we get
h(G1,G2) = —§(G1, G2) (€, ),

for all G1,G, € X M.
Let us consider,

h= £:5 + 28 + 2 @ 7
From (3.3) and (3.4), we get

h({,é) =2\ + (p+ %) — 0.

Using (4.6) and (4.7), equation (4.5) reduces to

(££9)(G1,Ga) + 2@(91, Gs) + [2A1 + <p + %) — a] 3(G1,Gs)

+ 21117(G1)7(G2) = 0.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.8)
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which is the Conformal n-Einstein soliton. Hence we arrive the following theorem:

Theorem 4.2. If in a 3-dimensional LP-Kenmotsu manifolds admitting a sym-

metric tensor field h = L9+ 28 + 211 ®1) is parallel endowed with the Levi-Civita
connection associated to g, then (g,é, A1) yields a conformal n-Einstein soliton.

5. Conformal 7-Einstein soliton on 3-dimensional LP-Kenmotsu mani-
folds endowed with Torse-Forming vector field

Definition 5.1. A vector field V, on 3-dimensional LP-Kenmotsu manifolds is a
torse-forming vector fields [27] if

Vy, = £.G1 +7(G1)V.. (5.1)

YV G1 € XM, where f. is a smooth function and 7y is a 1-form.

Now let us consider (g, é , A1, i11) be a conformal n-Einstein soliton on a LP-Kenmotsu
3-manifolds and suppose that the Reeb vector field é of the manifold is a torse-
forming vector field. Then & being a torse-forming vector field, by definition 5.1
we have

Vo = f.G1 +7(GE. (5:2)
Taking inner product with & in (2.5), we find

Taking inner product with € in (5.2), we can write

g(vg1gv g) = f*ﬁ(gl) - 7(9,1) (54>

Combining equations (5.3) and (5.4) to get v = f.7.
Putting the value of 7 in (5.2), we have

Vg, = f(G1 +i(Gr)E (5.5)
Now, using (3.2) and (5.5), we have
(£69)(G1,G2) = 2£.[g(G1, Ga) + 71(G1)71(G2)]- (5.6)

In view of (5.6), (1.2) reduces to

5(G1,Gs) = B - (g + %) — M- f*} 3(G1.Go) — (1 + £)i(G1)i(G).  (5.7)
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Thus the manifold is an 7-Einstein manifold.
On taking Go = ¢ in (5.7), using (2.1) and (2.11), we find

2
o = 2)\1 + (p + E) — 2,[14 + 4. (58)

Contracting (5.7), we obtain

1
0:6)\1—|—6<g+ﬁ> oy + 4. (5.9)
From (5.8) and (5.9), we get
M=1—f— (P! (5.10)
1 — * 9 n . .

Thus we have the following theorem:

Theorem 5.2. Let (g, £\, p1) be a conformal n-Einstein soliton on LP-Kenmotsu
3-manifolds M™ with torse-forming vector field &. Then the manifold is an n-
Einstein manifold and the soliton is shrinking, steady or expanding according as

Foo1= (=4 =1 (= Dorfi<1- (51,
6. Conformal n-Einstein soliton on 3-dimensional LP-Kenmotsu mani-
folds with cyclic parallel Ricci tensor

Definition 6.1. [4] A LP-Kenmotsu manifolds is said to be Codazzi type Ricci

tensor if its Ricci tensor S is non-zero and satisfying the following relation

(V6 S)(G2.Gs) = (V6,8)(G1.Gs), ¥V Gr.Go,Gs € XM, 6.1)

Taking covariant derivative of (3.4) and using (2.6), we yields

(V4,:8)(G2,Gs) = (1 = D[3(G1, G2)ii(Gs) 6.2)
+ 301, G3))ii(G2) + 2i(G)ii(Ge)ii(Gs)

Also, we have

(vgz )(g1,g3) (11— 1)[9(G2, G1)7n(Gs) (6.3)
+ §(G2, G3)11(G1) + 271(G1)71(G=2)71(Gs)].
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If the Ricci tensor S of the Codazzi type, then from (6.1), (6.2) and (6.3), we have
(111 = 1)[G(G1, G3)71(Ga) — §(G2, G3)71(G1)] = 0. (6.4)

It follows that py = 1 [since §(G1,G3)N(G2) — §(Ga, G3)1(G1) # 0], then from (3.4),
we find

é(gla Ga) = [% - (g ) — A+ 1} (G1,G2). (6.5)
On contracting (6.5), we get
026)\1+3(p+%) — 6. (6.6)

Hence, in view of the identity (6.5) and (6.6), we have the following theorem:

Theorem 6.2. In an 3-dimensional LP-Kenmotsu manifolds bearing a conformal
n-Finstein soliton (g,é, A1, 11), if the Ricci tensor of the manifold is of Codazzi
type, then M™ becomes an Finstein manifold of constant scalar curvature o =
61 + 3 (p + %) — 6, provided p; = 1.

Definition 6.3. [4] A LP-Kenmotsu 3-manifold is said to have cyclic parallel Ricci

*
tensor if its Ricci tensor S is non-zero and satisfies the following condition

(V6,8) (G, Gs) + (VeuS) (Gr, Gs) + (V,8)(G1,Ga) = 0, ¥G1,Ga, Gy € XM. (6.7)

Let an 3-dimensional LP-Kenmotsu manifold admitting a conformal n-Einstein
soliton (g, &, A1, 1) and the manifold has cyclic parallel Ricci tensor, so (6.5) holds.
Similarly from (6.2) and (6.3), we have

(Vgs )(gl,gz) (Hl - 1)[?](93,91) (g) (6.8)
+ §(G3,G2)1(G1) + 271(G1)71(G2)7(F3)]-

Using equations (6.2), (6.3) and (6.8) in (6.7), we conclude

(11 — 1)[g(G1, G2)71(Gs) + G(G2, G3)71(G1)
+ 9(Gs, G1)71(G2) + 311(G1)71(G2)71(G3)] = 0.

Replacing G5 by € in Eq. (6.9), we obtain

(11 — 1)g(pG1, $G2) = (6.10)
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Hence p; = 1. (since §(¢G1, pGs) # 0).
Putting 1 = 1 in (3.4), we get

S(G1,Gs) = {% - (g + %) o+ 1} 3(G1, Go). (6.11)

Theorem 6.4. In an 3-dimensional LP-Kenmotsu manifolds bearing a conformal
n-Einstein soliton (§,&, A1, 1), if the manifold has a cyclic parallel Ricci tensor,
then M™ becomes an Einstein manifold of constant scalar curvature o = 6\ +

3(p+2)—6,if p =1.
7. Example

Let us take a 3-dimensional manifold M = {(r,s,t) € %3 : (r,s,t) # 0}, where
(r, s,t) are the cartesian coordinates in R3. Let (9, 99, ¥3) be the orthogonal system
of vector fields at each point of M, defined as

9 o 0 9
_ 9t 7 —_ 9t [ - -
h=1vg =9 (6r+85>’ %= 5

and
[01,02] = 0, [J1,73] = =01, [V, 03] = —1s.

Let g be the metric defined as follows

g(01,01) = §(02,92) = 1, g(V3,03) = —1,
§(V1,02) = §(01,95 = §(Va,93) = 0.

Let ¢ be the (1, 1)-tensor field defined by
95191:_1917 ¢ﬁ2:_§27 @0320
Making use of the linearity of ¢ and g we have
ﬁ<193) =-1,
¢*(G1) = —Gi +1(G1)Vs,
ﬁ(gl) = g(g17£)7
9(2G1,¢G2) = §(G1,G2) — 11(G1)71(G2),

for any Gi,Gy € XM. Thus for ¥3=¢ the structure (gé,é,ﬁ,f]) leads to a contact
metric structure in R3. We recall the Koszul’s formula

29(Vg,G2,G3) = G1(G(G2,Gs)) + G2(9(Gs,G1)) — G3(9(G1,G2))
—§(G1, (G2, Gs]) — 3(G2, [G1, Gs]) + G(Gs, [G1, Ga)).



376 South FEast Asian J. of Mathematics and Mathematical Sciences

Making use Koszul’s formula we follows:

Vg, th = =13,  Vy,ty =0, Vg, U3 = =,
V'ﬂgﬁl - 07 Vﬂ2192 - _19?” vﬂgﬁi’) - _1927 )
Vﬂg’&l - 0, V193192 - 0, Vﬁg’&g - 0

Thus from the above relations it follows that the manifold M" is a LP-Kenmotsu
3-manifold.
The non-vanishing component of Riemannian curvature tensor as follows:

R(V1,92)05 = 0, R(V1,93)05 = =V, R(193, V2)0y = U3,
R(ﬁg, 191)191 = 193, R(192, 191>791 = 7927 ( ) - _7927
R (2, 93)0 = 0, R(V1,92)02 = V1, (1937191)192 =0,

From the above expressions of the curvature tensor, we evaluate the value of the
Ricci tensor as follows:

*

S<,l917 191) = S<7927 192) = 278(1937’193) ==

From equation (3.4), we have

S(93,95) = [g— (%H%) —>\1+1} ~ (i —1).

which implies that
p

022)\1+(§

Hence \; and p; satisfying equation (3.6).
Here, the scalar curvature of the manifold is calculated

1
+—) —2u1+4.
n

3
:Z (ei,e1) = S(91,91) + S(Ds, 0) — S(I3, 93) = 2
=1

Now, from (3.4), we get

3

ig(ei,ei): E— (2 )—)\1+1}i glei es) = (= 1) _ii(es)iie:)

i=1 =1
after some calculation, we get

=2 p—l—%
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Now, from equation (3.8), we get u; = —2 and A\ = % — p. Thus the data
(g, £\, pp) for py = =2 and A\ = —(p— %) defines a conformal n-Einstein solitons
on LP-Kenmotsu manifold M™.
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