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Abstract: Clifford-wavelet transform in L2-spaces is defined in space-time alge-
bra Cl(3,1) of Minkowski space with orthonormal vector basis. The properties of
Clifford-wavelet transform are established. Plancherel’s theorem and reproducing
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established. The study is supported with examples and applications from Mathe-
matical Physics.
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1. Introduction
In [12, 19] authors discussed the development and progress of Geometric Alge-

bra. [2] have shown how continuous Clifford Cl3,0 valued admissible wavelets were
constructed using the similitude group SIM(3), a subgroup of the affine group
of R3. In 2006, [25] constructed the Clifford algebra-valued admissible wavelets,
which were associated to more than 2-dimensional euclidean groups with dilations.
Admissibility conditions, reconstruction formula and Plancherel’s theorem were es-
tablished in [13]. In [6] authors have considered Clifford-valued functions defined on
Rn with representation in square integrable group. In the study of two-dimensional
quaternion wavelet transform [10], authors have introduced continuous quaternion
wavelet transform (CQWT) and established the admissibility condition in terms
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of the (right-sided) quaternion Fourier transform, norm relation and inversion for-
mula. In 2011, [4] has proposed two-dimensional continuous quaternion wavelet
transform using the orthogonality of harmonic exponential functions and an alter-
native proof for inner product relation. In [18], Clifford multivectors have been
studied for a new description of space and time. Authors have shown Clifford geo-
metric algebra utilizing multivectors to represent space-time providing a compact
mathematical representation and insights into the nature of time. Author in [14]
has studied admissibility condition in terms of a Cln Clifford-Fourier transform, di-
lation, translation, rotation covariance, reproducing kernel, and inversion formula
of Clifford-wavelet transform. The extensions to wider classes of integral transform
like Clifford algebra versions of wavelets shown in [7]. [8] authors have explored
Clifford algebra to provide a natural alternative to Minkowski formulation with new
insights into the nature of time. Clifford (Geometric) algebra wavelet transform
was introduced and continuous Cln valued admissible wavelets were constructed
using the similitude group SIM (n) [20].

In the present study, authors have developed Clifford wavelet transform in
space-time algebra Cl(3, 1) where as earlier researchers have worked in Cl(2, 0)
and Cl(3, 0). Applications in Fermionic field and Klein-Gordon equation in Cl(3, 1)
have been demonstrated in the concluding section.

2. Clifford geometric algebra Cl(3,1) of R(3,1)

The multiplication rules for an orthonormal base of inner-product vector-space
explaining geometric product from [20]. Consider orthonormal vector basis
{e1, e2, e3, e4} of R(3,1) with 24-dimensional basis considering:
{1, e1, e2, e3, e4, e12, e13, e14, e23, e24, e34, e123, e134, e234, e124, e1234}, where 1 is the real
scalar identity element (grade 0), el basis vectors (grade 1), ekl = ekel; basis bi-
vectors (grade 2), eklm = ekelem; basis tri-vectors (grade 3) and e1234 = e1e2e3e4 =
i4 unit oriented pseudo-scalars 4 (grade 4) indicating the highest grade blade ele-
ment in Cl(3,1). The generalized representation for (grade 2) basis vector in Clifford
algebra is represented as

ekl =
{
−elek; k < l (2.1)

where k, l=1, 2, 3, 4.
For all values of k = l, we get

e2k =

{
−1; k = 1

1; k = 2, 3, 4.
(2.2)

In Cl(3,1), every multivectorM is a linear combination of 4-grade elements expressed
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as:
M =

∑
A

αAeA = α0︸︷︷︸
scalar part

+α1e1 + α2e2 + α3e3 + α4e4︸ ︷︷ ︸
vector part

+α12e12 + α13e13 + α14e14 + α23e23 + α24e24 + α34e34︸ ︷︷ ︸
bi-vector part

α123e123 + α134e134 + α234e234 + α124e124︸ ︷︷ ︸
tri-vector part

+ α1234e1234︸ ︷︷ ︸
quadra-vector part

.

(2.3)

where A = {0, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 134, 234, 124, 1234} and αA ∈ R.
Then (2.3) can be represented as:

M = ⟨M⟩+ ⟨M⟩1 + ⟨M⟩2 + ⟨M⟩3 + ⟨M⟩4. (2.4)

The reverse of M is defined by the anti-automorphism [17]

M̃ = ⟨M⟩+ ⟨M⟩1 − ⟨M⟩2 − ⟨M⟩3 + ⟨M⟩4. (2.5)

A multivector-valued function f : R(3,1) → Cl(3,1); let x ∈ R(3,1) be a multivector
variable, then f (x) can be decomposed as:

f(x) =
∑

A fA(x)eA = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3 + f4(x)e4+
f12(x)e12 + f13(x)e13 + f14(x)e14 + f23(x)e23 + f24(x)e24 + f34(x)e34+
f123(x)e123 + f134(x)e134 + f234(x)e234 + f124(x)e124 + f1234(x)e1234.

(2.6)

From [15], the volume-time Fourier transform can be applied to multivector valued
functions in the space-time algebra f : R(3,1) → Cl(3,1)

f̂(ω) = F{f}(ω) =
∫

R(3,1)

e−e1ω1f (x) e−i4x⃗.ω⃗ d4x. (2.7)

Definition 2.1. The inner product of f, g : R(3,1) → Cl(3,1) is defined as [15]:

⟨f, g⟩L2(R(3,1),Cl(3,1))
=

∫
R(3,1)

f (x) g̃ (x)d4x. (2.8)

Definition 2.2. For f, g : R(3,1) → Cl(3,1) the norm is defined as [17]:

∥f∥2L2(R(3,1),Cl(3,1))
=
〈
(f, f)L2(R(3,1),Cl(3,1))

〉
. (2.9)

Definition 2.3. Plancherel’s theorem is given from [13] as〈
f1(x), f̃2(x)

〉
L2(R(3,1),Cl(3,1))

=
1

(2π)4

〈
f̂1(x),

˜̂f2(x)
〉
L2(R(3,1),Cl(3,1))

. (2.10)
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3. Main results

Representing SO(4) as similitude group of R(3,1) using rotors R ∈ Cl+(3,1) is as
follows:

SO(4) =
{
rΘ(x) = R̃xR

}
(3.1)

where

R = RαRβRγRλRθRϕ (3.2)

Considering

Rα =


1 0 0 0
0 1 0 0
0 0 e11 cosα e21 sinα
0 0 −e12 sinα −e22 cosα


Rβ =


1 0 0 0
0 e11 cos β 0 e21 sin β
0 0 1 0
0 −e12 sin β 0 −e22 cos β


Rγ =


1 0 0 0
0 e11 cos γ e21 sin γ 0
0 −e12 sin γ −e22 cos γ 0
0 0 0 1


Rλ =


e11 cosλ e21 sinλ 0 0
−e12 sinλ −e22 cosλ 0 0

0 0 1 0
0 0 0 1


Rθ =


e11 cos θ 0 e21 sin θ 0

0 1 0 0
−e12 sin θ 0 −e22 cos θ 0

0 0 0 1


Rϕ =


e11 cosϕ 0 0 e21 sinϕ

0 1 0 0
0 0 1 0

−e12 sinϕ 0 0 −e22 cosϕ


and

R̃α=


1 0 0 0
0 1 0 0
0 0 e11 cosα −e21 sinα
0 0 e12 sinα −e22 cosα
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R̃β=


1 0 0 0
0 e11 cos β 0 −e21 sin β
0 0 1 0
0 e12 sin β 0 −e22 cos β


R̃γ=


1 0 0 0
0 e11 cos γ −e21 sin γ 0
0 e12 sin γ −e22 cos γ 0
0 0 0 1


R̃λ=


e11 cosλ −e21 sinλ 0 0
e12 sinλ −e22 cosλ 0 0

0 0 1 0
0 0 0 1


R̃θ=


e11 cos θ 0 −e21 sin θ 0

0 1 0 0
e12 sin θ 0 −e22 cos θ 0

0 0 0 1


R̃ϕ=


e11 cosϕ 0 0 −e21 sinϕ

0 1 0 0
0 0 1 0

e12 sinϕ 0 0 −e22 cosϕ


where

R̃ = R̃αR̃βR̃γR̃λR̃θR̃ϕ. (3.3)

Any SO(4) has an unique Euler angle representation with rotors for Θ = (α, β, γ,

λ, θ, ϕ) with α, β, γ, λ, θ, ϕ ∈ [0, 2π] and R̃R = RR̃ = 1.
The representation [21] defined is consistent with the group action on R(3,1) as
follows:

(a, rΘ(x),b) : R(3,1) → R(3,1),x → a R̃ (Θ)xR (Θ) + b (3.4)

where (a, rΘ(x),b) can be represented as (a,Θ,b) .
Also

G = R+ × SO(4)⊗ R(3,1) =
{
(a, rΘ(x),b) : a ∈ R+, rΘ(x) ∈ SO(4),b ∈ R(3,1)

}
(3.5)

Moreover from [5], we represent SO(4) of R(3,1) by rotors R (3.2) and R̃ (3.3) in
the spin group from (3.1)

Spin(4) =
{
R ∈ Cl+(3,1), R̃R = RR̃ = 1

}
(3.6)

SO(4) =
{
rΘ(x) = R̃xR,R ∈ Spin(4)

}
. (3.7)
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Also note that SO(4) = Spin(4)/ {±1}, where SO(4) is the special orthogonal
group of R(3,1). Note that the group G includes dilation, rotation, time parameter
and translation.
The left Haar measure on G is given by:

dλ (a,Θ, b) = dµ (a,Θ) d4b (3.8)

where dµ (a,Θ) = dadΘ
a5

for dΘ is the Haar measure on SO(4) in [13].

Definition 3.1. Clifford-wavelet with respect to the mother Clifford-wavelet
ψ ∈ L2

(
R(3,1);Cl(3,1)

)
as analogous to [9]:

Ua,Θ,b : L
2
(
R(3,1);Cl(3,1)

)
→ L2

(
G;Cl(3,1)

)
. (3.9)

ψ (x) → Ua,Θ,b ψ (x) = ψa,Θ,b (x) . (3.10)

ψa,Θ,b (x) =
1

a2
ψ

(
r−1
Θ

(
x− b

a

))
. (3.11)

The family of wavelets ψa,Θ,b is called daughter Clifford-wavelet [13] with a ∈ R+-
dilation, Θ- rotation and b ∈ R(3,1)- translation vector parameters.

Theorem 3.2. Fourier of Wavelet: Fourier transform on Clifford-wavelet
function in Cl(3,1), can be represented in the form of

F {ψa,Θ,b} (ω) = a2e−i4 b.w⃗Ψ̂
(
ar−1

Θ ω
)
. (3.12)

Proof. Substituting (3.11) using two-sided Clifford Fourier transform [1], we get

F {ψa,Θ,b} (ω) =

∫
R(3,1)

1

a2
e−e1 w1ψ

(
r−1
Θ

(
x− b

a

))
e−i4x⃗.w⃗d4x. (3.13)

Considering x−b
a

= y and solving we get,
F {ψa,Θ,b} (ω)

=

∫
R(3,1)

1

a2
e−e1 w1ψ

(
r−1
Θ y
)
e−i4 (ay+b−x1e1).w⃗a4d4y

= e−i4 b.w⃗
∫

R(3,1)

a2e−e1 w1ψ
(
r−1
Θ y
)
e−i4 ay.w⃗ei4 x1e1.w⃗d4y

= a2e−i4 b.w⃗
{
ψ̂
(
ar−1

Θ y
)
e−x1e1. w⃗

}
= a2e−i4 b.w⃗Ψ̂

(
ar−1

Θ y
)
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where
Ψ̂
(
ar−1

Θ y
)
= ψ̂

(
ar−1

Θ y
)
e−x1e1. w⃗. (3.14)

Hence established a relation for Fourier of Clifford-wavelet in Cl(3,1); Clifford-
Fourier domain.

Theorem 3.3. The normalization constant ensures that the norm of
∥ψa,Θ,b∥L2(R4,Cl(3,1)) is independent of ′a′ as stated:

∥ψa,Θ,b∥L2(R4,Cl(3,1)) = ∥ψ∥L2(R(3,1),Cl(3,1)). (3.15)

Proof. Using (2.8) and (2.9), we get

∥ψa,Θ,b∥L2(R(3,1),Cl(3,1)) =

∫
R(3,1)

∑
A

1

a4
ψ2
A

(
r−1
Θ

(
x− b

a

))
d4x.

Thus

∥ψa,Θ,b∥L2(R(3,1),Cl(3,1)) =
1

a4

∫
R(3,1)

∑
A

ψ2
Aa

4|r−1
Θ |d4z.

=

∫
R(3,1)

∑
A

ψ2
A (z )d4z.

Put r−1
Θ

(
x−b
a

)
= z and d4x = a4|rΘ|d4z.

Hence the proof.

Definition 3.4. Wavelet transform in Cl(3,1): Let f ∈ L2
(
R(3,1), Cl(3,1)

)
and

ψ ∈ L2
(
R(3,1), Cl(3,1)

)
be a Clifford-mother-wavelet, then Clifford-wavelet transform

is defined by

Wψ f (a,Θ,b) =

∫
R(3,1)

f (x) ψ̃a,Θ,b (x) d
4x

= ⟨f, ψ (a,Θ,b)⟩L2(R(3,1),Cl(3,1))

=
1

a2

∫
R(3,1)

f (x )
˜

ψ

(
r−1
Θ

(
x− b

a

))
d4x. (3.16)

Theorem 3.5. The Clifford Fourier transform of Clifford-wavelet is represented
as:

Wψ f (a,Θ,b) =
1

(2π)4

∫
R(3,1)

f̂ (ω) e−i4 b.ω a2
˜{

Ψ̂
(
ar−1

Θ ω
)}
d4ω. (3.17)



306 South East Asian J. of Mathematics and Mathematical Sciences

Proof. From (3.14) and [22], we have

Wψ f (a,Θ,b) = ⟨f, ψa,Θ,b⟩L2(R(3,1);Cl(3,1)) =
1

(2π)4

〈
f̂ , Ψ̂a,Θ,b

〉
(3.18)

=
1

(2π)4

∫
R(3,1)

f̂ (ω)
˜̂
Ψa,Θ,b (ω) d4ω. (3.19)

Hence from (3.17), the proof follows.

Remark 3.6. Admissibility: Analogous to the classical wavelet [22], an admis-
sibility Clifford-valued mother wavelet ψ ∈ L2

(
R(3,1);Cl(3,1)

)
satisfies:∫

R(3,1)

ψ (x)d4x =

∫
R(3,1)

ψA (x)eAd
4x = 0 (3.20)

where ψA (x) is real-valued wavelet; A is considered from section 2.
The admissibility constant for Cl(3,1) is written from [16]:

Cψ′ =

∫
R(3,1)

˜̂
Ψ (ζ) Ψ̂ (ζ)

|ζ|4
d4ζ. (3.21)

⟨Cψ⟩ =
∫

R(3,1)

˜̂
Ψ (ζ) Ψ̂ (ζ)

|ζ|4
d4ζ = ∥|ζ|−2Ψ̂ (ζ) ∥L2(R(3,1),Cl(3,1)). (3.22)

Cψ = C̃ψ as in [22] and from (2.4) and (2.5), we get Cψ = ⟨Cψ⟩ + ⟨Cψ⟩1 with
positive scalar part ⟨Cψ⟩ > 0.

⟨Cψ⟩ =
∫

R(3,1)

[〈
Ψ̂ (ζ)

〉2
+
〈
Ψ̂ (ζ)

〉2
1
−
〈
Ψ̂ (ζ)

〉2
2
−
〈
Ψ̂ (ζ)

〉2
3
+
〈
Ψ̂ (ζ)

〉2
4

]
1

ζ4
d4ζ.

And the vector part is given by:

⟨Cψ⟩1 =
∫

R(3,1)

〈
˜̂
Ψ(ζ)Ψ̂ (ζ)

1

ζ4
d4ζ

〉
1

=
∫

R(3,1)

[〈
Ψ̂ (ζ)

〉〈
Ψ̂ (ζ)

〉
1
+
〈
Ψ̂ (ζ)

〉
1

〈
Ψ̂ (ζ)

〉
2

−
〈
Ψ̂ (ζ)

〉
2

〈
Ψ̂ (ζ)

〉
3
−
〈
Ψ̂ (ζ)

〉
3

〈
Ψ̂ (ζ)

〉
4

]
1
ζ4 d

4ζ.

The inverse of Cψ is given by:

C−1
ψ =

⟨Cψ⟩ − ⟨Cψ⟩1
⟨Cψ⟩2 − ⟨Cψ⟩21

. (3.23)
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The inverse exists if and only if ⟨Cψ⟩2 ̸= ⟨Cψ⟩21.
4. Properties of Clifford-wavelet transform

Theorem 4.1. Left linearity: Let f, g ∈ L2
(
R(3,1), Cl(3,1)

)
and

ψ ∈ L2
(
R(3,1), Cl(3,1)

)
be a Clifford-mother-wavelet. The Clifford-wavelet transform

Wψ is a linear operator defined as [11]:

Wψ(ρ f + σ g) (a,Θ, b) = ρWψf (a,Θ, b) + σWψg (a,Θ, b) (4.1)

with multivector constants ρ, σ ∈ Cl(3,1).
Proof. Considering the left-hand-side of (4.1) and (3.16), the proof is obvious.

Theorem 4.2. Translation covariance: Let ψ ∈ L2
(
R(3,1), Cl(3,1)

)
be a Clifford-

mother-wavelet and Wψf(x) is translated by a constant x0, then

[Wψ f (. − x0)] (a,Θ,b) = Wψ f (a,Θ, b− x0) . (4.2)

Proof. Here the left-hand-side of (4.2), (3.16) and substituting x−x0 = y, we get

[Wψ f (. − x0)] (a,Θ,b) =

∫
R(3,1)

1

a2
f(y)

˜
ψ

(
r−1
Θ

(
y− (b− x0

a

))
d4x

= Wψ f (a,Θ,b− x0) d
4x.

Hence the proof as in (4.2).

Theorem 4.3. Dilation covariance: Let ψ ∈ L2
(
R(3,1), Cl(3,1)

)
be a Clifford-

mother-wavelet. If the ’c’ is positive real constant, then

[Wψ f (. c)] (a,Θ,b) =
1

c2
Wψf (ac,Θ, cb). (4.3)

Proof. Considering (4.3), (3.16), and using y = cx, we get

[Wψ f (. c)] (a,Θ,b) =

∫
R(3,1)

1

c4
1

a2
f(y)

˜
ψ

(
r−1
Θ

(
y− bc

ac

))
d4y

=
1

c2

∫
R(3,1)

1

(ac)2
f(y)

˜
ψ

(
r−1
Θ

(
y− bc

ac

))
d4y

=
1

c2
Wψ f (ac,Θ, cb) .
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Hence the proof.

Theorem 4.4. Rotation Covariance: Let ψ ∈ L2
(
R(3,1), Cl(3,1)

)
be a Clifford-

mother-wavelet. Let the rotations be represented by rθ and rθ0, then

[Wψf (rθ0 .)] (a,Θ, b )] = Wψf
(
a,Θ

′
, rθ0b

)
=

∫
R(3,1)

f (rθ0x)ψ̃a,Θ,b (x) d
4x (4.4)

with rotors rθ′ = rθ0 rθ.
Proof. From left-hand-side of (4.4), it is obtained as:

[Wψf (rθ0 .)] (a,Θ,b )

=

∫
R(3,1)

f (y)

˜[
ψ

(
r−1
Θ

(
r−1
Θ0
y-b

a

))]
det−1 (rΘ) d

4y

=

∫
R(3,1)

f (y)
˜[

ψ

(
(rΘ0rΘ)

−1

(
y− rΘ0

b

a

))]
d4y

= Wψf
(
a,Θ

′
, rΘ0b

)
.

Hence the proof.

Theorem 4.5. Derivative property: Let ψ ∈ L2
(
R(3,1), Cl(3,1)

)
be a Clifford-

mother-wavelet, then from [24] with small increment h, the first derivative of f(x)
w.r.t x1 and x⃗ respectively follows:

i) Wψ∂x1f (x) =
d
dx
Wψf (x) .

ii) Wψ∂x⃗ f (x) = −
(
∂ψa,Θ,b(x)

∂x⃗
/ψa,Θ,b (x)

)
(c)Wψf (x) .

Proof. From (3.16) we get

i) Wψ∂x1f (x) =
1
a2

∫
R(3,1)

fx1 ψa,Θ,b (x) d4x

= lim
h→0

1

h
{Wψf (x1 + h, x⃗)−Wψf (x)}

=
d

dx
Wψf (x) .
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ii) Wψ∂x⃗ f (x)

= − 1

a2

∫
R(3,1)

fx⃗
∂ψa,Θ,b
∂x⃗

(x) d4x

= − 1

a2

∫
R(3,1)

fx⃗ ψa,Θ,b (x)

∂ψa,Θ,b(x)

∂x⃗

ψa,Θ,b (x)
d4x

Hence the proof from [24].

Remark 4.6. Wψ (∂x1 + ∂x⃗) f (x) = Wψ∆f (x) .

5. Plancherel theorem

Theorem 5.1. Clifford Fourier transform represented as f̂1 (ω) and f̂2 (ω) for
f1 (x) , f2 (x) ∈ L2

(
R(3,1), Cl(3,1)

)
respectively, then〈

f1 (x) , f̃2 (x)
〉
=

1

(2π)4

〈
f̂1 (ω) ,

˜̂
f 2 (ω)

〉
. (5.1)

Proof. Using (2.8), we get〈
f1 (x) , f̃2 (x)

〉
=

∫
R(3,1)

f1 ( x) f̃2 (x) d
4x

=
1

(2π)4

∫
R(3,1)

 ∫
R(3,1)

f̂1 (ω) ei4ω.xd4ω

 f̃2 (x) d
4x (applying (2.7))

=
1

(2π)4

∫
R(3,1)

f̂1 (ω)

 ∫
R(3,1)

f̃2 (x) e
−i4ω.xd4ω

 d4x (using (2.8))

=
1

(2π)4

〈
f̂1(x),

˜̂
f 2(x)

〉
.

In particular if f1 (x) = f2 (x) = f (x), then Parseval theorem is obtained as follows:∫
R(3,1)

∥f (ω)∥2 d4x =
1

(2π)4

∫
R(3,1)

∥∥∥f̂ (ω)
∥∥∥2 d4ω. (5.2)
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Theorem 5.2. Inner product: Let ψ ∈ L2
(
R(3,1), Cl(3,1)

)
be an admissible

Clifford-mother- wavelet and f, g ∈ L2
(
R(3,1), Cl(3,1)

)
. Then

⟨Wψf,Wψg⟩L2(G,Cl(3,1))
=
〈
f Cψ, g

〉
L2(R(3,1),Cl(3,1))

. (5.3)

Proof. Considering left-hand-side of (5.3) and (2.8) and [13], we get

⟨Wψf,Wψg⟩L2(G,Cl(3,1))
=

∫
G

Wψf (a,Θ,b) ˜Wψg (a,Θ,b) dµ d
4b

=

∫
R+

∫
SO(4)

a4

(2π)8
{
∫

R(3,1)

 ∫
R(3,1)

f̂ (ω) ei4ω.b ˜Ψ̂
(
ar−1

Θ (ω)
)
d4ω



×
˜ ∫

R(3,1)

ĝ (ω′) ei4ω.b ˜Ψ̂
(
ar−1

Θ (ω)
)
d4ω′

d4b } dµ.

Thus

FΘ(ω) = f̂ (ω)
˜[

Ψ̂
(
ar−1

Θ (ω)
)]
. (5.4)

GΘ (ω′) = ĝ (ω′) Ψ̂ ˜(
ar−1

Θ (ω)
)
. (5.5)

We obtain,
⟨Wψf,Wψg⟩L2(G,Cl(3,1))

.

=

∫
R+

∫
SO(4)

a4

(2π)8

∫
R(3,1)

 ∫
R(3,1)

FΘ (ω) ei4ω.bd4ω

 ˜GΘ (ω) ei4ω.bd4ω′d4bdµ.

From (2.10), we get

⟨Wψf,Wψg⟩L2(G,Cl(3,1))
=

1

(2π)8

∫
R+

a4
∫

SO(4)


∫

R(3,1)

F̂Θ(−b) ˆ̃GΘ(−b)d4b

 dµ.

From Plancherel’s theorem (2.10), it follows:

⟨Wψf,Wψg⟩L2(G,Cl(3,1))
=

a4

(2π)4

∫
R+

∫
SO(4)


∫

R(3,1)

FΘ(ζ) ˜{GΘ(ζ)}d4ζ

 dµ.
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From (5.4) and (5.5), we get
⟨Wψf,Wψg⟩L2(G,Cl(3,1))

=
a4

(2π)4

∫
R+

∫
SO(4)


∫

R(3,1)

f̂ (ζ)
˜[

Ψ̂
(
ar−1

Θ (ζ)
)] ˜̂g (ζ)Ψ̂ (arΘ−1(ζ)

)
d4ζ

 dµ

=
1

(2π)4

∫
R(3,1)

f̂ (ζ)


∫
R+

∫
SO(4)

a4
˜[

Ψ̂ (arΘ−1(ζ))
]
Ψ̂
(
arΘ

−1(ζ)
)
dµ

 ˜̂g (ζ)d4ζ
=

1

(2π)4

∫
R(3,1)

f̂ (ζ) Cψ
˜̂g (ζ) d4ζ

where Cψ is defined in [22].
From definition (2.3), follows:

⟨Wψf,Wψg⟩L2(G,Cl(3,1))
=

∫
R(3,1)

f (x) Cψ g̃ (x) d
4x =

〈
f Cψ, g

〉
L2(R(3,1),Cl(3,1))

.

Hence the proof.

Corollary 5.3. Norm Relation Let ψ ∈ L2
(
R(3,1), Cl(3,1)

)
be an admissible

Clifford-mother-wavelet, then for any f ∈ L2
(
R(3,1), Cl(3,1)

)
the scalar part of the

inner product gives the L2-norm

∥Wψf∥2L2(R(3,1)Cl(3,1))
= ⟨Cψ⟩ ∥f∥2L2(R(3,1)Cl(3,1))

+
〈(
f ⟨Cψ⟩1, f

)
L2(R(3,1)Cl(3,1))

〉
.

(5.6)
Proof. For ψ ∈ L2

(
R(3,1), Cl(3,1)

)
, f ∈ L2

(
R(3,1), Cl(3,1)

)
and from (5.3) can be

given as:

∥Wψf∥2L2(R(3,1)Cl(3,1))
=
〈
(Wψf,Wψf)L2(R(3,1)Cl(3,1))

〉
=
〈
(f Cψ, f)L2(R(3,1)Cl(3,1))

〉
= Cψ (f , f)

L2(R(3,1)Cl(3,1))

= ⟨Cψ⟩ ∥f∥2L2(R(3,1)Cl(3,1))
+
〈(
f ⟨Cψ⟩1, f

)
L2(R(3,1)Cl(3,1))

〉
.

Hence the proof.
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6. Inverse Clifford-wavelet transform in Cl(3,1)

Theorem 6.1. Let ψ be an admissible Clifford-mother-wavelet and f, g satisfy the
admissibility conditions, then for any f ∈ L2

(
R(3,1), Cl(3,1)

)
can be decomposed as:

f(x) =

∫
G

Wψf (a,Θ, b)ψ (a,Θ, b)C−1
ψ dµd4b. (6.1)

Further (6.1) can also be represented from (3.16) as

f(x) =

∫
G

⟨f, ψ (a,Θ,b)⟩L2(R(3,1),Cl(3,1))
ψ (a,Θ,b)C−1

ψ dµd4b. (6.2)

Proof. From (2.9) and (3.16), we get

⟨Wψf,Wψg⟩L2(G,Cl(3,1))
=

∫
G

Wψf (a,Θ,b) ˜Wψg (a,Θ,b) dµ d
4b

=

∫
G

∫
R(3,1)

Wψf (a,Θ,b)ψa,Θ,b (x)g̃(x) d
4x dµ d4b

=

∫
R(3,1)

∫
G

Wψf (a,Θ,b)ψa,Θ,b (x)g̃(x)d
4b dµ

 d4x.

Using inner product relation (5.3), we get

⟨Wψf,Wψg⟩L2(G,Cl(3,1))
=
〈
f Cψ, g

〉
L2(R(3,1),Cl(3,1))

. (6.3)

We use (3.16) in the left-hand-side of (6.3) and obtained as:

⟨fCψ, g⟩L2(R(3,1),Cl(3,1))
=

〈∫
G

Wψf (a,Θ,b)ψa,Θ,b (x) dµd
4b, g(x)

〉
L2(R(3,1),Cl(3,1))

.

(6.4)
As the inner product identity holds for every g ∈ L2

(
R(3,1), Cl(3,1)

)
especially for

all basis elements of the Clifford module [13], we can conclude that

f (x)Cψ =

∫
G

Wψf (a,Θ,b)ψa,Θ,b (x) dµ d
4b.
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Assuming the inevitability of Cψ, thus obtain (6.1) as follows:

f (x) =

∫
G

Wψf (a,Θ,b)ψa,Θ,b (x) C
−1
ψ dµ d4b.

And hence follows:

f(x) =

∫
G

⟨f, ψ (a,Θ,b)⟩L2(R(3,1),Cl(3,1))
ψ (a,Θ,b)C−1

ψ dµd4b.

Hence the proof.

Remark 6.1. Weak convergence of (6.1) explains that for all g ∈ L2
(
R(3,1), Cl(3,1)

)
holds 〈∫

G

Wψf (a,Θ, b)ψa,Θ,b (x)C
−1
ψ dµ d4b, g(x)

〉
L2(R(3,1),Cl(3,1))

converges to ⟨f, g⟩L2(R(3,1),Cl(3,1))
.

From [22] C−1
ψ =

[̃
C−1
ψ

]
; thus [13] analogously can be represented as:

f (x) = C−1
ψ

∫
G

˜[ψa,Θ,b]
〈
ψa,Θ,b, f̃

〉
L2(R(3,1),Cl(3,1))

dµ d4b.

Theorem 6.2. Reproducing kernel: For an admissible Clifford-mother-wavelet
ψ ∈ L2

(
R(3,1), Cl(3,1)

)
reproducing kernel in L2(G; dλ) can be defined as:

Kψ(a,Θ,b; a
′
,Θ

′
,b

′
) =

〈
ψa,Θ,bC

−1
ψ , ψ

a′ ,Θ′ ,b
′

〉
L2(R(3,1),Cl(3,1))

(6.5)

Wψ(a
′
,Θ

′
,b

′
) =

∫
G

Wψf(a,Θ,b)Kψ(a,Θ,b; a
′
,Θ

′
,b

′
)dλ. (6.6)

Proof. Substituting (6.1) in (3.16), we get

Wψf(a
′
,Θ

′
,b

′
) =

∫
R(3,1)


∫
G

Wψf(a,Θ,b)ψa,Θ,b(x)C
−1
ψ dλ

 ˜[
ψ
a′ ,Θ′ ,b

′ (x)
]
d4x

=

∫
G

Wψf(a,Θ,b)


∫

R(3,1)

ψa,Θ,b(x)C
−1
ψ

˜[
ψ
a′ ,Θ′ ,b

′ (x)
]
d4x

 dλ

=

∫
G

Wψf(a,Θ,b)Kψ(a,Θ,b; a
′
,Θ

′
,b

′
)dλ.
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Hence completes the proof.

7. Example

Example 7.1. Consider a Clifford-wavelet in Cl(3,1) defined by

ψa,Θ,b(x) =

{
e−e1ω1x1−e2ω2x2−e3ω3x3−e4ω4x4 ;−1 ≤ xp ≤ 1; p = 1, 2, 3, 4

= 0; otherwise.
(7.1)

Obtain Clifford-wavelet transform for f(x) = ex1+x2+x3+x4 ; −∞ < xp < 0.
Solution. By applying Clifford-wavelet transform (3.16) and [3], we get
Wψf (a,Θ,b)

=
1

a2

∫ m1

−1+b1

∫ m2

−1+b2

∫ m3

−1+b3

∫ m4

−1+b4

ex1+x2+x3+x4 e−e1ω1x1−e2ω2x2−e3ω3x3−e4ω4x4d4x

for mp = min(0,−1 + bp).
Further simplifying we get
Wψf (a,Θ,b)

=
1

a2

∫ m1

−1+b1

∫ m2

−1+b2

∫ m3

−1+b3

∫ m4

−1+b4

ex1(1−e1ω1) ex2(1−e2ω2)ex3(1−e3ω3)ex4(1−e4ω4) dx1 dx2dx3dx4

=
1

a2

{∫ m1

−1+b1

ex1(1−e1ω1)dx1

∫ m2

−1+b2

ex2(1−e2ω2) dx2

∫ m3

−1+b3

ex3(1−e3ω3)dx3

∫ m4

−1+b4

ex4(1−e4ω4) dx4

}
=

1

a2

{[
ex1(1−e1ω1)

(1− e1ω1)

]m1

−1+b1

[
ex2(1−e2ω2)

(1− e2ω2)

]m2

−1+b2

[
ex3(1−e3ω3)

(1− e3ω3)

]m3

−1+b3

[
ex4(1−e4ω4)

(1− e4ω4)

]m4

−1+b4

}

Wψf (a,Θ,b) =
1

a2

p=4∏
p=1

{(
emp(1−epωp) − e(bp−1)(1−epωp)

)
(1− epωp)

}
.
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Figure 1. Plot of ψa,Θ,b(x) considering equation (7.1)

Example 7.2. Considering a Clifford-wavelet in Cl(3,1) defined by

ψa,Θ,b(x) =


e−e1ω1x1−e2ω2x2−e3ω3x3−e4ω4x4 ; 0 ≤ xp ≤ 1

2
; p = 1, 2, 3, 4

−e−e1ω1x1−e2ω2x2−e3ω3x3−e4ω4x4 ; 1
2
≤ xp ≤ 1

0; otherwise.

(7.2)

Obtain Clifford-wavelet transform for Gaussian function f(x) = ex
2
1+x

2
2+x

2
3+x

2
4 .

Solution. By applying Clifford-wavelet transform (3.15) and [3], we get

Wψf (a,Θ, b)

=
1

a2

∫ 1/2+b1

b1

ex
2
1e−i1ω1x1dx 1

∫ 1/2+b2

b2

ex
2
2e−i2ω2x2dx2∫ 1/2+b3

b3

ex
2
3e−i3ω3x3dx3

∫ 1/2+b4

b4

ex
2
4e−i4ω4x4dx4

− 1

a2

∫ 1+b1

1/2+b1

ex
2
1e−i1ω1x1dx1

∫ 1+b2

1/2+b2

ex
2
2e−i2ω2x2dx2

∫ 1+b3

1/2+b3

ex
2
3e−i3ω3x3dx3

∫ 1+b4

1/2+b4

ex
2
4e−i4ω4x4dx4
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Thus
Wψf (a,Θ,b)

=
1

a2

∫ 1/2+b1

b1

e−(x1+e1ω1/2)
2−(ω1/2)

2

dx1

∫ 1/2+b2

b2

e−(x2+e2ω2/2)
2−(ω2/2)

2

dx2

×
∫ 1/2+b3

b3

e−(x3+e3ω3/2)
2−(ω3/2)

2

dx3

∫ 1/2+b4

b4

e−(x4+e4ω4/2)
2−(ω4/2)

2

dx4

− 1

a2

∫ 1/2+b1

b1

e−(x1+e1ω1/2)
2−(ω1/2)

2

dx1

∫ 1/2+b2

b2

e−(x2+e2ω2/2)
2−(ω2/2)

2

dx2

×
∫ 1/2+b3

b3

e−(x3+e3ω3/2)
2−(ω3/2)

2

dx3

∫ 1/2+b4

b4

e−(x4+e4ω4/2)
2−(ω4/2)

2

dx4.

Substituting yp = xp + (ipωp)/2 we get:
Wψf (a,Θ,b) =

eω
2
1/4+ω

2
2/4+ω

2
3/4+ω

2
4/4

a2

∫ b1+(e1ω1)/2

0

(
−e−y21

)
dx1 +

1/2+b1+(e1ω1)/2∫
0

e−y
2
1dx1


×

(∫ b2+(e2ω2)/2

0

(
−e−y22

)
dx2 +

∫ 1/2+b2+(e2ω2)/2

0

e−y
2
2dx2

)

×

∫ b3+(e3ω3)/2

0

(−e−y23)dx3 +
1/2+b3+(e3ω3)/2∫

0

e−y
2
3dx3


×

(∫ b4+(e4ω4)/2

0

(−e−y24)dx4 +
∫ 1/2+b4+(e4ω4)/2

0

e−y
2
4dx4

)

−e
ω2
1/4+ω

2
2/4+ω

2
3/4+ω

2
4/4

a2

∫ 1/2+b1+(e1ω1)/2

0

(
−e−y21

)
dx1 +

1+b1+(e1ω1)/2∫
0

e−y
2
1dx1


×

(∫ 1/2+b2+e2ω2/2

0

(
−e−y22

)
dx2 +

∫ 1+b2+e2ω2/2

0

e−y
2
2dx2

)

×

∫ 1/2+b3+e3ω3/2

0

(−e−y23)dx3 +
1+b3+e3ω3/2∫

0

e−y
2
3dx3
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×

(∫ 1/2+b4+e4ω4/2

0

(−e−y24)dx4 +
∫ 1+b4+e4ω4/2

0

e−y
2
4dx4

)
.

Thus gives values in error function:
Wψf (a,Θ,b)

=
16 eω

2
1/4+ω

2
2/4+ω

2
3/4+ω

2
4/4

(πa)2
[− erf (b1 + (e1ω1) /2) + erf (1/2 + b1 + (e1ω1) /2)]

× [− erf (b2 + (e2ω2) /2) + erf (1/2 + b2 + (e2ω2) /2)]

× [− erf (b3 + (e3ω3) /2) + erf (1/2 + b3 + (e3ω3) /2)]

× [− erf (b4 + (e4ω4) /2) + erf (1/2 + b4 + (e4ω4) /2)]

−16 eω
2
1/4+ω

2
2/4+ω

2
3/4+ω

2
4/4

(πa)2
[− erf (1/2 + b1 + (e1ω1) /2) + erf (1 + b1 + (e1ω1) /2)]

× [− erf (1/2 + b2 + (e2ω2) /2) + erf (1 + b2 + (e2ω2) /2)]

× [− erf (1/2 + b3 + (e3ω3) /2) + erf (1 + b3 + (e3ω3) /2)]

× [− erf (1/2 + b4 + (e4ω4) /2) + erf (1 + b4 + (e4ω4) /2)] .

Finally the results can be represented as:

Wψf (a,Θ,b) =
16 e

∑p=4
p=1ω

2
p/4

(πa)2

p=4∏
p=1

[− erf (bp + (epωp) /2) + erf (1/2 + bp + (epωp) /2)]

−16 e
∑p=4
p=1ω

2
p/4

(πa)2

p=4∏
p=1

[− erf (1/2 + bp + (epωp) /2) + erf (1 + bp + (epωp) /2)] .

Hence the results.
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Figure 2. Plot of ψa,Θ,b(x) considering equation (7.2)

8. Applications

8.1. Fermionic field in Cl(3,1)
The spin (−1/2) of fermionic field is the Dirac field and considered as ψa,Θ,b(x)
-fermionic wave-function in Cl(3,1). The equation of motion for a free spin (1/2)
particle is the Dirac equation given by:

(i4Rα∂x −m)ψa,Θ,b(x) = 0. (8.1)

where m-fermionic mass, ∂x-derivative in 4D. The solution of (8.1) are plane wave
solutions given by

ψa,Θ,b(x) =


c1e

−m

c2e
m

c3e
−m/k1

c4e
m̃/k1

 (8.2)

where k1 = −e1234 cos(α) + e34 sin(α) for u =

[
c1e

−m

c3e
−m/k1

]
and v =

[
c2e

m

c4e
m̃/k1

]
are

spinors, labelled by spin, s and spinor indices α ∈ {1, 2, 3, 4} .
ψa,Θ,b(x) and ψa,Θ,b(y) obey the anticommutation relation:

{ψa,Θ,b(x)), ψa,Θ,b(y)} = δ(4)(x− y)δαβ. (8.3)
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The Feynman propagator for the fermion field considering Clifford-wavelet trans-
form of ψa,Θ,b(x) is represented as:

∆Wψ
(x-y) = ⟨0 |Wψ((x)(y))| 0⟩ . (8.4)

8.2. Klein—Gordon equation in Cl(3,1)
Klein-Gordon equation in natural units using [23]

(∆ +m2i4ω.x)ψa,Θ,b(x) = 0 (8.5)

with the metric signature diag(−1,+1,+1,+1).
The solution

ψa,Θ,b(x) =


c5e

m2e1ω1.x1

c6e
−m2e2ω2.x2

c7e
−m2e3ω3.x3

c8e
−m2e4ω4.x4

 . (8.6)

And hence the general solution of wavelet function using Klein-Gorden equation is
given by

ψa,Θ,b(x) = k2(ω)

∫
R(3,1)

d4ω

(2π)4
em

2i4ω· xψa,Θ,b(ω) (8.7)

where k2(ω) = c5c6c7c8.
This is the general solution to the Klein-Gordon equation in Cl(3,1).

9. Conclusion
Authors have developed Clifford-wavelet transform in space-time algebra Cl(3,1).

The properties of Clifford-wavelet transform are studied. Plancherel’s and Inver-
sion formula have been established. The study is supported with examples and
applications from Mathematical Physics.
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