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Abstract: Here in this paper, we have an idea of statistical boundedness for a
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1. Introduction

Although the credit of introducing the notion of statistical convergence was
given independently to Fast [7] and Steinhaus [27], but the initial idea of this
notion, i.e., “almost convergence” was given by Zygmund [31] in 1935 in his book
“Trignometric Series”. After these studies, Schoenberg [26] studied this concept
as a summability method. Presently, this field has become a main choice of many
researchers. The concept of statistical convergence has been extended for arbitrary
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metric space and this has provided a general framework for summability in metric
spaces. In order to get a deep insight into statistical convergence, one may refer to
[3-7, 9-11, 13-14, 16-17, 22-24, 28-30] where many more references can be found.
The reader may also refer to the recent textbooks [1] and [18] for functional analysis,
summability theory, sequence spaces and related topics.

S. Matthews [15] in 1994, originally introduced the notion of partial metric
which is a generalized version of metric. In this generalization, each object does
not necessarily to have zero distance from itself, i.e., p(u, u) may be non zero. An
open ball/open sphere for a partial metric space (X, ) defined by Matthews [15]
as Bf(u) ={v € X : p(u,v) < e} fore > 0 and u € X. Unlike metric spaces, some
open balls in partial metric space may be empty. For example, if ¢(u,u) > 0, then
Bz(uw(u) = 0.

Simon O. Neil [19] stepped into partial metric space from a new perspective and
allow to take negative values for the partial metric function. He slightly modified
the definition of open ball to make it (always) non-empty. For any u € X and
e € R (¢ > 0), he defined open ball as B?(u) = {v € X : o(u,v) < ¢p(u,u) + }.
Simon studied (X, ) not as set X with a partial metric function ¢, but (using
the metric d induced on X, by the partial metric ¢ of X) as a bi-topological space
(X, T[¢], T[d]) where T[] and T'[d] are partial metric topology and metric topology
respectively. Simon admitted that though it is difficult to accept that bi-topological
approach is correct context to view partial metric space and we certainly far away
from generalizations. In his work, he obtained very surprisingly and new results.

Many more researchers have explored the above concept to enrich the theory
of sequence spaces, for instance one may refer to [2, 12, 15, 19, 21].

Before proceeding further, we recall some definitions and notations, which will
be frequently used throughout the paper.

Definition 1.1. ([20]) The natural density 6(A) of A C N is defined as

o1
d(A) = ng_@acard({m € A:m <n}),
provided the limit exists, and 6(A) = 0 for finite A. Also (N — A) =1 —6(A).

Definition 1.2. ([8]) A property P for (u,,) is said to be hold good for almost all
m written as a.a. m. if the set of indices m, where property fails to hold for .,
has natural density 0, i.e., if 5({m € N : w,, does not satisfy property P}) = 0,
then we say property P hold for a.a. m.

Definition 1.3. ([25]) A sequence (u,,) is statistically convergent to ug € R if for
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e >0,
d({m e N: |uy, —ug| > €}) =0, ie., |u, —u| <e aa m.,

1

i.e., im —card({m < n: |u,, —uo| > €}) = 0. And uq is referred as statistical limit
n—oon

of (um). We write u,, — ug(S) and by S(c) we denote the set of all statistically

COTL’U@?”gGTLt real sequences.

Theorem 1.4. ([25]) A real sequence (uy,) is statistically convergent to ug € R
iff there exists T = {m; < mg < ... < my...} C N such that 6(T) = 1 and

lim u,,, = up.
n—oQ

Fridy and Orhan [10], added the idea of statistical boundedness to the theory
of statistical convergence as follow:

Definition 1.5. ([10]) A sequence (u,,) is statistically bounded if 6({m € N :
|um| > M}) =0, for some M >0, i.e., (uy) is bounded for a.a. m.

Theorem 1.6. ([3]) A sequence (u,) is statistically bounded if and only if there
exists T = {my; < my < ... < my...} C N such that §(T) = 1 and {um, }nen s
bounded.

Definition 1.7. ([17]) Let X # 0. A function ¢ : X x X — R satisfying the
following

metric on X and (X, ) is called a partial metric space
The following points are worth observing for a partial metric space (X, ¢):
(1) (u,u) is not necessarily zero for u € X.

(2) Every metric is partial metric, but a partial metric need not be a metric (be-
cause for a metric d, it is necessary that d(u,u) = 0).

Definition 1.8. (Subspace) Let (X, ) and (Y,¢') be two partial metric spaces.
We say (Y, ') is partial metric subspace of (X, @) if

(i)Y CcX
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(i) ¢ is a restriction of ¢ from X to Y, i.c., o (u,v) = p(u,v) for u,v €Y.

In the present paper, we are going to explore partial metric space (X, ¢) with
reference to only its partial metric ¢ (without using bi-topological approach) with-
out rely upon induced metric d. Here we are considering the sequences from a
partial metric space (X, ) where X is an arbitrary set. Whenever we use or
turn to statistical concepts for real line, we use them by quoting in usual sense.
In this work, we are following the approach of Matthews [15], i.e., considering
¢(u,u) > 0 for all w € X. An open sphere centred on u € X and radius (> 0) is
taken as Bf(u) ={v € X : p(v,u) < ¢(u,u) + €}.

Throughout the paper, by (X, ¢) we mean a partial metric space with abbre-
viation p.m.s.

2. Statistical convergence and statistical boundedness in (X, ¢)

In this section, we have the concept of boundedness, statistical boundedness
with reference to p.m.s. and establish the relation between boundedness, con-
vergence, statistical convergence and statistical boundedness. Apart this, it is
investigated that boundedness and statistical boundedness are the same thing for
bounded partial metric space.

Definition 2.1. A sequence (u,) is said to be bounded if there exists uw € X such
that

Um € Bi(uw), i.e.,0(tum,u) < p(u,u)+ M for all m > 1 and for some M > 0.

Definition 2.2. A sequence (u,), in p.m.s. (X,p) is said to be convergent
touw € X if for every € > 0, there exists a positive integer N such that u,, €
B?(e) for allm > N, i.e., p(um,u) < p(u,u) + ¢ for allm > N, i.e., |@(tm,u) —
o(u,u)| < e for allm > N. In other words, Trlliinoocp(um, u) = p(u,u).

It is to be noted, in view of axiom (¢1) of p.m.s., |p(tum,u) — @(u,u)| and
O(Upm, u) — @(u,u) are the same thing.

Definition 2.3. ([21]) A sequence (u,,) in p.m.s. (X, p) is statistically convergent
to some u € X if fore >0,

o({m € N : |p(um, u) — ¢(u, u)| > €}) = 0.

Definition 2.4. Let (X,p) be a p.m.s. and (u,,) be a sequence in X. We say
(un,) is statistically bounded if there exist some u € X and M > 0 such that

5({m € N: [ (um, u) — plu,w)| > M}) = 0.
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Definition 2.5. A p.m.s. X is said to be bounded if d(X) < oo, that is, diameter
of X is finite. In other words, X is bounded if

sup {QD(U, U) - QO(U, u)} < 00, i'e'> sup |90(U7U) - 90<u7u)| < 0.
u,veX u,vEX
Theorem 2.6. In a p.m.s. (X, p), every convergent sequence is bounded.
Proof. The proof is a routine verification and hence left for reader. However,
converse need not be true.
For this, let X = R with partial metric ¢ on X, as p(u,v) = |u—v|; u,v € X.
Consider (z,,) as

a 1if mis even
Zm =

2a  otherwise m € N where a € R(a > 0) is fixed .

For any u € R, let M = 2a+ |u|. This yields ¢(zm,u) < ¢(u,u)+ M for all m > 1.
Hence (z,,) is bounded. It is easy to see z,, - a,2a as m — oo (one may verify by
choosing €, 0 < € < a).

Theorem 2.7. In a p.m.s. (X, p), every bounded sequence is statistically bounded.
Converse may not be true, in general.
Proof. The proof follows in the light of null natural density of empty set.

In order to show that the converse part is not true in general, we discuss the
following;:

Example 1. let us take X = [0,00) and partial metric as ¢(u,v) = max {u, v}
; u,v € [0,00). Consider a sequence (u,,) defined as

W dm if m is a perfect square
™10 otherwise,

ie, (uy,) = (1,0,0,4,0,0,0,0,9,0,...). Let, if possible, (u,) is bounded.
Then there exist some u € X and choose M > 2 such that p(u,,,u) < ¢(u,u) +
M for all m > 1, i.e., max {t,,u} <u+MVm > 1. Let t = [u+ M], where [-] de-
notes the greatest integer function. Clearly ¢ is an integer > 1. Setting p = t2. Now
p is a perfect square and so we have, ¢(u,,u) < u+ M, i.e., max {u,, u} < u-+ M.
Thus p < u+ M, i.e., t* < t, a contradiction as t > 1.

In order to see (u,,) is statistically bounded, let u € X arbitrary but fixed.

{m e N: p(um,u) — p(u,u) > M} ={m e N: p(upn,u) —u> M}
={m € N: max{uy,u} —u> M}
c {1,4,9,...}.
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Since set of squares has null natural density, so 6({m € N : p(un,u) — p(u,u) >
M}) =0. Thus (u,,) is statistically bounded.

Theorem 2.8. In a p.m.s. (X, ), statistically convergence implies statistically
boundedness. Converse may not hold, in general.

Proof. Let (u,,) be statistically convergent to u € X. Then for ¢ > 0, we have
d({m € N: p(um,u) — p(u,u) > €}) = 0. The result follows by taking sufficiently
large M (> 0) and in view of fact that

{m e N: p(um,u) > p(u,u) + M} C{m € N: p(um,u) > p(u,u) + &}

For reverse implication, we consider the example (z,,) = {2a, a, 2a, a, ...} of
Theorem 2.6. Since (z,,) is bounded, so it is statistically bounded (in view of
Theorem 2.7). However (z,,) is not statistically convergent to a (or 2a) as set of
odd (even) natural numbers has non-zero natural density.

Theorem 2.9. If (u,,) is a sequence in X converging to u € X, then (u,,) is
statistically convergent to u.
Proof. Since every finite subset of N has null natural density, the proof is trivial.

Converse of above may not be true, i.e., there are statistical convergent sequence
in (X, ¢), which are not convergent.

For this, consider the sequence (u,,) of example cited in Theorem 2.7. Suppose,
if possible, (u,,) is convergent to some u € X, (u € X arbitrary but fixed). Then for
e > 0, there exists positive integer N such that ¢(u,, u) < ¢(u,u) + ¢ for all m >
N, ie., max {um,u} < u+ e for all m > N. For sufficiently large m(> N) and to
be perfect square, we have max {m,u} < u+ ¢, a contradiction, as v € X is fixed.
This implies that (u,,) is not convergent.

However, (u,,) is statistically convergent to 0, because

{m € N: |p(un,0) — ¢(0,0)| > e} = {m € N : max {u,,,0} > ¢}
C{1,4,9,...}.

Theorem 2.10. Let (X, ) be a p.m.s. with X # (. Then X is bounded iff the
set of all bounded sequences coincides with the set of statistical bounded sequences.
Proof. Let (X, ¢) be a bounded p.m.s. and (u,,) be any sequence in X. Let M =
supy vex{p(u,v) — @(u,u)}. Then for u € X arbitrary, but fixed we have ¢(u,v)—
o(u,u) < M for all v € X. In particular, ¢(um,u) — p(u,u) < M for all m > 1
and hence (u,,) is bounded, i.e, every sequence in (X, ¢) is bounded. In particular,
every statistically bounded sequence is bounded. The other part holds in the light
of Theorem 2.7.
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Conversely, let if possible, X is not bounded. Then
supye x {p(uo, v) — w(ug, up)} = 0o, for some uy € X.

This implies that for each n € N, there exists (u,) € X such that (ug,u,)
—p(ug, up) > n, i.e., p(ug, un) > n + @(ug, up) for n € N. Take

Up if n is a perfect square
Up = e
" ug if n is not a perfect square,

e, (v,) = {uy, uo, wo, g, up, ug, Ug, Ug, Ug, -..}. Clearly (v,) is statistically
bounded. But (v,,) is unbounded, since for every n (to be perfect square) (v, ug) =
(0, 0n) = Pt ) > 1 + (i, o),

Le., p(vn,up) £ M + @(ug, ug) for every n (to be perfect square) and for finite M,
i.e., ©(vn,up) £ M + @(ug,up) for M > 0. Thus (v,) is a statistically bounded
sequence in p.m.s. (X, ¢) which is unbounded, a contradiction.

Theorem 2.11. Let (u,,) be a statistically bounded sequence in a p.m.s. (X, p).
Then there ezists a bounded sequence (v,,) such that v, = u,, a.a. m.

Proof. As (u,,) is statistically bounded, so there exist some v € X and M > 0
such that §(A) = 0, where A = {m € N : p(up, u) — ¢(u,u) > M}. Take

Uy formeN-A
Ym = U for m € A.

Clearly {m € N : v,, # u,,} € A and so v,,, = u,, a.a. m. It is easy to verify that
O(Vm,u) — p(u,u) < M for all m > 1.

Theorem 2.12. Let (Y, ') be a partial metric subspace of (X, p).

(i) If (vy,) is a sequence in'Y and is statistical bounded w.r.t. partial metric ¢’
of Y, then (vy,) is statistical bounded w.r.t. partial metric ¢ of X.

(i1) If (up) is a sequence in Y and is statistical bounded w.r.t. partial metric ¢
of X, then (uy,) is statistical bounded w.r.t. partial metric ¢ of Y.

3. Statistical convergence and statistical boundedness via dense subse-
quences

In this section, we explore the idea of statistical boundedness and statistical
convergence of sequences in term of statistically bounded dense and statistically
convergent dense subsequences respectively. Besides this, it is observed that in a
p.m.s., a statistically bounded sequence has a statistically dense, bounded subse-
quence.
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Definition 3.1. A subset T of N is statistically dense if §(T) = 1.

Definition 3.2. A subsequence {u, } of (u,) is statistically dense if the set of all
indices (My)nen 18 statistically dense.

Remark 3.3. In ordinary convergence, every subsequence of a convergent sequence
1s convergent. The similar is not true in case of statistical convergences, i.e., sub-
sequence of a statistically convergent sequence need not be statistically convergent.

For this, consider a partial metric ¢ on X = [0,00) defined as p(u,v) =
max {u,v}. Take (u,) = {1,0,0,4,0,0,0,0,9,...}. Then (u,) is statistically
convergent sequence having a subsequence (1, 4, 9, 16, ...) which is not statistically
convergent.

The following theorem is a characterization of the statistical convergence in
term of its statistical dense subsequences.

Theorem 3.4. A sequence (u,,) is statistically convergent iff every statistically
dense subsequence of (u,,) is statistically convergent.

Proof. Let (u,,) is statistical convergent to u € X and having a statistically dense
subsequence {u,,, } which is statistically divergent. Then for any u € X, there is
some € > 0 such that

1
lim inf —card({m, € Nym, <n: p(un,,u) > ¢(u,u) +c}) = A, where A € (0,1).
noon

Since {u,,, } is subsequence of (u,,), we have

{meN,m <n:pun,u)>puu)+e} D {my, € Nym, <n:o(unm,,u) > o(u,u)+c}.

1
This in turn implies, lim —card({m € N;m < n : @(ty,,u) > p(u,u) +e}) #0, a
n—oon,
contradiction to the statistical convergence of (u,).
Converse part follows easily as every sequence is a statistically dense subse-
quence of itself.
Remark 3.3 can be viewed in the light of the following:

Corollary 3.5. A statistical dense subsequence of a statistically convergent se-
quence is statistically convergent.

Theorem 3.6. A sequence (u,) in p.m.s. (X, ) is statistically convergent to
some u € X iff (uy,) has a statistically dense subsequence {u,,,} converging to u.
Proof. Let (u,,) is statistically convergent to u. Then for each ¢ > 0, we have
d{m € N : |v,, — 0] > €}) = 0 where v,, = ©(um,u) — p(u,u). Thus, we get
(u,) as a statistically convergent sequence of reals (in usual sense) converging
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statistically to 0. Using Theorem 1.4, there exists statistically dense subset B =
{my < my < ... <my...} of Nsuch that lim v,,, =0, ie., lim @(uy,,,u) = p(u,u).
n—oo n—oo

Converse part follows, from the inclusion {m € N : ©(u,,, u) > o(u,u) + e} C
(N— B)UT, where T is a finite subset of N.

Theorem 3.7. A sequence (u,,) in p.m.s. (X,p) is statistically bounded if and
only if there exists a set T' = {mq < my < ... < my...} C N such that §(T) =1 and
{tm, tnen s a bounded sequence.
Proof. Let (u,,) be a statistically bounded sequence. Then for some u € X and
M > 0 we have 6({m € N : |p(um,u) — p(u,u)| > M}) =0. Let v,, = @(t,, u) —
o(u,u) (€ R). Then 6({m € N : |v,,| > M}) = 0. Thus (v,,) is a statistically
bounded sequence of reals (in usual sense). Hence by Theorem 1.6, there exists
T ={my <mg<...<my..} CNsuch that §(7") = 1 and (v, Jnen is a bounded
sequence of reals. Then |vy,,| < L, i.e., ¢(up,,u) — p(u,u) < L for all n > 1 and
for some L > 0. Thus {u,,,} is bounded sequence in p.m.s. (X, ).

Conversely, since {u,, }nen is @ bounded sequence in (X, ¢) so @(ty,,,u) <
o(u,u) + M for all n > 1 where v € X and M > 0. The result now follows easily
in view of the inclusion

{m e N: p(um,u) > p(u,u) + M} C (N-T).

Corollary 3.8. A monotone and statistically bounded sequence of reals is statisti-

cally convergent.

Proof. The proof is an easy consequence of Theorem 3.7 and Theorem 3.6.
Finally, we state the following results having the proof on similar lines of Remark

3.3, Theorem 3.4 and Corollary 3.5.

Remark 3.9. In ordinary boundedness, every subsequence of a bounded sequence is
bounded. The similar is not true in case of statistical boundedness, i.e., subsequence
of a statistically bounded sequence may not be statistically bounded.

Theorem 3.10. A sequence (uy,) is statistically bounded iff every statistically
dense subsequence of (u,) is statistically bounded.

Corollary 3.11. A statistical dense subsequence of a statistically bounded sequence
15 statistically bounded.
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