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Abstract: In 2022, the concept of one-dimensional pseudo Chebyshev wavelets
was introduced by the authors. Building upon this research, the present article
extends the study to two-dimensional pseudo Chebyshev wavelets. It defines and
verifies the two-dimensional pseudo Chebyshev wavelet expansion for a functions of
two variables. The paper proposes a novel algorithm utilizing the two-dimensional
pseudo Chebyshev wavelet method to address computation problems in approxima-
tion theory. To demonstrate the validity and applicability of the results, the meth-
ods are illustrated through an example and compared with well-known Chebyshev
wavelet methods. The research includes error analysis and convergence analysis
for signals f belonging to the Lip

(α,β)

Ω2 (R) , where Ω2 is a finite connected domain
in R2, classes using these wavelets. Furthermore, the paper estimates the error of
approximation for a functions in the Lipschitz class using orthogonal projection
operators of the two-dimensional pseudo Chebyshev wavelets. These findings rep-
resent significant advancements in wavelet analysis.
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1. Introduction and Preliminaries

Wavelets have garnered significant interest from the mathematical community
and researchers across a wide range of scientific and technological disciplines since
their emergence in the early 1980s. As a result of this heightened interest, numer-
ous researchers, including Daubechies [14], Chui [12], Morlet et al. [36], Meyer [34],
Strang [46], Natanson [37], Chui [13], Daubechies and Lagarias [15], Walter [50,
51], Islam et al. [17], Mohammadi [35], Venkatesh [49], Keshavarz et al. [18], Lal
et al. [19, 20, 21, 22, 23, 25, 26, 27], Bastin [1], Biazar et al. [4], Babolian and
Fattahzadeh [2, 3] have made notable contributions to wavelet analysis as well as
various areas of mathematics and mathematical sciences. Wavelets have experi-
enced significant growth in conjunction with Fourier analysis and harmonic theory,
owing to the influence of approximation theory and fractals. Researchers such as
Strang [45], Lal et al. [28, 29, 30, 31, 32], Rehman and Siddiqi [40] among others,
have actively worked in this direction and have made substantial contributions to
the application of wavelets in various fields of science and technology. In recent
years, the polynomials have emerged as key players in the realm of approximation
theory and using it in the developing of new wavelets. Their increasing promi-
nence is attributed to their versatility in representing and solving a wide array of
problems across applied and theoretical mathematics (see [9, 10, 11, 16, 38]).

The natural inclination when working with wavelets is to seek complete or-
thonormal bases for the Hilbert space L2 (R) that possess qualities reflecting the
applications of translations and dilations. Considering these observations, orthog-
onal functions play a crucial role in the construction of new wavelets. The ap-
proach to utilizing wavelets involves transforming complex underlying problems
into simpler approximations using truncated orthogonal functions. They are sev-
eral sets of orthogonal functions in L2 (R). Among the various sets of orthogonal
functions, one notable example is the Chebyshev polynomials. The Chebyshev
polynomials Tm(t); m ≥ 0, where 0 ≤ t ≤ 1, is numerically more effective
see [5, 7, 33, 42, 43, 44]. The pseudo Chebyshev functions of fractional degree is
introduced by Ricci [41] and some of its important properties like orthogonality
and more many studied by Cesarano and Ricci [8], Brandi and Ricci [6]. Lal et
al. [24] introduced the pseudo Chebyshev wavelet for the first time in June 2022.
These wavelets have a wide range of applications in Mathematics and Mathematical
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Sciences, especially in the field of fractals, owing to their inherent characteristics.
Fractals, as described by Lal et al. [24], are mathematical objects that exhibit

continuity throughout their structure but lack differentiability at any point. The
fractional Brownian motion, complex Bernoulli spiral, Brownian trajectories, typ-
ical Feynman path, and turbulent fluid motion are all associated with irregular
fractals. These phenomena exhibit complex and non-smooth structures, character-
istic of fractal behaviour. Irregular fractals are characterized by a local Lipschitz
condition at every point within any finite interval. This condition ensures that the
fractal exhibits a certain degree of regularity and smoothness, albeit with variations
and complexities that define its fractal nature. This fact is to motivate the inspi-
ration for considering the approximation of functions belonging to Lipschitz class
via the two-dimensional pseudo Chebyshev wavelet. But till now no work seems to
have been done to obtain the error of a signals f belonging to Lipschitz class and
its extension into the two dimensional pseudo Chebyshev wavelet expansion.

1.1. Functions of Lip
(α,β)

Ω2 (R)
A signal f : Ω2 → R where Ω = [0, 1) , is said to be signal of Lip

(α,β)

Ω2 (R) class

i.e. f(x, y) ∈ Lip
(α,β)

Ω2 (R) ,

if there exists a non negative real number κ such that

|f(x+ t, y + u)− f(x, y)| = κ (|t|α + |u|β)
= O(|t|α + |u|β), for 0 < α, β ≤ 1, (see [48]) .

Example 1.1. Define a signal f : Ω2 → R such that

f(x, y) = x1/2 + y1/2 + y3/2 + x5/2 ∀ (x, y) ∈ Ω2 = (0, 1]× (0, 1] .

Then f ∈ Lip
(1/2,1/2)

Ω2 (R).

1.2. Two dimensional pseudo Chebyshev wavelets
In the recent research article Lal et al. [24] defined the notion of one dimen-

sional pseudo Chebyshev wavelets with the help of the pseudo Chebyshev functions
Tm+1/2(x) of indices m+1/2. The one dimensional pseudo Chebyshev wavelets are
given by

ψn,m(x) := ψ(k,n,m)(x)

=


√

2k+1

π
Tm+1/2(2

kx− 2n+ 1), for n−1
2k−1 ≤ x ≤ n

2k−1 ,

0 otherwise, where m ≥ 0, n = 1, 2, · · 2k−1 and k ∈ N,
(more detail see [24]) .
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This definition of pseudo Chebyshev wavelets ψn,m is generalized to introduce two
dimensional pseudo Chebyshev wavelets ψ(n,m;n′,m′) as follows:

ψ(n,m;n′,m′)(x, y) := ψ(k,k′:n,m;n′,m′)(x, y) = ψ(k,:n,m)(x)× ψ(k′:n′,m′)(y)

= ψ(n,m)(x)× ψ(n′,m′)(y)

=


2
√

2k+k′

π
Tm+1/2(2

kx− 2n+ 1)Tm′+1/2(2
k′y − 2n′ + 1),

for n−1
2k−1 ≤ x ≤ n

2k−1 , & n′−1
2k′−1 ≤ y ≤ n′

2k′−1 ,

0, otherwise,
where m,m′ ≥ 0, n = 1, 2, · · 2k−1 n′ = 1, 2, · · 2k′−1 and k, k′ ∈ N,

where,

Tm+1/2(x) = cos ((m+ 1/2) (arc cosx)) m = 0, 1, 2, · · · , and,

Tm′+1/2(x) = 2xT(m′−1/2)(x)− T(m′−3/2)(x), with T±1/2(x) =

√
1 + x

2
, m′ ∈ N.

1.3. Two dimensional pseudo Chebyshev wavelet series
A signal f ∈ L2

Ω (R) where Ω = [0, 1) is an expanded by one dimensional
pseudo Chebyshev wavelet series as follows:

f =
∞∑
n=1

∞∑
m=0

α(n,m)ψ(n,m) where α(n,m) =

∫
f(t)ψ(n,m)(t)ωk,n(t)dt

=
∞∑
n=1

∞∑
m=0

⟨f, ψn,m⟩ωk,n
ψn,m, (see [39]) .

If f ∈ L2
Ω2 (R) be a signal, then the two dimensional pseudo Chebyshev wavelet

series expansion is given by

f =
∞∑
n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

α(n,m;n′,m′)ψ(n,m;n′,m′), (1.1)

where α(n,m;n′,m′) =

∫
Ω2

f(x, y)ψn,m(x)ωk,n(x)ψn′,m′(y)ωk′,n′(y)dxdy.

1.4. Orthogonal Projection Operator
An orthogonal projection operator is a surjective map P f

n : L2
Ω → Vn given by

P f
n =

∞∑
m=0

α(n,m)ψ(n,m), where n = 1, 2, 3, · · · 2k−1, k ∈ N,
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=
∞∑

m=0

〈
f, ψ(n,m)

〉
ωk,n

ψn,m(t) where α(n,m) =

∫
Ω

f(t)ψ(n,m)(t)ωk,n(t)dt, (see[47])

The two dimensional orthogonal projection operator P f
(n,n′) : L

2
Ω2 → V(n,n′) is given

by

P f
(n,n′) =

∞∑
m′=0

∞∑
m=0

α(n,m;n′,m′)ψ(n,m;n′,m′),

=
∞∑

m=0

〈
f, ψ(n,m;n′,m′)

〉
ω(k,n;k′,n′)

ψ(n,m;n′,m′),

where αn,m =
∫
Ω2

f(t, u)ψn,m;n′,m′(t, u)ωk,n;k′,n′(t)dtdu, n = 1, 2, 3, · · · 2k−1 n′ =

1, 2, 3, · · · 2k′−1, and k, k′ is fixed positive integers.

1.5. Function Approximation

A signal f ∈ L2
Ω2 (R) , may be expanded in terms of the two dimensional

pseudo Chebyshev wavelet series expansion by equation (1.1).

If there exist a signal f0 ∈ L2
Ω2 (R) , such that

f ≈ f0 =
2k−1∑
n=1

M−1∑
m=0

2k
′−1∑

n′=1

M ′−1∑
m′=0

αn,m;n′,m′ψn,m;n′,m′ = ⟨A,Ψ⟩

= AτΨ where Aτ indicates transpose of a matrix A,

where A and Ψ are 2k−1M2k
′−1M ′ × 1 matrices and ⟨A,Ψ⟩ is an inner product of

column vectors A and Ψ, then this f0 is called approximation of signal f .

1.6. Error of Wavelet Approximation

The error of wavelet approximation Ef

(2k−1,M)
of a signal f ∈ L2

Ω (R) using the

operators P f

(2k−1,M)
is

Ef

(2k−1,M)
= inf

P f

(2k−1,M)

∥P f

(2k−1,M)
− f∥2.

If Ef

(2k−1,M)
→ 0 as k → ∞ or M → ∞ then P f

(2k−1,M)
is called the best wavelet

approximation of a function f ∈ L2
Ω2 (R) (see[52]).
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The error of two dimensional pseudo Chebyshev wavelet approximation
Ef

(2k−1,M ;2k′−1,M ′)
of a function f ∈ L2

Ω2 (R) using the orthogonal projection opera-

tors P f

(2k−1,M ;2k′−1,M ′)
is

Ef

(2k−1,M ;2k′−1,M ′)
= inf

P f

(2k−1,M ;2k
′−1,M′)

∥P f

(2k−1,M ;2k′−1,M ′)
− f∥2

whereM,M ′ and k, k′ ∈ N.

If Ef

(2k−1,M ;2k
′−1,M ′)

→ 0 as k, k′ → ∞ or M,M ′ → ∞ then P f

(2k−1,M ;2k
′−1,M ′)

is called the best wavelet approximation for the signal f ∈ L2
Ω2 (R) of an order(

2k−1,M ; 2k
′−1,M ′).

1.7. Lemmas
The following Lemmas are required hereafter.

Lemma 1.1. (Cauchy Integral Test) Let N be an integer and a f : [N,∞) → R
be a real valued monotonic decreasing signal. Then

∞∫
N

f(t)dt ≤
∞∑
N

f(n) ≤ f(N) +

∞∫
N

f(t)dt.

Lemma 1.2. If f be a bounded real valued measurable signal on the non negative
countably additive finite measurable space (X,ℑ, µ) and Y be a measurable subset
of X. Then there exist κ0 > 0 such that

|f(t0, u0)| ≤ κ0µ(X ×X ′)µ(Y × Y ′) a.e., where (t0, u0) ∈ Y × Y ′.

In particular, if

(X ×X ′) = ([0, 1)× [0, 1)) and (Y × Y ′) =

[
n− 1

2k−1
,
n

2k−1

]
×
[
n′ − 1

2k′−1
,
n′

2k′−1

]
,

where n = 1, 2, 3, · · · , 2k−1, n′ = 1, 2, 3, · · · , 2k′−1. Then

f

(
2n− 1

2k
,
2n′ − 1

2k′

)
≤ 4κ0

2k2k′
.

For the proof of Lemma 1.2, (see [24]) .
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2. Main Results
In this section, we develop some important theorem ascertaining that two di-

mensional pseudo Chebyshev wavelets series expansions for the Lipschitz class of
signals.

Theorem 2.1. Let f ∈ L
(α,β)

Ω2 (R) and its two dimensional pseudo Chebyshev
wavelet series can be expanded as

∞∑
n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

〈
f, ψ(n,m;n′,m′)

〉
ω(k,n;k′,n′)

ψ(n,m;n′,m′).

Then the order of wavelet approximation

P f

2k,M ;2k′ ,M ′ =
∑∑∑∑

αn,m;n′m′ψ(n,m;n′,m′) coefficient is

∣∣∣αf

2k,m;2k′ ,m′

∣∣∣ = O

((
1

2k(α+1)
+

1

2k′(β+1)

)(
1(

m+ 1
2

) (
m′ + 1

2

))) .
Proof. Consider a signal f(x, y) ∈ L2

Ω2 (R) , and its two dimensional pseudo Cheby-
shev wavelet series

f(x, y) =
∞∑
n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

αn,m;n′,m′ψn,m(x)ψn′,m′(y),

where αn,m;n′,m′ =

∞∫
−∞

∞∫
−∞

f(x, y)ψn,m(x)ωk,n(x)ψn′,m′(y)ωk′,n′(y)dxdy,

and the sequence of partial sums

S(N,M ;N ′,M ′)f (x, y) =
N∑

n=1

M−1∑
m=0

N ′∑
n′=1

M ′−1∑
m′=0

αn,m;n′,m′ψn,m;n′m′(x, y),

where ψn,m;n′m′(x, y) = ψn,m(x)ψn′,m′(y).

Next

f(x, y)− S(N,M ;N ′,M ′)f(x, y) =

 ∞∑
n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

−
2k−1∑
n=1

M−1∑
m=0

2k
′−1∑

n′=1

M ′−1∑
m′=0


αn,m;n′,m′ψn,m;n′m′(x, y),

=

(
N∑

n=1

(
M−1∑
m=0

+
∞∑

m=M

)
N ′∑

n′=1

(
M ′−1∑
m=0

+
∞∑

m=M ′

))
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+

(
∞∑

n=N+1

(
M−1∑
m=0

+
∞∑

m=M

)
∞∑

n′=N ′+1

(
M ′−1∑
m=0

+
∞∑

m=M ′

))

−

(
N∑

n=1

M−1∑
m=0

N ′∑
n′=1

M ′−1∑
m′=0

)
αn,m;n′,m′ψn,m;n′m′(x, y).

Now by the orthonormal property of the {ψn,m;n′,m′} in the disjoint intervals[
n−1
2k−1 ,

n
2k−1

]
×
[

n′−1
2k′−1 ,

n′

2k′−1

]
and take N = 2k−1, N ′ = 2k

′−1 k, k′ ∈ N, we have

∥ f(x, y)− S2k,M ;2k′ ,M ′f(x, y) ∥22=
2k−1∑
n=1

∞∑
m=M

2k
′−1∑

n′=1

∞∑
m=M ′

|αn,m;n′,m′|2

Since

αn,m;n′,m′ =

∞∫
−∞

∞∫
−∞

f(x, y)ψn,m;n′,m′(x, y)ωk,n;k′,n′(x, y)dxdy,

=

∞∫
−∞

∞∫
−∞

f(x, y)− f

(
2n− 1

2k
,
2n′ − 1

2k′

)
ψn,m;n′,m′(x, y)ωk,n;k′,n′(x, y)dxdy

+ f

(
2n− 1

2k
,
2n′ − 1

2k′

) ∞∫
−∞

∞∫
−∞

ψn,m;n′,m′(x, y)ωk,n;k′,n′(x, y)dxdy.

Now, f(x, y) ∈ Lip
(α,β)

Ω2 and sup
(
2kt− 2n+ 1

)
= 1 ∀ t ∈

(
n−1
2k−1 ,

n
2k−1

]
and using

Lemma 1.2, we have,

∣∣αn,m;n′,m′
∣∣ ≤ (κ( 1

2kα
+

1

2k′β

)
+

4κ0
2k2k′

) n

2k−1∫
n−1

2k−1

n′

2k
′−1∫

n′−1

2k
′−1

∣∣ψn,m;n′,m′(x, y)ωk,n;k′,n′(x, y)
∣∣ dxdy.

If k ̸= k′ or n ̸= n′ then ψn,m;n′,m′ = 0

∣∣αn,m;n,m′
∣∣ ≤ ( κ

2kα
+

κ

2kβ
+

4κ0
2k2k

) n

2k−1∫
n−1

2k−1

n

2k−1∫
n−1

2k−1

∣∣ψn,m;n,m′(x, y)ωk,n;k,n(x, y)
∣∣ dxdy,

≤ max {κ, 2κ0}
(

1

2kα
+

1

2kβ
+

2

2kα2kβ

) n

2k−1∫
n−1

2k−1

n

2k−1∫
n−1

2k−1

∣∣ψn,m;n,m′(x, y)ωk,n;k,n(x, y)
∣∣ dxdy,
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≤ 2max {κ, 2κ0}
(

1

2kα
+

1

2kβ

) n

2k−1∫
n−1

2k−1

n

2k−1∫
n−1

2k−1

|ψn,m;n,m′(x, y)ωk,n;k,n(x, y)| dxdy.

Next,

n

2k−1∫
n−1

2k−1

ψn,j(t)ωk,n(t)dt =

√
2k+1

π

n

2k−1∫
n−1

2k−1

Tj+1/2(2
kt− 2n+ 1)ω(2kt− 2n+ 1)dt,

=
1

2k

√
2k+1

π

π∫
0

Tj+1/2(cosθ)dθ =
(−1)j

2k

√
2k+1

π

1

j + 1/2
.

Therefore,

|αn,m;n,m′ | ≤ 2max {κ, 2κ0}
(

1

2kα
+

1

2kβ

)
n

2k−1∫
n−1

2k−1

|ψn,m(x)ωk,n(x)| dx

n

2k−1∫
n−1

2k−1

|ψn,m′(y)ωk,n(y)| dy,

≤ 2max {κ, 2κ0}
(

1

2kα
+

1

2kβ

)
1

2k

√
2k+1

π

1

(m+ 1/2)

1

2k

√
2k+1

π

1

(m′ + 1/2)
,

=
4

π
max {κ, 2κ0}

1

2k

(
1

2kα
+

1

2kβ

)
1

(m+ 1/2) (m′ + 1/2)
,

=
4

π
max {κ, 2κ0}

(
1

2k(α+1)
+

1

2k(β+1)

)
1

(m+ 1/2) (m′ + 1/2)
.

Hence,

∣∣α2k,m;2k′ ,m′

∣∣ = O

((
1

2k(α+1)
+

1

2k′(β+1)

)
1

(m+ 1/2) (m′ + 1/2)

)
,

where 0 < α, β ≤ 1.

Thus the Theorem 2.1 is completely established.

Theorem 2.2. Let a function f : Ω2 → R be a real valued function belongs to
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Lipschitz class and its two dimensional pseudo-Chebyshev wavele series

∞∑
n=1

∞∑
m=0

⟨f, ψn,m;n′,m′⟩ωk,n;k′,n′
ψn,m;n′,m′(x, y).

Then the error E2k−1,M ;2k′−1,M ′f of function f(x, y) converges uniformly to 0.
More explicitly,

∣∣E2k−1,M ;2k′−1,M ′f
∣∣ = O

( 1

2kα
+

1

2k′β

)
1√(

M + 1
2

) (
M ′ + 1

2

)
 ,

for 0 < α, β ≤ 1.

Proof. Following the proof of theorem 2.1 we have

0 ≤∥ E2k−1,M ;2k′−1,M ′f ∥2≤ 1

π2

(
1

2kα
+

1

2kβ

)2 ∞∑
m=M

∞∑
m′=M ′

1

(m+ 1/2)2 (m′ + 1/2)2

≤ 1

π2

(
1

2kα
+

1

2kβ

)2
1

(M + 1/2)2 (M ′ + 1/2)2
by Lemma 1.1

→ 0 as M or M ′ → ∞.

So error function uniformly converges to 0, and more over,∣∣E2k−1,M ;2k′−1,M ′f
∣∣ = O

((
1

2kα
+

1

2kβ

)
1√

(M + 1/2) (M ′ + 1/2)

)
Thus the Theorem 2.2 is completely established.

3. Corollaries
In this section, very important corollaries related to Theorem 2.1 and Theorem

2.2, have been established in the following forms:

Corollary 3.1. If f ∈ Lip
(α,β)
((0,1]×(0,1])(R) and it can be expanded as an infinite series

of the pseudo Chebyshev wavelets for m = 0 and m′ = 0 is given by

f(x, y) =
∞∑
n=1

⟨f, ψn,0;n′,0⟩ωk,n;k′,n′
ψn,0;n′,0,

then the series converges uniformly to f . More explicitly, the order of wavelet
coefficients an,m:n′,m′ in the series expansion satisfy

|an,m′n′,m| = O

(
1

Nα
+

1

N ′β

)
for 0 < α, β ≤ 1.
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Corollary 3.2. If f ∈ Lip
(α,β)
((0,1]×(0,1])(R) and it can be expanded as an infinite series

of the pseudo Chebyshev wavelets for k = k′ = 1 is given by

f(x, y) =
∞∑
n=1

⟨f, ψ1,m;1,m′⟩ω1,1;1,1
ψ1,m;1,m′ ,

then the series converges uniformly to f . More explicitly, the order of wavelet
coefficients an,m:n′,m′ in the series expansion satisfy

|an,m;n′,m′| = O

(
1

2α
+

1

2β

)(
1

m+ 1/2
+

1

m′ + 1/2

)
0 < α, β ≤ 1.

Corollary 3.3. If f is single variable real valued function in the class Lipα(0,1](R)
and it can be expanded as an infinite series of the pseudo Chebyshev wavelets for
k = n = 1 is given by

f(x) =
∞∑

m=1

⟨f, ψ1,m⟩ω1,1
ψ1,m,

then the series converges uniformly to f . More explicitly, the order of wavelet
coefficients a1,m in the series expansion satisfy

|an,m| = O

(
1

2α (m+ 1/2)

)
0 < α ≤ 1.

Corollary 3.4. If f ∈ Lip
(α,β)
((0,1]×(0,1])(R), then the pseudo Chebyshev wavelet error

E2k−1,0;2k
′−1,0(f) of a function f by P2k−1,0;2k

′−1,0f satisfy

∣∣E2k−1,0;2k′−1,0(f)
∣∣ =

(
min

P
2k−1,0;2k

′−1,0
f
||f − P2k−1,0;2k−1,0f ||

)

= O

(
1

2kα+3
+

1

2kβ+3

)
for 0 < α, β ≤ 1.

Corollary 3.5. If f ∈ Lip
(α,β)
((0,1]×(0,1])(R), then the pseudo Chebyshev wavelet error

E1,M ;1,M ′(f) of a function f by P1,M ;1,M ′f satisfy

|E1,M ;1,M ′(f)| =

(
min

P1,M ;1,M′f
||f − P1,M ;1,M ′f ||

)
= O

(
1

2α+1
+

1

2β+1

)(
1√

(M + 1/2) (M ′ + 1/2)

)
for 0 < α, β ≤ 1.
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Corollary 3.6. If f is a single real valued function in the class Lipα(0,1](R), then
the Pseudo Chebyshev wavelet error E1,M(f) of a function f by P1,Mf satisfy

E1,M(f) =

(
min
P1,Mf

||f − P1,Mf ||
)

= O

(
1

2α+1 (M + 1/2)

)
for 0 < α ≤ 1.

4. Effectiveness of the pseudo Chebyshev wavelet
In this section, we calculate the approximation of a function and it effectiveness

show by an example, more over this results are compared with pseudo Chebyshev
wavelet and Chebyshev wavelet approximation method.

4.1. Illustrative Examples

f(x) =

{
2x1/2 − 3x3/2 − 5x5/2 + 7x7/2 for 0 ≤ x ≤ 1,
0 otherwise.

by the pseudo-Chebyshev wavelet approximation method.
In the Corollary 3.3, if k = 1, then n = 1 and

f 1,M
0 (x) =

M−1∑
m=0

⟨f, ψ1,m⟩ω1,1
ψ1,m(x) =

M−1∑
m=0

a1,mψ1,m(x)

& a1,m =

∫ 1

0
f(x)ψ1,m(x)ω(x)dx∫ 1

0
ψ1,m(x)ψ1,m(x)ω(x)dx

.

Next, we evaluate f 1,1
0 (x), f 1,2

0 (x), f 1,3
0 (x), f 1,4

0 (x), E1,1(f)(x), E1,2(f)(x), E1,3(f)(x),

E1,4(f)(x) and f
1,M
0 (x) & E1,M(f)(x). If,

AM
1 = (a1,0, a1,1, a1,2, · · · , a1,M−1)

τ and ΨM
1 = (ψ1,0, ψ1,1, ψ1,2, · · · , ψ1,M−1)

τ

then

f0 =
∞∑

m=0

a1,mψ1,m =
∞∑

m=0

⟨f, ψ1,m⟩ω1,1
ψ1,m = lim

M→∞

M−1∑
m=0

a1,mψ1,m,

= lim
M→∞

〈
AM

1 ,Ψ
M
1

〉
= lim

M→∞

((
AM

1

)τ
ΨM

1

)
= lim

M→∞
f 1,M
0 ,

where a1,m = ⟨f, ψ1,m⟩ω1,1
=

1∫
0

f(t)ψ1,m(t)ω1,1(t)dt.

Now,

a1,0 =

1∫
0

f(t)ψ1,0(t)ω1,1(t)dt ≈ 0.4016,
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a1,1 =

1∫
0

f(t)ψ1,1(t)ω1,1(t)dt ≈ −0.0138,

a1,2 =

1∫
0

f(t)ψ1,2(t)ω1,1(t)dt ≈ 0.4016,

a1,3 =

1∫
0

f(t)ψ1,3(t)ω1,1(t)dt ≈ 0.0969,

a1,4 =

1∫
0

f(t)ψ1,4(t)ω1,1(t)dt = 0,

a1,5 = · · · = a1,M−1 = 0, forM ≥ 5,

then AM
1 = (0.4016,−0.0138, 0.4016, 0.0969, 0, 0, · · · , 0)τ .

Since f 1,M
0 =

M−1∑
m=0

a1,mψ1,m =
(
AM

1

)τ
ΨM

1 and E1,M(f) =
∞∑

m=M

a1,mψ1,m.

Therefore

f 1,M
0 (x) ≈ 0.4015715755 ψ1,0(x)− 0.01384729574 ψ1,1(x) + 0.4015715755 ψ1,2(x)

+ 0.09693106944 ψ1,3(x) + 0 + 0 + · · ·+ 0,= f 1,4
0 (x) = f 1

0 (x) ≈ f(x),

and the energy of function f & f 1,M
0 are given by

∥ f ∥22 = ⟨f, f⟩ω1,1
=

1∫
0

|f(t)|2 ω (2t− 1) dt ≈ 0.3321068405772413

= lim
M→∞

M∑
m=0

|a1,m|2 =∥ f 1
0 ∥22, and E1,M(x) ≈ 0, for M ≥ 4.
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x f(x) f 1,1
0 (x) E1,1(f)(x) f 1,2

0 (x) E1,2(f)(x) f 1,3
0 (x) E1,3(f)(x) f 1,4

0 (f)(x) E1,4(f)(x)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1000 0.5240 0.1433 0.3807 0.1561 1.3679 0.6089 0.0849 0.5240 0.0000
0.2000 0.5617 0.2026 0.3591 0.2180 1.3437 0.5504 0.0113 0.5617 0.0000
0.3000 0.4995 0.2482 0.2114 0.2636 0.1959 0.3728 0.0867 0.4995 0.0000
0.4000 0.2833 0.2866 0.0032 0.3004 0.0171 0.1743 0.1090 0.2833 0.0000
0.5000 0.0884 0.3204 0.2320 0.3315 0.2431 0.0110 0.0773 0.0884 0.0000
0.6000 -0.0682 0.3510 0.4192 0.3583 0.4264 0.0770 0.0088 -0.0682 0.0000
0.7000 -0.1247 0.3791 0.5038 0.3817 0.5064 0.0580 0.0666 -0.1247 0.0000
0.8000 -0.0143 0.4053 0.4196 0.4052 0.4168 0.0945 0.1088 -0.0143 0.0000
0.9000 0.3349 0.4299 0.0950 0.4210 0.0861 0.4038 0.0689 0.3349 0.0000
1.0000 1.0000 0.4531 0.5469 0.4375 0.5225 0.8906 0.1094 1.0000 0.0000

Table 1: Comparison between truncated f 1,M
0 and exact f

Figure 1: Graph of
(
f, f 1,1

0

)
,
(
f, f 1,2

0

)
,
(
f, f 1,3

0

)
,
(
f, f 1,4

0

)
.

Figure 2: Graph of f and truncated f 1,M
0 for M = 1, 2, 3, 4, & k = 1.
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CW CW PCW PCW CW CW PCW PCW

x f(x) f 1,3
0 (x) E1,3(f)(x) f 1,3

0 (x) E1,3(f)(x) f 1,4
0 (x) E1,4(f)(x) f 1,4

0 (f)(x) E1,4(f)(x)
0.0000 0.0000 -0.0721 0.0721 0.0000 0.0000 -0.0817 0.0817 0.0000 0.0000
0.1000 0.5240 0.0839 0.4401 0.6089 0.0849 0.0920 0.4320 0.5240 0.0000
0.2000 0.5617 0.1227 0.4390 0.5504 0.0113 0.1308 0.4309 0.5617 0.0000
0.3000 0.4995 0.0786 0.3810 0.3728 0.0867 0.0793 0.3802 0.4995 0.0000
0.4000 0.2833 -0.0144 0.2977 0.1743 0.1090 -0.0210 0.3044 0.2833 0.0000
0.5000 0.0884 -0.1220 0.2104 0.0110 0.0773 -0.1316 0.2200 0.0884 0.0000
0.6000 -0.0682 -0.2101 0.1419 0.0770 0.0088 -0.2167 0.1486 -0.0682 0.0000
0.7000 -0.1247 -0.2445 0.1198 0.0580 0.0666 -0.2438 0.1191 -0.1247 0.0000
0.8000 -0.0143 -0.1910 0.1767 0.0945 0.1088 -0.1829 0.1686 -0.0143 0.0000
0.9000 0.3349 -0.0155 0.3504 0.4038 0.0689 -0.0074 0.3423 0.3349 0.0000
1.0000 1.0000 0.3161 0.6839 0.8906 0.1094 0.3065 0.6935 1.0000 0.0000

Table 2: Comparison between truncated f 1,M
0 &f using PCW & CW

Figure 3: Graph of exact f and f 1,M
0 using PCW & CW
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Figure 4: Graph of E1,1(x), E1,2(x), E1,3(x), E1,4(x), by PCW and CW .

5. Conclusions

(i) Since E2k−1,M ;2k′−1,M ′f → 0 as k, k′ → ∞ or M,M ′ → ∞ in above
results. Therefore the wavelet approximations determined in this results are
best possible in the wavelet analysis [52].

(ii) Some most important Corollaries 3.1, 3.2, 3.3 and 3.4, 3.5, 3.6 have been
derived from our main Theorems 2.1 and 2.2 respectively.

(iii) Independent proofs of these Corollaries 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 can be
developed for specific contributions of these estimates in wavelet analysis.

(iv) Figures (1, 2, 3 & 4) and Tables (1&2) are shows that the pseudo Chebyshev
wavelet method is more effective rather than Chebyshev wavelet method in
the case of fractional degree.

(v) Figures (1, 2, 3&4) are shows that how to error functions are rapidly con-
verges to zero functions by the pseudo Chebyshev wavelet method rather
than Chebyshev wavelet method in this case.
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