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Abstract: In this study, we prove a common fixed-point theorem for generalized
rational-type contraction in supermetric space. Our findings expand the contrac-
tions of metric spaces to a supermetric space through Kannan’s contraction, Reich’s
contraction, and Dass-Gupta’s rational contraction. These theorems also extend to
the supermetric context and generalize many interesting results from metric fixed-
point theory. Additionally, we provide an example to elucidate our theorems.
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1. Introduction
A fixed point of a function is a point that doesn’t move when the function is

applied to it. In many branches of mathematics and its applications, including
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numerical analysis, optimization, and the study of dynamical systems, fixed points
play a crucial role. They frequently depict equilibrium states of systems or solutions
to equations. Finding a fixed point in an iterative process, for instance, can be
comparable to finding a solution to the equation that is being iterated in the
context of numerical equation-solving techniques.

A key finding in the theory of metric spaces is the Banach Contraction Prin-
ciple [3], sometimes referred to as the contraction mapping theorem. It gives the
circumstances in which there is a unique fixed point for a mapping from a metric
space to itself. This idea is fundamental to many branches of mathematics and its
applications, such as functional analysis, numerical techniques, analysis, and opti-
mization. It offers a strong tool for proving convergence in iterative algorithms and
ensures the existence and uniqueness of solutions to certain equations and prob-
lems. The literature then extensively generalized the Banach contraction principle
(see [1-16]). It is widely used in applied and pure mathematics alike.

In 1968, Kannan [9] developed a modified version of this theory and removed
the continuity requirement. The first important variation of Banach’s remarkable
finding on the metric fixed-point theory is Kannan’s fixed-point theorem. There
are various ways to generalize Kannan’s theorem. Dass and Gupta [6] presented
the Rational Contraction, which is a generalization of the Banach Contraction
Mapping Principle. By using rational functions as the contraction condition rather
than constants, it expands the concept of contraction maps to a more generic
context. The traditional contraction mapping principle is made broader by the
Dass-Gupta Rational Contraction condition, which permits the contraction factor
to change based on the points being mapped. In certain applications, this enables
a more flexible foundation. Similar to mappings satisfying the Banach Contraction
Mapping Principle, the existence and uniqueness of fixed points for mappings satis-
fying the Dass-Gupta Rational Contraction condition can be determined by taking
advantage of the rational function’s properties as well as the underlying metric
space’s completeness. Super-metric space was introduced by Fulga and Karapinar
[11]. In this framework, we were able to derive various fixed-point theorems, and
we think this approach could help relieve the congestion and squeeze issues previ-
ously mentioned. Zamfirescu [16], obtained a very interesting fixed point theorem
on complete metric spaces by combining the results of Banach [3], Kannan [9], and
Chatterjea [4].

In super metric space, we establish some common fixed-point theorems related
to rational contraction. Our results extend the metric space contractions via Kan-
nan’s contraction, Reich’s contraction, and Dass-Gupta’s rational contraction to a
supermetric space. Furthermore, we present an example to illustrate our theorems.
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2. Preliminaries
Determining the supermetric is the first step in this section.

Definition 2.1. (see [11]) Consider U to be a non-empty set. A function d :
U × U → [0,+∞) is considered a super metric if it fulfills the subsequent axioms:

(s1). d(ξ, ζ) = 0 ⇒ ξ = ζ;

(s2). d(ξ, ζ) = d(ζ, ξ),∀ξ ∈ ζU ;

(s3). There exists s ≥ 1 such that for every ζ ∈ U , there exist distinct sequences
{ξr}, {ζr} ⊂ U , with d(ξr, ζr) → 0 when r → ∞, such that

lim
r→∞

sup d(ζr, ζ) ≤ s lim
r→∞

sup d(ξr, ζ).

The tripled (U , d, s) is called a super metric space.

Definition 2.2. (see [11]) A sequence {ξr} on a super metric space (U , d, s)

1) converges to ξ ∈ U if limr→∞(ξr, ξ) = 0;

2) is a Cauchy sequence in U if limr→∞ sup{d(ξr, ξj) : j > r} = 0.

Proposition 2.3. (see [11]) The limit of a convergent sequence is unique on a
super metric space.

Definition 2.4. (see [11]) A super-metric space (U , d, s) is called complete if each
Cauchy sequence is convergent in U .
Theorem 2.5. (see [11]) Let (U , d, s) be a complete super-metric space and let
J : U → U be a mapping. Suppose that 0 < c < 1 such that

d(J ξ,J ζ) ≤ cd(ξ, ζ)

for all (ξ, ζ) ∈ U . Then, J has a unique fixed point in U .
Theorem 2.6. (see [11]) Let (U , d, s) be a complete super metric space and J :
U → U be a mapping, such that there exists c ∈ [0, 1) and that

d(J ξ,J ζ) ≤ cmax

{
d(ξ, ζ)

d(ξ,J ξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
Then, J has a unique fixed point.
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2. Main results
Our primary finding is as follows.

Theorem 3.1. Let (U , d, s) be a complete super-metric space and let L, J be
self-mappings of U . Assume that there exists a real number c ∈ [0, 1) such that

d(Lξ,J ζ) ≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ξ)

1 + d(ξ, ζ)

}
(3.1)

for all ξ, ζ ∈ U . Then, L and J have a unique common fixed point in U .
Proof. Let ξ0 ∈ U and we define the class of iterative sequences {ξr} such that
ξr+1 = Lξr, ξr+2 = J ξr+1 for all r ∈ N. Without loss of generality, we assume that
ξr+2 ̸= J ξr+1 for each nonnegative integer r. Indeed, if there exists a nonnegative
integer r0 such that ξr0+2 = J ξr0+1, then our proof of the theorem proceeds as
follows. Thus, from (3.1), we have

0 < d(ξr+1, ξr+2) = d(Lξr,J ξr+1)

≤ cmax

{
d(ξr, ξr+1), d(ξr,Lξr), d(ξr+1,J ξr+1),

d(ξr,Lξr)d(ξr+1,J ξr+1)

1 + d(ξr, ξr+1)

}
≤ cmax

{
d(ξr, ξr+1), d(ξr, ξr+1), d(ξr+1, ξr+2),

d(ξr, ξr+1)d(ξr+1, ξr+2)

1 + d(ξr, ξr+1)

}
≤ cmax {d(ξr, ξr+1), d(ξr+1, ξr+2)} .

If max{d(ξr, ξr+1), d(ξr+1, ξr+2)} = d(ξr+1, ξr+2), then we get a contradiction

d(ξr+1, ξr+2) ≤ cd(ξr+1, ξr+2) < d(ξr+1, ξr+2).

It follows that max{d(ξr, ξr+1), d(ξr+1, ξr+2)} = d(ξr, ξr+1). Thus, we have

0 < d(ξr+1, ξr+2) ≤ cd(ξr, ξr+1)

≤ c2d(ξr−1, ξr)

≤ ... ≤ cr+1d(ξ0, ξ1). (3.2)

On the other hand, one writes

0 < d(ξr+1, ξr) = d(Lξr,J ξr−1)

≤ cmax

{
d(ξr, ξr−1), d(ξr,Lξr), d(ξr−1,J ξr−1),

d(ξr,Lξr)d(ξr−1,J ξr−1)

1 + d(ξr, ξr−1)

}
≤ cmax

{
d(ξr, ξr−1), d(ξr, ξr+1), d(ξr−1, ξr),

d(ξr, ξr+1)d(ξr−1, ξr)

1 + d(ξr, ξr−1)

}
≤ cmax {d(ξr, ξr−1), d(ξr, ξr+1)} .
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If max{d(ξr, ξr−1), d(ξr, ξr+1)} = d(ξr, ξr+1), then we get a contradiction

d(ξr+1, ξr) ≤ cd(ξr, ξr+1) < d(ξr+1, ξr).

It follows that max{d(ξr, ξr−1), d(ξr, ξr+1)} = d(ξr, ξr−1). Thus, we have

0 < d(ξr, ξr+1) ≤ cd(ξr, ξr−1)

≤ c2d(ξr−1, ξr−2)

≤ ... ≤ crd(ξ0, ξ1). (3.3)

By appealing to (3.2) and (3.3), we find that

0 < d(ξr, ξr+1) ≤ crd(ξ0, ξ1) (3.4)

Taking the limit r tends to infinity in inequality (3.4), we get

lim
r→∞

d(ξr, ξr+1) = 0. (3.5)

In what follows, we want to show that the sequence {ξr} is a Cauchy sequence.
Now suppose that r, j ∈ N with r > j.Then from inequality (3.5) and using (s3),
we get

lim
r→∞

sup d(ξr, ξr+2) ≤ s lim
r→∞

sup d(ξr+1, ξr+2) ≤ s lim
r→∞

sup{cr+1d(ξ0, ξ1)} (3.6)

Hence,limr→∞ sup d(ξr, ξr+2) = 0. Similarly, we have

lim
r→∞

sup d(ξr, ξr+3) ≤ s lim
r→∞

sup d(ξr+2, ξr+3) ≤ s lim
r→∞

sup{cr+2d(ξ0, ξ1)} (3.7)

Inductively, one can conclude that lim
r→∞

sup d(ξr, ξj) : r > j = 0. Thus, {ξr} is

a Cauchy sequence in a complete super-metric space (U , d, s), the sequence {ξr}
converges to ξ∗ ∈ U and then lim

r→∞
d(ξr, ξ

∗) = 0. Further, we show that ξ∗ is the

fixed point of L and J If not, ξ∗ ̸= Lξ∗ ̸= J ξ∗ and then d(ξ∗,Lξ∗) > 0 and
d(ξ∗,J ξ∗) > 0. Note that

0 < d(ξr+2,Lξ∗) = d(Lξ∗, ξr+2) = d(Lξ∗,J ξr+1)

≤ cmax

{
d(ξ∗, ξr+1), d(ξ

∗,Lξ∗), d(ξr+1,J ξr+1),
d(ξ∗,Lξ∗)d(ξr+1,J ξr+1)

1 + d(ξ∗, ξr+1)

}
= cmax

{
d(ξ∗, ξr+1), d(ξ

∗,Lξ∗), d(ξr+1, ξr+2),
d(ξ∗,Lξ∗)d(ξr+1, ξr+2)

1 + d(ξ∗, ξr+1)

}



338 South East Asian J. of Mathematics and Mathematical Sciences

Taking r → ∞ , we derive lim
r→∞

sup d(ξr+2,Lξ∗) ≤ cd(ξ∗,Lξ∗). Thus, we have,

0 < d(ξ∗,Lξ∗) ≤ lim
r→∞

sup d(ξr+2,Lξ∗) ≤ cd(ξ∗,Lξ∗) (3.8)

and one can conclude that d(ξ∗,Lξ∗) = 0, which implies that Lξ∗ = ξ∗. On the
other hand,

0 < d(ξr+2,J ξ∗) = d(Lξr+1,J ξ∗)

≤ cmax

{
d(ξr+1, ξ

∗), d(ξr+1,Lξr+1), d(ξ
∗,J ξ∗),

d(ξr+1,Lξr+1)d(ξ
∗,J ξ∗)

1 + d(ξr+1, ξ∗)

}
= cmax

{
d(ξr+1, ξ

∗), d(ξr+1, ξr+2), d(ξ
∗,J ξ∗),

d(ξr+1, ξr+2)d(ξ
∗,J ξ∗)

1 + d(ξr+1, ξ∗)

}
Taking r → ∞ , we derive lim

r→∞
sup d(ξr+2,J ξ∗) ≤ cd(ξ∗,J ξ∗). Thus, we have,

0 < d(ξ∗,J ξ∗) ≤ lim
r→∞

sup d(ξr+2,J ξ∗) ≤ cd(ξ∗,J ξ∗). (3.9)

and one can conclude that d(ξ∗,Lξ∗) = 0, which implies that J ξ∗ = ξ∗. Hence,
ξ∗ is a common fixed point of L and J . We shall now prove the uniqueness of ξ∗.
Suppose there exists another point ζ∗ ∈ U such that Lζ∗ = J ζ∗ = ζ∗. Then, by
inequality (3.1), we have

d(Lξ∗,J ζ∗) ≤ cmax

{
d(ξ∗, ζ∗), d(ξ∗,Lξ∗), d(ζ∗,J ζ∗),

d(ξ∗,Lξ∗)d(ζ∗,J ζ∗)

1 + d(ξ∗, ζ∗)

}
≤ cd(ξ∗, ζ∗) < d(ξ∗, ζ∗) (3.10)

which is a contradiction.
If we take L = J in condition (3.1), we obtain the following Corollary.

Corollary 3.2. Let (U , d, s) be a complete super-metric space and let L be a self-
mapping of U . Assume that there exists a real number c ∈ [0, 1) such that

d(Lξ,Lζ) ≤ cmax

{
k1d(ξ, ζ), d(ξ,Lξ), d(ζ,Lζ),

d(ξ,Lξ)d(ζ,Lζ)
1 + d(ξ, ζ)

}
(3.11)

for all ξ, ζ ∈ U . Then, L has a unique fixed point in U .
Corollary 3.3. Let (U , d, s) be a complete super-metric space and let L,J be a self-
mapping of U . Assume that there exist real numbers k, kj ∈ [0, 1), (j ∈ {1, 2, 3, 4})
satisfying 0 ≤ k1 + k2 + k3 + k4 < 1, k = max{k2, k3} such that any one of the
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following contractive condition is hold:
1) d(Lξ,J ζ) ≤ k1d(ξ, ζ);
2) d(Lξ,J ζ) ≤ k2d(ξ,Lξ) + k3d(ζ,J ζ);
3) d(Lξ,J ζ) ≤ kmax{d(ξ,Lξ)d(ζ,J ζ)};
4) d(Lξ,J ζ) ≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ);

5) d(Lξ,J ζ) ≤ k1d(ξ, ζ) + k4
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)
;

6) d(Lξ,J ζ) ≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ) + k4
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)
;

for all ξ, ζ ∈ U . Then, L and J has a unique fixed point in U .
Proof. Set c = max

j∈{1,2,3,4}
{kj, k}. Then

d(Lξ,J ζ) ≤ k1d(ξ, ζ)

≤ k2d(ξ,Lξ) + k3d(ζ,J ζ)

≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ)

≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ) + k4
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
Also,

d(Lξ,J ζ) ≤ k1d(ξ, ζ) + k5
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
and

d(Lξ,J ζ) ≤ kmax{d(ξ,Lξ), d(ζ,J ζ)}

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
From Theorem 3.1, L and J have a unique common fixed point in U .
Corollary 3.4. Let (U , d, s) be a complete super-metric space and let L be a self-
mapping of U . Assume that there exist real numbers k, kj ∈ [0, 1), (j ∈ {1, 2, 3, 4})
satisfying 0 ≤ k1 + k2 + k3 + k4 < 1, k = max{k2, k3} such that any one of the
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following contractive condition is hold:
1) d(Lξ,Lζ) ≤ k1d(ξ, ζ);
2) d(Lξ,Lζ) ≤ k2d(ξ,Lξ) + k3d(ζ,Lζ);
3) d(Lξ,Lζ) ≤ kmax{d(ξ,Lξ), d(ζ,Lζ)};
4) d(Lξ,Lζ) ≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,Lζ);

5) d(Lξ,Lζ) ≤ k1d(ξ, ζ) + k4
d(ξ,Lξ)d(ζ,Lζ)

1 + d(ξ, ζ)
;

6) d(Lξ,Lζ) ≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,Lζ) + k4
d(ξ,Lξ)d(ζ,Lζ)

1 + d(ξ, ζ)
;

for all ξ, ζ ∈ U . Then, L has a unique fixed point in U .
Proof. Set c = max

j∈{1,2,3,4}
{kj, k}. Then

d(Lξ,Lζ) ≤ k1d(ξ, ζ)

≤ k2d(ξ,Lξ) + k3d(ζ,Lζ)
≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,Lζ)

≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,Lζ) + k4
d(ξ,Lξ)d(ζ,Lζ)

1 + d(ξ, ζ)

≤ cmax

{
k1d(ξ, ζ), d(ξ,Lξ), d(ζ,Lζ),

d(ξ,Lξ)d(ζ,Lζ)
1 + d(ξ, ζ)

}
.

Also,

d(Lξ,Lζ) ≤ k1d(ξ, ζ) + k4
d(ξ,Lξ)d(ζ,Lζ)

1 + d(ξ, ζ)

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
and

d(Lξ,Lζ) ≤ kmax{d(ξ, ζ), d(ξ,Lξ)}

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
.

From Corollary 3.2, L has a unique common fixed point in U .
4. Example

We give an example that satisfies the conditions of Theorem 3.1.

Example 4.1. Let s = 1, and d : [0, 1]× [0, 1] → [0,+∞) be defined as follows:



Common Fixed-Points of Rational Contractions in Supermetric Spaces 341

d(ξ, ζ) = ξζ for all ξ ̸= ζ, and ξ, ζ ∈ (0, 1);
d(ξ, ζ) = 0 for all ξ = ζ, and ξ, ζ ∈ [0, 1];
d(0, ζ) = d(ζ, 0) = ζ for all ζ ∈ (0, 1];

d(1, ζ) = d(ζ, 1) = 1− ζ

2
for all ζ ∈ [0, 1).

First, we claim that d is a super-metric on [0, 1]. We will concentrate on (s3)
because (s1) and (s2) are simple to confirm. For any ζ ∈ (0, 1), we can choose the

sequences {ξr}, {ζr} ⊂ [0, 1], where ξr =
r2 + 1

r2 + 2
and ζr =

r + 1

r2 + 2
, for any n ∈ N.

lim
r→∞

ξr = lim
r→∞

r2 + 1

r2 + 2
= lim

r→∞

1 + 1
r2

1 + 2
r2

= 1

and

lim
r→∞

ζr = lim
r→∞

r + 1

r2 + 2
= lim

r→∞

1 + 1
r

r(1 + 2
r2
)
= 0.

Also,

lim
r→∞

d(ξr, ζr) = lim
r→∞

ξrζr = lim
r→∞

r2 + 1

r2 + 2

r + 1

r2 + 2
= lim

r→∞

1 + 1
r2

1 + 2
r2

lim
r→∞

1 + 1
r

r(1 + 2
r2
)
= 0.

Thus,

lim
r→∞

sup d(ξr, ζ) = lim
r→∞

sup ξrζ = lim
r→∞

sup

{(
r2 + 1

r2 + 2

)
ζ

}
= ζ lim

r→∞
sup

(
r2 + 1

r2 + 2

)
= ζ,

lim
r→∞

sup d(ζr, ζ) = lim
r→∞

sup ζrζ = lim
r→∞

sup

{(
r + 1

r2 + 2

)
ζ

}
= ζ lim

r→∞
sup

(
r + 1

r2 + 2

)
= 0,

Therefore,
lim
r→∞

sup d(ζr, ζ) = 0 < ζ = s lim
r→∞

sup d(ξr, ζ)

and (s3) holds.
If ζ = 0, using the same sequences, we get

lim
r→∞

sup d(ξr, ζ) = lim
r→∞

sup ξr = lim
r→∞

sup
r2 + 1

r2 + 2
= 1,

lim
r→∞

sup d(ζr, ζ) = lim
r→∞

sup ζr = lim
r→∞

sup
r + 1

r2 + 2
= 0,

Therefore,
lim
r→∞

sup d(ζr, ζ) = 0 < 1 = s lim
r→∞

sup d(ξr, ζ),
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and again (s3) holds.

If ζ = 1, choosing ξr =
r + 1

r2 + 2
and ζr =

r + 2

r + 3
, for any n ∈ N. We obtain

lim
r→∞

ξr = lim
r→∞

r + 1

r2 + 2
= 0 and lim

r→∞
ζr = lim

r→∞

r + 2

r + 3
= 1.

Then, we have

lim
r→∞

d(ξr, ζr) = lim
r→∞

ξrζr = lim
r→∞

r + 1

r2 + 2

r + 2

r + 3
= 0.

Thus,

lim
r→∞

sup d(ξr, ζ) = lim
r→∞

sup

(
1− ξr

2

)
= lim

r→∞
sup

(
1− r + 1

2(r2 + 2)

)

= lim
r→∞

sup
2r2 − r + 3

2(r2 + 2)
= 1,

and

lim
r→∞

sup d(ζr, ζ) = lim
r→∞

sup

(
1− ζr

2

)
= lim

r→∞
sup

(
1− r + 2

2(r + 3)

)

= lim
r→∞

sup

(
r + 4

2(r + 3)

)
=

1

2

Therefore,

lim
r→∞

sup d(ζr, ζ) =
1

2
< 1 = s lim

r→∞
sup d(ξr, ζ),

and again (s3) holds. Hence, d defines a super-metric on [0, 1]. Define mappings
L,J : [0, 1] → [0, 1] as

Lξ =
ξ

4
, if ξ ∈ [0, 1) and Lξ =

1

16
, if ξ = 1,

J ξ =
ξ

2
, if ξ ∈ [0, 1) and J ξ =

1

8
, if ξ = 1.

Taking k1 =
1

2
, k2 =

1

9
, k3 =

1

9
, k4 =

1

9
, k =

1

9
then c = max

j∈{1,2,3,4}
{kj, k} =

1

2
.

We consider the following cases:
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1. If ξ, ζ ∈ (0, 1), we have

d(Lξ,J ζ) = d

(
ξ

4
,
ζ

2

)
=

ξζ

8
≤ 1

2
ξζ +

1

9

ξ2

4
+

1

9

ζ2

2
+

1

9

ξ2ζ2

(8 + ξζ)

≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ) + k4
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
.

2. If ξ = 0, ζ ∈ (0, 1), we have

d(Lξ,J ζ) = d(L0,J ζ) = d

(
0,

ζ

2

)
=

ζ

2
≤ 1

2
ζ +

1

9
0 +

1

9

ζ2

2
+

1

9
0

≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ) + k4
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
.

3. If ξ = 0, ζ = 0 or ξ = 1, ζ = 1, we have

d(Lξ,J ζ) = 0 ≤ 1

2
d(ξ, ζ) +

1

9
d(ξ,Lξ) + 1

9
d(ζ,J ζ) +

1

9

d(ξ, ζξ)d(ζ,J ζ)

1 + d(ξ, ζ)

≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ) + k4
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
.

4. If ξ = 0, ζ = 1, we have

d(Lξ,J ζ) = d(L0,J 1) = d

(
0,

1

8

)
=

1

8

≤ 1

2
(1) +

1

9
(0) +

1

9

1

8
+

1

9

(0)
(
1
8

)
1 + 1

≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ) + k4
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
.
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5. If ξ = 1, ζ ∈ (0, 1), we have

d(Lξ,J ζ) = d(L1,J ζ) = d

(
1

16
,
ζ

2

)
=

ζ

32
≤ 1

2
ζ +

1

9

1

16
+

1

9

ζ2

2
+

1

9

ζ2

32

1 + ζ

≤ k1d(ξ, ζ) + k2d(ξ,Lξ) + k3d(ζ,J ζ) + k4
d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

≤ cmax

{
d(ξ, ζ), d(ξ,Lξ), d(ζ,J ζ),

d(ξ,Lξ)d(ζ,J ζ)

1 + d(ξ, ζ)

}
.

Therefore, we conclude that L and J have a unique common fixed point 0 ∈ [0, 1].

5. Conclusions
Extending the findings of Kannan, Reich, and Dass Gupta, fixed point theo-

rem 3.1 shows the strength and adaptability of fixed-point theory in metric spaces
while encompassing a larger class of contractive mappings. The generalization of
the Kannan, Reich, and Dass Gupta fixed point results provides a robust foun-
dation for numerous future research directions and practical applications. By ex-
tending these theorems to more general spaces and conditions, and by exploring
their implications in various fields, researchers can uncover new theoretical insights
and develop practical tools for solving complex real-world problems. The future
scope is vast and promising, highlighting the central role of fixed-point theory in
mathematics and its interdisciplinary potential. Many of the common fixed-point
results have been rediscovered or have overlapped with existing results in the recent
decades concerning the metric fixed point theory; comparable versions have also
been produced because of some erroneous assumptions. These circumstances are
mostly caused by the theory’s use of constricted supermetric spaces. This paper
discusses the uniqueness and existence of the common fixed point of specific opera-
tors. Expanding the metric fixed point theory could be a great opportunity to use
the concept of the supermetric. Some typical fixed-point theorems for supermetrics
were presented in this study. We think that clearing the congestion of the metric
fixed point theory will come first in a thorough analysis of generalized rational-type
contraction.
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