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Abstract: Clifford-wavelet transform in L?-spaces is defined in space-time alge-
bra Cl;) of Minkowski space with orthonormal vector basis. The properties of
Clifford-wavelet transform are established. Plancherel’s theorem and reproducing
kernel is demonstrated. The inversion formula for Clifford-wavelet transform is
established. The study is supported with examples and applications from Mathe-
matical Physics.
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1. Introduction

In [12, 19] authors discussed the development and progress of Geometric Alge-
bra. [2] have shown how continuous Clifford Cls valued admissible wavelets were
constructed using the similitude group STM(3), a subgroup of the affine group
of R®. In 2006, [25] constructed the Clifford algebra-valued admissible wavelets,
which were associated to more than 2-dimensional euclidean groups with dilations.
Admissibility conditions, reconstruction formula and Plancherel’s theorem were es-
tablished in [13]. In [6] authors have considered Clifford-valued functions defined on
R" with representation in square integrable group. In the study of two-dimensional
quaternion wavelet transform [10], authors have introduced continuous quaternion
wavelet transform (CQWT) and established the admissibility condition in terms
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of the (right-sided) quaternion Fourier transform, norm relation and inversion for-
mula. In 2011, [4] has proposed two-dimensional continuous quaternion wavelet
transform using the orthogonality of harmonic exponential functions and an alter-
native proof for inner product relation. In [18], Clifford multivectors have been
studied for a new description of space and time. Authors have shown Clifford geo-
metric algebra utilizing multivectors to represent space-time providing a compact
mathematical representation and insights into the nature of time. Author in [14]
has studied admissibility condition in terms of a C'l,, Clifford-Fourier transform, di-
lation, translation, rotation covariance, reproducing kernel, and inversion formula
of Clifford-wavelet transform. The extensions to wider classes of integral transform
like Clifford algebra versions of wavelets shown in [7]. [8] authors have explored
Clifford algebra to provide a natural alternative to Minkowski formulation with new
insights into the nature of time. Clifford (Geometric) algebra wavelet transform
was introduced and continuous C1,, valued admissible wavelets were constructed
using the similitude group SIM (n) [20].

In the present study, authors have developed Clifford wavelet transform in
space-time algebra C1(3,1) where as earlier researchers have worked in C(2,0)
and C1(3,0). Applications in Fermionic field and Klein-Gordon equation in C(3, 1)
have been demonstrated in the concluding section.

2. Clifford geometric algebra Cl3 ;) of R

The multiplication rules for an orthonormal base of inner-product vector-space
explaining geometric product from [20]. Consider orthonormal vector basis
{e1, eq,e3,e4} of RGY with 2*-dimensional basis considering:
{1, €1, €2, €3, €4, €12, €13, €14, €23, €24, €34, €123, €134, €234, €124, 61234}, where 1 is the real
scalar identity element (grade 0), e, basis vectors (grade 1), ex = exe; basis bi-
vectors (grade 2), ek, = ereen; basis tri-vectors (grade 3) and ej934 = e1eze3e4 =
i4 unit oriented pseudo-scalars 4 (grade 4) indicating the highest grade blade ele-
ment in Cl(31). The generalized representation for (grade 2) basis vector in Clifford
algebra is represented as

er = {—ezek; k<l (2.1)

where k,[(=1, 2, 3, 4.
For all values of k = [, we get

—Lk=1
2 = ’ 2.2
K {1;k:2,3,4. (22)

In Cl(3,1), every multivector M is a linear combination of 4-grade elements expressed
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as:
M = E apeqs = o +aje;+ asey + ases + ageq

~~
scalar part vector part

+ Qi2€12 + 113613 + Q4€14 + Qp3€23 + Qo4€24 + (i34€34 (2.3)

~
bi-vector part

Q123€123 + (1134€134 + (1934€234 + X124€124 T (11234€1234

——
v

tri-vector part quadra-vector part

where A = {0,1,2,3,4,12,13, 14,23, 24, 34,123, 134, 234, 124, 1234} and a4 € R.
Then (2.3) can be represented as:

M = (M) + (M), + (M)s + (M)s + (M), (2.4
The reverse of M is defined by the anti-automorphism [17]
M = (M) + (M) = (M)z = (M)3 + (M)s. (2.5)

A multivector-valued function f : RV — Cl4y; let x € R3Y be a multivector
variable, then f (x) can be decomposed as:

f(x) =24 fax)ea = fo(x) + fi(x)er + fa(x)ea + fs(X)es + fa(x)est
frz(x)erz + fis(x)ers + fra(x)ers + fag(X)eas + foa(X)eas + faa(X)esa+  (2.6)
fros(x)e12s + figa(X)erss + faga(X)eass + froa(X)e124 + fraza(X)e1234.

From [15], the volume-time Fourier transform can be applied to multivector valued
functions in the space-time algebra f : R®Y — Cl3 1

f) = F{f) = [ eop o) et 2.7
RGD
Definition 2.1. The inner product of f,g: R®Y — Cl4y is defined as [15):
) gen oy = | 105000 (2.8
R,
Definition 2.2. For f,g: R®Y — Cl4y the norm is defined as [17):
||f||2L2(]R(3,1)7(]l(3’1)) = <<f7 f)L2(R(3’1>,CZ(3’1>)> : (2'9)

Definition 2.3. Plancherel’s theorem is given from [13] as

(A9 7:09) - L (70920 )

1
4
LQ(R(&U,CZ(&I)) (27T) LQ(R(gJ)’Cl(s’l))
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3. Main results
+

Representing SO(4) as similitude group of R using rotors R € Cliy ) is as
follows:
SO(4) = {r@(x) - éxR} (3.1)
where
R = R,RgR\R\RyRy (3.2)
Considering
10 0 0
R o_ 0 1 0 0
*® | 0 0 egcosa egsina
0 0 —epgsinae —egy COS @
1 0 0 0
R 0 ejpcosfB 0 egsinf
S 0 1 0
0 —epsinf 0 —egpcosf
1 0 0 0
R — 0 ejpcosy esrsiny 0
Tl 0 —egpsiny —egpcosy 0
0 0 0 1
e11cosA  egsinA 0 0
R —epg8in A —eggcosA 0 0
AT 0 0 10
0 0 0 1
erpcos 0 egrsinf 0
R 0 1 0 0
"7 | —epsind 0 —egpcosf 0
0 0 0 1
e;pcosp 0 0 egrsing
0 10 0
By = 0 0 1 0
—eppsing 0 0 —egycos @
and
10 0 0
7 0 1 0 0
1 0 0 ejpcosa —egsina
0 0 ejpsina —egycOSQ



Analysis of Clifford-wavelet transform in Cls ) 303

1 0 0 0
B 0 ejpcosfB 0 —egsinfs
=10 0 1 0
0 €19 sin B 0 —€99 COS ﬁ
1 0 0 0
~ 0 ejpcosy —egrsiny 0
o= 0 i — 0
e128IN7y —egy COSY
0 0 0 1
€11 CosA —egysinA 0 0
B e1psin A —egecosA 0 0O
A= 0 0 10
0 0 01
ejpcos 0 —eyrsinf 0
B 0 1 0 0
=1 e9sinf 0 —egpcosf 0
0 0 0 1
€11 COS ¢ 0 0 —€91 sin qb
~ 0 10 0
Fy= 0 01 0
epsing 0 0 —egycoso
where L
R = R,RgR,R\RyRy. (3.3)

Any SO(4) has an unique Euler angle representation with rotors for © = («, 3,7,
A0, ¢) with o, 8,7, A,0,¢ € [0,2n] and RR = RR = 1.

The representation [21] defined is consistent with the group action on RGV as
follows:

(a,70(x),b) : RED — RED x — a R(0)xR (0) + b (3.4)
where (a,rg(Xx),b) can be represented as (a,©,b).
Also
G =R x SO(4) @ R®Y = {(a,re(x),b) : a € RT,re(x) € SO(4),b € RED}
(3.5)

Moreover from [5], we represent SO(4) of R®Y by rotors R (3.2) and R (3.3) in
the spin group from (3.1)

Spin(4) = {R € Clf, . RR = RR = 1} (3.6)

SO(4) = {r@(x) — RxR,R ¢ Spm(4)}. (3.7)
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Also note that SO(4) = Spin(4)/{£1}, where SO(4) is the special orthogonal
group of RV Note that the group G includes dilation, rotation, time parameter
and translation.

The left Haar measure on G is given by:

dX (a,0, b) = du (a,0)d'b (3.8)
where dp (a,©) = 249 for dO© is the Haar measure on SO(4) in [13].

Definition 3.1. Clzﬁord-wavelet with respect to the mother Clifford-wavelet
¢ € L* (R®Y; Cls 1)) as analogous to [9):

Usop: L* (R®V;Cliz ) — L* (G; Ol ) - (3.9)
V(z) = Usep ¥ () = o0 (). (3.10)

Yoo (@) = %w (7“@1 (m; b)) . (3.11)

The family of wavelets 1,0 is called daughter Clifford-wavelet [13] with a € R*-
dilation, ©- rotation and b € RGY- translation vector parameters.

Theorem 3.2. Fourier of Wawvelet: Fourier transform on Clifford-wavelet
function in Cl(z1y, can be represented in the form of

F{taep} (w) = a’e >0 (arg'w). (3.12)
Proof. Substituting (3.11) using two-sided Clifford Fourier transform [1], we get

F{taon}(w) = / % e 1Y (r@l (X — b)) e T (3.13)

R(3,1)

b — y and solving we get,

Considering *=

F {wa,(%,b} ((.O)

_ %6—61 w1w (rély>6—i4 (ay+b—a:1e1).1ﬁa4d4y
a
]R(3 1)

_24 / —e1 wldj 7’@ y) 6—7,4 ay.wez4 x1 el.wd4y
R(3,1)

_ a26—14b.w {1[} (17’6 y )6—17161.117}
= a2e”1PIY (arély )
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where ) R

Y (arély) = (arély) e e (3.14)
Hence established a relation for Fourier of Clifford-wavelet in Cls;); Clifford-
Fourier domain.

Theorem 3.3. The normalization constant ensures that the norm of
! ! .
||¢a7@7b||L2(R4,Cl<3,1)) is independent of 'a’ as stated:

‘|¢“’@»bHL2(R4,Cl<3,1)) = ||1/J|‘L2(R<3,1),Cl(371>)’ (3.15)
Proof. Using (2.8) and (2.9), we get

1 . (x—Db
||1/)a,®,b||L2(R(3,1)7Cl(3’1)) = / Z gzﬁi <T61 ( - ))d4x.

rGyH A

Thus
48l (a0t ) = / > ha'lr'la'

]R(3 1)

= [ Tt

RGD)
Put rg' (22) = z and d*x = a’|re|d’z.
Hence the proof.
Definition 3.4. Wavelet transform in Cl): Let f € L? (R®Y, Cl31)) and
¢ € L* (RGY Clsyy) be a Clifford-mother-wavelet, then Clifford-wavelet transform
is defined by

Ww f <a7 @’ b) - f (X) 2#a,@,b (X) d'x
R(3,1)

= (f,¢(a,© b)>L2 RGD Clz 1)

:% / f(x )zp(r(;l (X;b))d‘lx. (3.16)

R(3,1)

Theorem 3.5. The Clifford Fourier transform of Clifford-wavelet is represented
as:

—~—

Wy f (a,0,b) Tiabw g2 {\If (arg w)}d4 (3.17)

R(s 1)
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Proof. From (3.14) and [22], we have

1 /. .
Wiﬁ f (CL, 97 b) = <fa ¢a7®,b>L2(R(S,l);Cl(&l)) - W <f7 \I]a,®7b> (318)
_ (;)4 / F (@) Tuop () dw. (3.19)
R(3,1)

Hence from (3.17), the proof follows.

Remark 3.6. Admissibility: Analogous to the classical wavelet [22], an admis-
sibility Clifford-valued mother wavelet ¢ € L* (R(?”l); Ol(371)) satisfies:

/ Y (z)d'z= / VY (z)esdtz =0 (3.20)
RGD R(3.1)

where Y4 (x) is real-valued wavelet; A is considered from section 2.
The admissibility constant for Cl(34) is written from [16]:

_ [ YOYQ,
C, _/ g (3.21)
R(3:1)
V()T =
= [ ORI T Olpgona,,)y 62

R(3,1)

C, = Cy as in [22] and from (2.4) and (2.5), we get Cy = (Cy) + (C,), with
positive scalar part (Cy,) > 0.

= [ [(B0) + (@) - (F@), - (FO), + (F@)] e
R(@3:1)

And the vector part is given by:

_ =N l4
= /) (V1090 <>1

= [ [(#©)(F©), +(¥©) (T©), () (T©), ~(¥©) (¥(©)) | &d'c.

R(3,1)
The inverse of Cy, is given by:

o (Cy) —(Cy),
C, = . 3.23
Y {Cy) — (Cy): (3:29)
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The inverse exists if and only if (C)* # <C¢)f.
4. Properties of Clifford-wavelet transform

Theorem 4.1. Left linearity: Let f,g € L* (R®Y Clz1y) and
€ L2 (R(3’1), C’l(371)) be a Clifford-mother-wavelet. The Clifford-wavelet transform
Wy is a linear operator defined as [11]:

Wylpf+0g)(a,©,b) =pWyf(a,0,b)+cWyg(a,©,b) (4.1)

with multivector constants p,o € Cls ).
Proof. Considering the left-hand-side of (4.1) and (3.16), the proof is obvious.

Theorem 4.2. Translation covariance: Let € L* (R®V Cl 1)) be a Clifford-
mother-wavelet and Wy, f(x) is translated by a constant xy, then

(W, S (- = x0)] (a,0,b) = Wi, f (a.0, b—xy). (4.2)

Proof. Here the left-hand-side of (4.2), (3.16) and substituting x —xo =y, we get

Wes (=xal@eb) = [ s (e (&))m

R(3,1)
=Wy f(a,0,b — x¢) d'x.
Hence the proof as in (4.2).

Theorem 4.3. Dilation covariance: Let ¢ € L? (R®Y, Clsy) be a Clifford-
mother-wavelet. If the ¢’ is positive real constant, then

Wy f(.0)](a,0,b) = C%Ww‘ (ac, O, cb). (4.3)

Proof. Considering (4.3), (3.16), and using y = cx, we get

P

e (olmO) = / | Gl (e (Y2 Ja
= 0—12 (ai)gf (y) ¥ (Tél (y ;Cbc))d‘*y



308 South FEast Asian J. of Mathematics and Mathematical Sciences

Hence the proof.

Theorem 4.4. Rotation Covariance: Let ¢ € L? (R®Y Cl3y)) be a Clifford-
mother-wavelet. Let the rotations be represented by rg and rq,, then

(Wof (700} (00,6 )] = W (0,6',10,0) = [ [ (ra,@)tuen (@) d'z  (4.4)

R(3,1)

with rotors ry = 1y, y.
Proof. From left-hand-side of (4.4), it is obtained as:
(W f (re,-)] (a,0,b)

- [ oo ) o
R(3:1)

—~—

= [ 1w (et (YE22) ) |ty

R(3,1)

=Wy (0.6 70,b).
Hence the proof.

Theorem 4.5. Derivative property: Let ¢ € L? (R®Y, Clsyy) be a Clifford-
mother-wavelet, then from [24] with small increment h, the first derivative of f(x)
w.r.t x1 and X respectively follows:

1) Wl/)amf (X) = %Wl/)f (X) :

i) Wods f (x) = — (2222 /0 (%) ) (6) Wof (x).
Proof. From (3.16) we get
) Wd)aﬂvlf = LQ f f:c1 ,lvba@b (X) 4X

R(3:1)

~ Jim + w AW f (21410, 2) = Wy f (x)}

h—0 h

d
= Wuf(x).
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ii) W,ﬂf f (X)

R(3,1)
awa 6 b( )

/ fzwaGb ¢a6b( >dX

R(@3,1)

Hence the proof from [24].
Remark 4.6. Wy, (0, + 0z) f (x) = WpAf (x).

5. Plancherel theorem

Theorem 5.1. Clifford Fourier transform represented as fi (w) and fo (w) for
fi(z), f2(z) € L* (R®Y, Clsyy) respectively, then

(h60). 2 (3)) = 3 (Fi @), fo (@), (5.)

b
(2m)"
Proof. Using (2.8), we get
(h ). f2x)

— [ £1(0) R

R(@3:1)
— (21)4 / / fi (w) emw.Xdllw) fa(x)d'x  (applying (2.7))
T RG,1) (3,1)
/ f2 (x)emw.xd%) d'x (using (2.8))
R<3 1) (3,1)
1 X
= o <f1<x>,f2<x>>.

In particular if f; (x) = fa (x) = f (x), then Parseval theorem is obtained as follows:

[ s =

R@G3,1) R@G,1)

(5.2)
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Theorem 5.2. Inner product: Let ¢ € L2 (R(3’1),C’l(371)) be an admissible
Clifford-mother- wavelet and f,g € L* (R®Y,Cl1)). Then

<W¢fv W¢9>L2(G,Cl(3,1)) = <f Cw7g>L2(R(3»1>,cz<3’D)' (5-3>

Proof. Considering left-hand-side of (5.3) and (2.8) and [13], we get

—_—~—

<W’t/)f7 W"/’g>L2(G,C'l(3Y1)) - / Wd)f (CL, o, b) ng (CL, o, b) dp d'b

- [ &t / f (@) €4 (arg! (w)) d'w

R+ SO(4) R(B.1) 3.1)

—_——

X / §(w') elrwb (arg'(w))d'w’ |d*b}dp.

Thus

We obtain,
<Wwf7 W¢9>L2(G,CZ(3,1))'

/ / 5 / / Fo () ¢ Pd*w | Go (w) eiwbd e/ d* by,
7T

R+ SO(4) RGD  \RGD)

From (2.10), we get

1 A A
<Wwf7 ng>L2(G,Cl(3’1)) = 7. 8 /a4 / / F@(—b)G@(—b)d4b d,Ll,

(2m)
R+ SO4) RG.D

From Plancherel’s theorem (2.10), it follows:

Vo Wt 210 = 7o / [ 3] FeGatcnd'c fdu

R+ SO(4) \RG.1)
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From (5.4) and (5.5), we get
<LV¢fPVV¢9>L2(¥CQ5U)

0 (ar(0)) ]9 (O (are™(0)) d'¢ p ds

R+ SO (3 1)

:@dﬂo//ﬁwwwwwmwﬂw

RG.1) R+ SO(4)
/ F(0) Cy §(0) dic
]R(3 1)

where Cy is defined in [22].
From definition (2.3), follows:

<W¢f, W¢g>L2(G,CZ(3’1>) = / / (X> CLZJ ) (X) d*x = <f Cw7g>L2(R(3’l>,CZ(3,1>)'

R(@3,1)

Hence the proof.

Corollary 5.3. Norm Relation Let ¢ € L? (R®Y, Clsy)) be an admissible
Clifford-mother-wavelet, then for any f € L* (R(B”l), Cl(&l)) the scalar part of the
inner product gives the L?>-norm

2 2
||W¢f” LQ(R(&UCZ(?),U) = (Cw> Hf” L2(R(371)CZ(371>) + <(f <Cw>1> f)LQ(R(S,l)Cl(3’1>)> .
(5.6)
Proof. For ¢ € L? (R®Y, Clyy), f € L* (R®Y, Clgy)) and from (5.3) can be

given as:

2
IWafIP pagomcn ) = (Wofs W) pagoncr )

=<Ucwﬁmmmmmm>
= qu) (f ) f)LQ(R(S,l)Cl(&l))

2
= <C¢> ||f” LQ(R(S,I)CZ(SJ)) + <(f <Cl/1>17 f)L2(R(371)Cl(371))> .

Hence the proof.
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6. Inverse Clifford-wavelet transform in Cl3 )

Theorem 6.1. Let ¢ be an admissible Clifford-mother-wavelet and f, g satisfy the
admissibility conditions, then for any f € L? (R(?”l), Ol(&l)) can be decomposed as:

flz) = /W¢f (a,0, )¢ (a,0,b) C; dpd"b. (6.1)
G

Further (6.1) can also be represented from (3.16) as

f(x) = / (f.4(a,0,b)) 2o iy ¥ (@, ©,b) Cldpd'b. (6.2)
G

Proof. From (2.9) and (3.16), we get

e~

Wof Wat) s cn ) = | Wof (0.0.5) Weg (0,0,b) dpad'b
G

_ / / W f (,0,b) o on (x)g(x) dxdpe d'b

G RGB.1)
- / / Wy f (a,0,b) Yuob (X)g(x)d*bdu | d*x.
R(3,1) G

Using inner product relation (5.3), we get

<W¢f7 ng>L2(G,Cl(3’1)) = <f C¢’9>L2(R(371),Cl(3’1))' (63)

We use (3.16) in the left-hand-side of (6.3) and obtained as:

(FCuw: @) pwesn ciy,)) = </Wwf(a,@,b) Va0 (X) dﬂd4b79(x)>
G

L2(RGD,Clz 1))

(6.4)
As the inner product identity holds for every g € L? (R®Y, Cl31)) especially for
all basis elements of the Clifford module [13], we can conclude that

f (X) Cw = /Wwf (CL, @, b) @Z)a,@,b (X) d[J, d4b
G
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Assuming the inevitability of C,, thus obtain (6.1) as follows:
f(x) = /Wwf (a,0,b) Va0 (X) C,;ldu d'b.
G

And hence follows:

F(x) = / (f, 1 (@.0,)) paggon e ¥ (0,0, b) Cldpad'b.
G
Hence the proof.

Remark 6.1. Weak convergence of (6.1) explains that for all g € L? (R(3’1), Ol(gyl))
holds

</ Wy f (a,0,b)theep (x) C,' dud*d, g(w)>
G L2(RGD,Cl3 1))

converges to {f, g)LQ(R(S,l)’CZ(M)).

From [22] C;l = [C;l]; thus [13] analogously can be represented as:

f(x) = CJI /[¢a,®,b]<¢a,@,b,f>L2( dpd'b.

RGD,Cls 1))
G

Theorem 6.2. Reproducing kernel: For an admissible Clifford-mother-wavelet
¢ € L? (R®Y, Clsqy) reproducing kernel in L*(G;dX) can be defined as:

K(0,0,b:0,0b) = (Yoon C;l vy o1y ) (6.5)

L2(RGD,Cl3,1y)

Wy(a',0,b) = /Wwf(a,@,b)Kw(a,@,b;a',@',b')d}\. (6.6)
G
Proof. Substituting (6.1) in (3.16), we get
Wof(d,0' b)) = / / Wy f(a,0,b)tue,(x)Cy dA [wa,’e,vb/(x)}d‘lx

R(3:1) G

_ / W, f(a,©,b) / ¢a7@7b(x)C7;1[¢a/7@,7b/(x)}d4x X
G

R(3,1)

:/Wwf(a,@,b)Kw(a,@,b;a’,@’,b’)dA.
G
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Hence completes the proof.
7. Example
Example 7.1. Consider a Clifford-wavelet in Cl3 1) defined by

—E1W1T]1 —EW2T2—Ee3W3T3—€e4W4T4 . . J—
e —1<x,<1;p=1234

= 0; otherwise.

wa,(%,b(x) = (71)

Obtain Clifford-wavelet transform for f(x) = e*172t@stu, oo < x, < 0.

Solution. By applying Clifford-wavelet transform (3.16) and [3], we get
W’(/Jf ((l, @7 b)

/ / / w1+w2+x3+x4 e T E1W1T1 —C2WaT2 —E3W3 T3 —C4WaTY d4X
—1+b1 1+bo 1+b3 1+by

for m, = min(0, —1 + b,).
Further simplifying we get
Wd)f (CL, @7 b)

/ / / / 1 elwl) 12(1 eng) 11?3(1 63(.«)3) 14(1 64(.4)4 dml dx2d$3dx4
1+b1 1+bo 1+bs 1+b4
_ {/ a:1(1 elwl)diﬂl/ ew2(1762w2) dl’g/ 3 613(1—63w3)d:ﬂ3/ 4 61,4(17640.14) dﬂ)4}
a* |/ 14, “14bs ~14bs 14y
1 |:e:v1(161w1) |:6x2(162w2):|m2 |:613(163W3):|m3 |:6m4(1e4w4):|m4
a2 (1-ejwy) 1t (1 — esws) Cltby (1 — e3ws) Cltbs (1 — eqwy) Cl4b,
D

1 mp(l—epwp) _ e(bp—l)(l—epwp)
Wy f (a,0,b) = QH{ s

(1 — epwp)

Plot of scalar part psi(X1,X2,X3,X4) Plot of vector part psi(X1,X2,X3,X4)
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Plot of bivector Part psi(X1,X2,X3X4)

l

Plot of trivector Part psi(X1,X2.X3.X4) Plot of quadravector Part psi(X1,X2X3.X4)

14 44 % |
. al Y 4
VV i;‘? "1 I’* ; ‘/} )

Figure 1. Plot of ¢, 0 1(x) considering equation (7.1)

Example 7.2. Considering a Clifford-wavelet in Cl3 ;) defined by

6—61W1$1 €E2W2T2—E3W3T3—€E4W4T4 . 0 < Xp 27p _ 1 2 3 4
_ —e1W]T] —eawaT2 —e3W3T ewx.l
¢a,9,b(x) — T ClW1T1 2w T2 —E3W3T3 —e4Wy 4’5 S X, S 1 (72)

0; otherwise.

Obtain Clifford-wavelet transform for Gaussian function f(x) = e*ite3+e5+ai,
Solution. By applying Clifford-wavelet transform (3.15) and [3], we get

Wy f (a,0,b)

1 1/2+b1 9 ) 1/2+b2 ) )
= e“le " L d / e2e” 2 2 d
b

2
a bl 2

1/2+b3 9 1/2+b4 )
/ e¥3e BT g / efle T gy
b b

3

1 1+b1 ) ) 1+bo ) )
—— e“le " d / e*2e "2 2 gy

1/2+by 1/2+bo

1+b3 ) 1+by )
/ exg e—’LsUJ3ZB3 dx:)) / 61246—24W4:E4dx4
1/2+bs 1/2+by

4
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Thus
W¢f (aa @a b)

1/24b 1/2+b
1 /2+b1 ei(xl+elw1/2)27(w1/2)2dx1 / /2402 e,(IQ+62w2/2)27(w2/2)2d$2

2
a bl b2

1/2+b 1/2+b
y / s e(x3+83w3/2)2_(w;,/2)2dx3/ ‘ e,(m+e4w4/2)2—(w4/2)2dx4
b3 b4
_% 1/2+b1 e,(xl +elwl/2)2_(w1/2)2dx1 /1/2+52 67(12+32w2/2)2_(w2/2)2d:€2
a b1 b2
1/2+b3 2 (4 /9)2 1/2+4b4 encon /22— (wa /22
" / o~ (eates/2’—(wa/2) / (oo /D /22
b3 b4
Substituting y, = z, + (i,w,)/2 we get:
W'l/Jf ((l, @7 b) -

1/2+b1+(e1w1)/2

ew%/4+w§/4+w§/4+w2/4 b1+(e1w1)/2 o, o
5 (—e yl) dxy + e Yidr
a 0

0

ba+(eaw2)/2 ) 1/2+ba+(eaw2)/2 )
X / <—e_y2>dx2+/ e Y2dxs
0 0

1/2+b3+(€3w3)/2

b3+(63u}3)/2 ) )
X / (—e %) dxs + / e Ydxs
0
0

b4+(e4w4)/2 ) 1/2+b4+(64&)4)/2 )
X / (—e_y4)dx4+/ e Yidx,
0 0

1+b1+(e1w1)/2

6w%/4+w%/4+w§/4+w2/4 1/2+b1+(e1w1)/2 5 ,
5 / (—e’“) dri + / e Yidry
a 0

0

l/2+b2+€2u}2/2 1+b2+62u)2/2
—y2 —y2
X —e Y2 ) dxy + e 2dxy
0 0

1+bs+esws/2
1/2+b3+ezws/2 5 / )
X / (—e™%)dxs + / e Ydxs
0

0
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1/2+b4+64b.)4/2 ) 1+bs+esws /2 )
X / (—e‘y4)d$4+/ e Yidxy | .
0 0

Thus gives values in error function:

Wwf (CL, @7 b)

16 ew%/4+w§/4+w§/4+wi/4

[—erf (b + (eqwy) /2) 4+ erf (1/2 + by + (e1wq) /2)]

(ma)*
x [ erf (by + (eaws) /2) + exf (1/2 4 by + (eaws) /2)]
x [ erf (b + (esws) /2) + erf (1/2 + by + (esws) /2)]
X [—erf (by + (eaws) /2) + erf (1/2 + by + (eqws) /2)]
16 ewi/A+w3/A+ws [Atwi /4
_ o? [—erf (1/2+ by + (exw1) /2) + erf (14 by + (ewr) /2)]

x [—erf (1/2 4 by + (eaws) /2) + erf (1 + by + (eaw2) /2)]
x [—erf (1/24 bs + (esws) /2) + erf (1 + b3 + (esws) /2)]
X [—erf (1/2 4 by + (eqws) /2) + erf (1 + by + (eqws) /2)] .

Finally the results can be represented as:

eTpoiwp/4P=4
M(T)QH [—exf (b + (epwp) /2) + erf (1/2 + by + (egy) /2)]

p=1

Wy f (a,©,b) =

Xhoiwp /A=t
_16<T)2H [—erf (1/2 4 b, + (epwy) /2) + erf (1 + b, + (epwy) /2)] .

p=1

Hence the results.




318 South FEast Asian J. of Mathematics and Mathematical Sciences

Figure 2. Plot of 9,0 1(x) considering equation (7.2)

8. Applications

8.1. Fermionic field in Cl )

The spin (—1/2) of fermionic field is the Dirac field and considered as v, 0 p(X)
-fermionic wave-function in Cl31y. The equation of motion for a free spin (1/2)
particle is the Dirac equation given by:

(@'4Ra8x — m) Qﬂa,@,b(X) = 0. (81)

where m-fermionic mass, Ox-derivative in 4D. The solution of (8.1) are plane wave
solutions given by

cre ™
coe’™
Yaob(X) = | o ommik (8.2)
cpe™
. ce ™ coe™
where k1 = —eja34 cos(a) + ez sin(a) for u = Cmyky | and Vo= —— | are
cze ! cie™F

spinors, labelled by spin, s and spinor indices « € {1,2,3,4}.
Yo0b(x) and ¢, 0 b(y) obey the anticommutation relation:

{a0b(X), Yaob¥)} =0W(x — y)das. (8.3)
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The Feynman propagator for the fermion field considering Clifford-wavelet trans-
form of v, o p(x) is represented as:

Aw, (x-y) = (0 Wy ((x)(y)]0) - (8.4)

8.2. Klein—Gordon equation in Cl )
Klein-Gordon equation in natural units using [23]

(A + m*iw X) Y, 0b(x) =0 (8.5)

with the metric signature diag(—1,+1, +1,+1).

The solution
C5€m2elw1 T

CGe—m2 eaw2.T9

Va0p(X) = (8.6)

C7e—m2 e3ws. T3

CgeimQ eqwq.T4

And hence the general solution of wavelet function using Klein-Gorden equation is
given by
d4w 2

wa,G,b(X) = kg(w) / (27r)4€m law- X@Da@,b(w) (87)

R(3,1)

where ky(w) = cscecrcs.
This is the general solution to the Klein-Gordon equation in Cl3 1.

9. Conclusion

Authors have developed Clifford-wavelet transform in space-time algebra Cl s 1.
The properties of Clifford-wavelet transform are studied. Plancherel’s and Inver-
sion formula have been established. The study is supported with examples and
applications from Mathematical Physics.
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