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1. Introduction
Let U be the open unit disk in the complex plane C, centered at origin, and

let Ω and ∆ be sets in C. Let P be an analytic function defined on U, and D be
a differential operator such that D[P ] is defined on U . Under what conditions on
D,Ω and ∆ that are needed so that

D[P ] ⊂ Ω ⇒ P (U) ⊂ ∆ (1.1)

previous work has been done on first, second and third order differential in-
equalities of this type see ([2], [5]).

In this paper we intend to obtain concrete results on differential inequalities for
the n-th order derivative for class of analytic functions.
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Let H = H(U) denote the class of functions analytic in the open unit disk U.For
n ∈ N the set of natural number and a ∈ C define the class of functions denoted
by H[a, n] contains functions of the form

f(z) = a+ anz
n + an+1z

n+1 + ...

which are analytic in the unit disk U = {z ∈ C : |z| < 1}. Denote the class
H[0, n] =An. A function f ∈ An(f(z) ̸= 0 for any z ∈ U\{0}) We say that an
analytic function f is subordinate to the analytic function F , and write f ≺ F
in U iff there exists a Schwarz class function w analytic in U with w(0) = 0 and
|w(z)| < 1 in U such that

f(z) = g(w(z)), for all z ∈ U. In particular if F is univalent in U, we have the
following equivalence:

f ≺ F in U ⇐⇒ f(0) = F (0) and f(U) ⊆ F (U) (1.2)

If either Ω or ∆ in (1.1) is simply connected domain. Then it may be possible to
write (1.1) in terms of subordination. If ∆ is a simply connected domain containing
the point a and ∆ ̸= C, then there is a conformal mapping q of U onto ∆ such
that q(0) = a, In this case (1.1) can be written as follows

{Ψ(p(z)), zp
′
(z), z2p

′′
(z), ..., znp(n)(z); z)|z ∈ U} ⊂ Ω (1.3)

⇒ p(z) ≺ q(z)

If Ω is also a simply connected domain and Ω ̸= C, then there is a con-
formal mapping h of U onto Ω such that h(0) = Ψ(a, 0, 0, 0..0; 0).If in addition
Ψ(p(z)), zp

′
(z), z2p

′′
(z), ..., znp(n)(z); z) is analytic in U , then (1.1) can be written

as follows:

Ψ(p(z)), zp
′
(z), z2p

′′
(z), ..., znp(n)(z); z) ≺ h(z) (1.4)

⇒ p(z) ≺ q(z)

Here we have three key constituents in this differential implication of the form
(1.3), the differential operator Ψ, the set Ω and the ‘dominating’ function q. Given
any two of these one would hope to find the third so that (1.3) is satisfied. In this
article, we start with a given set Ω and a given function q, and determine a set of
‘admissible’ operators Ψ so that (1.3) holds.

Definition 1. Let Ψ : Cn × U −→ C and h be univalent in U. If p is analytic in
U and satisfies the n-th order differential subordination relation

Ψ(p(z)), zp
′
(z), z2p

′′
(z), ..., znp(n)(z); z) ≺ h(z) (1.5)



N -th Order Differential Inequalities in the Complex Plane 191

p is called a solution of the differential subordination (1.5). A univalent function
q is called a dominant of the solution of the differential subordination or more
simply a dominant if p ≺ q for p satisfying (1.5). A dominant q that satisfies q ≺ q
for all dominant of (1.5) is called the best dominant of (1.5). The best dominant
is unique upto a rotation of U.

Definition 2. Let Q denote the set of functions q that are analytic and univalent
on the set U\E(q), where

E(q) = {ξ ∈ ∂U : lim
z−→ξ

q(z) = ∞} (1.6)

and are such that Min.|q′(ξ)| = ρ > 0 for ξ ∈ ∂U\ E(q). The subset of Q for
which q(0) = a is denoted by Q(a).

As a simple example , consider the function q(z) = 1+z
1−z . For this function, we

have E(q) = {1} and min.|q′(ξ)|=1
2
> 0 for ξ ∈ ∂U\ {1}.

The Fundamental Lemmas

Definition 3. In 1981, Sanford Miller and Petru Mocanu laid the foundation for
the theory of differential subordinations in a paper published in Michigan Mathe-
matics Journal ([5]),entitled Differential Subordinations and Univalent Functions.
The following two lemmas, which appeared in that article, played a key role in the
development of the theory that evolved for 2nd-order differential subordination ,
these are referred as the Miller/Mocanu lemmas.

Lemma 1. A ([5], Miller/Mocanu lemma) Let z0 ∈ U,with r0=|z0|, and let f(z) =
anz

n + an+1z
n+1 + ... be continuous on Ur0 and analytic on Ur0 ∪ {z0} with f(z)not

identical to zero function. and n ≥ 2.If

|f(z0)| =Max{|f(z)| : z0 ∈ Ur0} (1.7)

Then there exists an m ≥ n such that

z0f
′(z0)

f(z0)
= m (1.8)

and

Re
z0f

′′
(z0)

f ′(z0)
+ 1 ≥ m (1.9)

Lemma 2. B ([5, Miller/Mocanu lemma]) Let p(z) = anz
n + an+1z

n+1 + ...be
analytic in U with p(z) not identical to a and n ≥ 1, and let q ∈ Q(a). If there
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exist point z0 = r0e
iθ0 ∈ U and w0 ∈ ∂U\ E(q) such that p(z0) = q(w0) and

p(Ur0) ⊂ q(U), then exists an m ≥ n ≥ 1 such that

z0p
′
(z0) = mw0q

′
(w0) (1.10)

and

Re
z0p

′′
(z0)

p′(z0)
+ 1 ≥ m

[
Re

w0q
′′
(w0)

q′(w0)
+ 1

]
(1.11)

Lemma B is a generalization of lemma A and reduces to it for p(z) = f(z) and
q(z) = z.
Proof. of Lemma A: If we let f(z) = R(r0, θ)e

iΦ(r0,θ) for z = r0e
iθ then

zf ′(z)

f(z)
=
∂Φ

∂θ
− i∂R

R∂θ

Since R attains max imum at z0 = reiθ0 we must have ∂R(z0)
∂θ

= 0 at z0 .

Therefore we obtain z0f ′(z0)
f(z0)

= m, where m is real we need to show m ≥ n. If we

let g(z) = f(z0z)
[f(z0)zn−1]

for z ∈ U , then g is continuous on U

and analytic on U ∪{1} . Hence from the maximum modulus principle we have

|g(z)| ≤ max
|z|=1

|g(z)| = 1

|f(z0)|
max
|z|=1

|f(z0z)| = 1, for z ∈ U

Since g(0) = 0, by Schwarz lemma

|g(z)| ≤ |z| and ≤
∣∣∣∣f(z0z)f(z0)

∣∣∣∣ ≤ |z|n.

In particular at the point z = r, 0 ≤ r < 1 we have

Re

[
f(z0z)

f(z0)

]
≤ rn.

Since m = z0f ′(z0)
f(z0)

we have

m =
d

dr

[
f(z0r)

f(z0)

]
|r=1 = lim

r−→1

f(z0r)− f(z0)

(r − 1)f(z0)

= lim
r−→1

(
1−Re

f(z0r)

f(z0)

)
1

1− r
,
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taking real part we have

m = lim
r−→1

(1−Re
f(z0r)

f(z0)
)

1

1− r
≥ lim

r−→1

1− rn

1− r
= n.

2. Main Results

Theorem 1. Let f ∈ H[0, n] then f(z) = anz
n + an+1z

n+1 + ... , for ∀ z ∈ U . In
Euler form fcan also be written as

f(z) = R(r, θ)eiψ(r.θ) (2.1)

where z = reiθ, |f(z)| = R(r, θ) and ψ(r.θ) is amplitude of f(z). Then

R(r, θ) =
∞∑
λ=0

CλXλ(r)Yλ(θ) ;Cλ = AλBλ

X(r) = Aλe
λ(ln r)2

2
+aλ ln r ;Y (r) = Bλe

−λθ2

2
+bλ ln r

where Cλ, Aλ, Bλ, aλ, bλ are real constants

Proof. Taking log on both side of (2.1) we get

ln f(z) = lnR(r, θ) + iψ(r, θ),

since f is analytic, therefore lnf(z) is also analytic hence Cauchy Riemann equa-
tions for this are

∂ lnR

∂r
=

∂ψ

r∂θ
⇒ r

R

∂R

∂r
=
∂ψ

∂θ
, (2.2)

and
1

r

∂ lnR

∂θ
= −∂ψ

∂r
⇒ 1

rR

∂R

∂θ
= −∂ψ

∂r
. (2.3)

Differentiation partially (2.2) w.r.t. r and (2.3) w.r.t. θ respectively. we get

∂2ψ

∂r∂θ
=

1

R

∂R

∂r
− r

R2

(
∂R

∂r

)2

+
r

R

∂2R

∂r2
, (2.4)

∂2ψ

∂θ∂r
=

1

rR2

(
∂R

∂θ

)2

− 1

rR

∂2R

∂θ2
, (2.5)

being amplitude of analytic function ψ(r.θ) have second continuous partial deriva-
tive w.r.t. r and θ hence from (2.4) and (2.5) we have

1

R

∂R

∂r
− r

R2

(
∂R

∂r

)2

+
r

R

∂2R

∂r2
=

1

rR2

(
∂R

∂θ

)2

− 1

rR

∂2R

∂θ2
, (2.6)
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suppose R(r, θ) = X(r)Y (θ) is a solution of partial differential equation in (2.6),
where X is function of r only and Y is function of θ only. Then

X
′
Y

XY
− r(X

′
Y )2

X2Y 2
+
rX

′′
Y

XY
=

(XY
′
)2

rX2Y 2
− XY

′′

rXY

⇒ r

(
X

′

X
− r(X

′
)2

X2
+
rX

′′

X

)
=

(Y
′
)2

Y 2
− Y

′′

Y
.

Since L.H.S is a function of r only and R.H.S. is function of θ only hence either
side must be equal to a constant say λ. Then we have

r(
X

′

X
− r(X

′
)2

X2
+
rX

′′

X
) = λ

and
Y

′′

Y
− (Y

′
)2

Y 2
= −λ

solving above equations we get

Xλ(r) = Aλe
λ(ln r)2

2
+aλ ln r and Yλ(r) = Bλe

−λθ2

2
+bλθ

hence we have the result

R(r, θ) =
∞∑
λ=0

CλXλ(r)Yλ(θ) ;Cλ = AλBλ

Since if λ < 0 then limr→0Xλ(r) = 0 any λ < 0 hence it implies R(0, θ) = 0 ∀
f ∈ H[a, n] which is wrong if a ̸= 0. So we must take λ ⩾ 0.

Theorem 2. If f ∈ H[0, n] i.e. f(z) = anz
n + an+1z

n+1 + an+2z
n+2+ . . . such

that
|f(z0)| = max{|f(z)| : z ∈ Ur, r < 1}

and
|f ′

(z1)| = max{|f ′
(z)| : z ∈ Ur, r < 1}

Then z1 = z0, i.e. maximum of modulus of f ′(z) is attained at the same point on
which |f(z)| attains its maximum.
Proof. We have f(z) = Reiψ taking log on both side we get

ln f = R + iψ
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differentiating with respect to z we have

1

f

df

dz
=

(
1

R

∂R

∂θ
+ i

∂ψ

∂θ

)
dθ

dz

where

z = reiθ ⇒ dθ

dz
=

−i
z

this gives
z

f

df

dz
=

−i
R

∂R

∂θ
+
∂ψ

∂θ
(2.7)

for a fixed r, at maximum of R ,∂R
∂θ
|θ0 = 0 and ∂2R

∂θ2
|θ0 ≤ 0 from (2.7)

f
′
(z) =

(
∂ψ

∂θ
− i

R

∂R

∂θ

)
f(z)

z
=

(
∂ψ

∂θ
− i

R

∂R

∂θ

)
Reiψ

reiθ
,

so

|f ′
(z)| = R

r

∣∣∣∣∂ψ∂θ − i

R

∂R

∂θ

∣∣∣∣ ,
now put

L = |f ′
(z)|2 =

(
R

r

)2
((

∂ψ

∂θ

)2

+
1

R2

(
∂R

∂θ

)2
)
, (2.8)

when r is fixed, for maximum of L we must have ∂L
∂θ

= 0 from (2.8) we have

∂L

∂θ
=

2

r2

[
∂R

∂θ

(
∂2R

∂θ2
+R

(
∂ψ

∂θ

)2
)

+R2∂ψ

∂θ

∂2ψ

∂θ2

]
, (2.9)

but from Cauchy Riemann equations in equation (2.2) and (2.3) in Theorem 1 we
have

∂2ψ

∂θ2
= − r

R2

∂R

∂θ

∂R

∂r
+
r

R

∂2R

∂θ∂r
(2.10)

From Theorem 2.

∂R

∂θ
=

∞∑
λ=0

CλXλ(r)
∂Yλ(θ)

∂θ
=

∞∑
λ=0

CλXλ(r)Yλ(θ)(−λθ + bλ)

Since from expression of Xλ(r), Yλ(θ) it is obvious that Aλ, Bλ, Cλ, Xλ(r), Yλ(θ) all
are greater than or equal to zero ∀ λ ∈ R hence

∂R

∂θ
= 0 ⇒ −λθ + bλ = 0 when θ = θ0
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therefore at θ = θ0

∂2R

∂r∂θ
|θ0 =

∞∑
λ=0

Cλ
∂Xλ(r)

∂r
Yλ(θ)(−λθ + bλ)|θ0 = 0 (2.11)

from equations (2.10) and (2.11) we have

∂R

∂θ
= 0 ;

∂2ψ

∂θ2
= 0 at θ = θ0

hence
∂L

∂θ
= 0 at θ = θ0

We have to show that ∂2L
∂θ2

≤ 0 at θ = θ0.

∂2L

∂θ2
=

2

r2

[
∂2R

∂θ2

(
∂2R

∂θ2
+R

(
∂ψ

∂θ

)2
)

(2.12)

+
∂R

∂θ

(
∂3R

∂θ3
+
∂R

∂θ

(
∂ψ

∂θ

)2

+ 2R
∂ψ

∂θ

∂2ψ

∂θ2

)
(2.13)

+2R
∂R

∂θ

∂ψ

∂θ

∂2ψ

∂θ2
+R2

(
∂2ψ

∂θ2

)2

+R2∂ψ

∂θ

∂3ψ

∂θ3

]
.

Since at θ = θ0,
∂R
∂θ

= 0 and ∂2ψ
∂θ2

= 0 we have at θ = θ0

∂2L

∂θ2
=

2

r2

[
∂2R

∂θ2

(
∂2R

∂θ2
+R

(
∂ψ

∂θ

)2
)

+R2∂ψ

∂θ

∂3ψ

∂θ3

]
(2.14)

again from CR equations we have

∂3ψ

∂θ3
=

∂

∂θ2

(
r

R

∂R

∂r

)
(2.15)

= r

(
2

R3

(
∂R

∂θ

)2
∂R

∂r
− 1

R2

∂2R

∂θ2
∂R

∂r
− 2

R2

∂R

∂θ

∂2R

∂r∂θ
+

1

R

∂3R

∂θ2∂r

)
,

at θ = θ0

∂3ψ

∂θ3
= r

(
− 1

R2

∂2R

∂θ2
∂R

∂r
+

1

R

∂3R

∂θ2∂r

)
(2.16)

so at θ = θ0 ,
∂ψ

∂θ

∂3ψ

∂θ3
= − r2

R3

∂2R

∂θ2

(
∂R

∂r

)2

+
r2

R2

∂R

∂r

∂3R

∂θ2∂r
,



N -th Order Differential Inequalities in the Complex Plane 197

from equations (2.14), (2.16) and CR equations at θ = θ0 we get

∂2L

∂θ2
=

2

r2

[(
∂2R

∂θ2

)2

+ r2
∂R

∂r

∂3R

∂θ2∂r

]
, (2.17)

again from CR equations

∂2R

∂θ2
=

∂

∂θ

(
−rR∂ψ

∂r

)
(2.18)

= −r∂R
∂θ

∂ψ

∂r
− rR

∂2ψ

∂θ∂r

at θ = θ0,
∂2R

∂θ2
= −rR ∂2ψ

∂θ∂r

⇒
(
∂2R

∂θ2

)2

= r2R2

(
∂2ψ

∂θ∂r

)2

,

similarly ∂3R
∂θ2∂r

= −∂ψ
∂r

∂R

∂θ
− r

∂2R

∂θ∂r

∂ψ

∂r
− r

∂R

∂θ

∂2ψ

∂r2
−R

∂2ψ

∂θ∂r
− r

∂R

∂θ

∂2ψ

∂θ∂r
− rR

∂3ψ

∂r∂θ2
(2.19)

at θ = θ0,
∂3R

∂θ2∂r
= −R ∂2ψ

∂θ∂r
− rR

∂3ψ

∂r∂θ2
,

from equations (2.17, 2.18, 2.19) and CR equations we have at θ = θ0

∂2L

∂θ2
= 2R2

[
∂2ψ

∂θ∂r
− R

r2
(
∂ψ

∂θ
)2
]
∂2ψ

∂θ∂r
, (2.20)

from (2.10) it can be proven that

∂3ψ

∂r∂θ2
= 0 at θ = θ0

since we have
f(z) = R(r, θ)eiψ(r.θ).

⇒ z
f

′
(z)

f(z)
=
∂ψ

∂θ
− i

1

R

∂R

∂θ

⇒ (f
′
(z) + zf

′′
(z))f(z)− z(f

′
(z))2

(f(z))2
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=
r

z

(
∂2ψ

∂θ∂r
+ i

1

R2

∂R

∂r

∂R

∂θ
− i

1

R

∂2R

∂r∂θ

)
.

at θ = θ0 we have

z0
f

′
(z0)

f(z0)
+
z20f

′′
(z0)

f(z0)
−
(
z0
f

′
(z0)

f(z0)

)2

= r
∂2ψ

∂θ∂r
,

sin be we have

z20f
′′
(z0)

f(z0)
−
(
z0
f

′
(z0)

f(z0)

)2

=
z0f

′′
(z0)

f ′(z0)

z0f
′
(z0)

f(z0)
−
(
z0
f

′
(z0)

f(z0)

)2

.

Corollary 1. From Lemma A ([2, Miller/Mocanu lemma]) equations (1.8) and
(1.9) we have

z0f
′′
(z0)

f ′(z0)

z0f
′
(z0)

f(z0)
−
(
z0
f

′
(z0)

f(z0)

)2

≥ (m− 1)m−m2

= −m ≤ 0,

therefore

z0f
′′
(z0)

f ′(z0)
−m ≥ r

∂2ψ

∂θ∂r

⇒ z0f
′′
(z0)

f ′(z0)
≥ r

∂2ψ

∂θ∂r

when r → 1 we have
z0f

′′
(z0)

f ′(z0)
=

∂ψ

∂θ
≥ ∂2ψ

∂θ∂r
,

so for r < 1 we must have

∂2ψ

∂θ∂r
− R

r2

(
∂ψ

∂θ

)2

≤ 0 when θ = θ0 and f ∈ H[0, n] n ≥ 1. (2.21)

Therefore from equations (2.20) and (2.21) we have

∂2L

∂θ2
≤ 0, when θ = θ0,

hence z1 = z0 i.e. f and f
′
both attains maximum of their modulus at the same

point . From principle of regularity and mathematical induction we can prove that
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an analytic function and all its derivative attains maximum of their modulus at the
same point and this point need not be unique.

Theorem 3. Let z0 ∈ U and r0 = |z0| and let

f(z) = anz
n + an+1z

n+1 + ...

be continuous on U r0
and analytic on Ur0 with f(z) not identically zero, and n ≥ 1.

If
|f(z0)| = max{|f(z)| : z ∈ Ur, r < 1}

then there exists mr for n ≥ k ≥ 1 such that

z0f
(k)(z0)

f (k−1)(z0)
≤ z0f

(k−1)(z0)

f (k−2)(z0)
. (2.22)

z0f
(k)(z0)

f (k−1)(z0)
+ k − 1 = mk.

such that
mk ≥ mk−1 ≥ .... ≥ m1 ≥ n.

Proof. As we have seen in the proof of the lemma A(Miller and Mocanu lemma)
when f(z) = anz

n + an+1z
n+1 + ... and z0 is the point at which |f(z)| is maximum

on U r0
then taking

g(z) =
f(z0z)

f(z0)zn−1
,

then |g(z)| ≤ |z| ⇒ | f(z0z)
f(z0)zn−1 | ≤ |z| moreover g(0) = 0 and zn is analytic univalent

therefore f(z0z)
f(z0)

≺ zn. Since from Theorem 3, |f (k)(z)| is maximum at z0 for 1 ≤
k ≤ n, similarly we can prove that

f
′
(z) = nanz

n + (n+ 1)an+1z
n+1 + ...

= bn−1z
n−1 + bnz

n + ....

implies f
′
(z0z)
f(z0)

≺ zn−1... continuing in this way we show that f (n)(z0z)

f (n)(z0)
≺ z. Since

zn ≺ zn−1 ≺ zn−2 ≺ zn−3... ≺ z2 ≺ z for z ∈ U. (2.23)

equation (2.23) implies that

f(z0z)

f(z0)
≺ f

′
(z0z)

f ′(z0)
≺ f

′′
(z0z)

f ′′(z0)
≺ f (k)(z0z)

f (k)(z0)
... ≺ f (n)(z0z)

f (n)(z0)
≺ z. (2.24)
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Since we have

d

dr

[
f (k−1)(z0r)

f (k−1)(z0)

]
|r=1 = lim

r→1

f (k−1)(z0r)− f (k−1)(z0)

(r − 1)f (k−1)(z0)
. (2.25)

= lim
r→1

[
1− f (k−1)(z0r)

f (k−1)(z0)

]
1

1− r
= lim

r→1

[
1−Re

f (k−1)(z0r)

f (k−1)(z0)

]
1

1− r
.

From implications in equations (2.23) and (2.24) we have

for 1 ≤ k ≤ n (2.26)

and lim
r→1

[
1−Re

f (k−1)(z0r)

f (k−1)(z0)

]
1

1− r
≥ lim

r→1

1− rn−k+1

1− r
= n− (k − 1),

⇒ z0f
(k)(z0)

f (k−1)(z0)
+ k − 1 = mk ≥ n,

and lim
r→1

[
1−Re

f (k)(z0r)

f (k)(z0)

]
1

1− r
≤ lim

r→1

[
1−Re

f (k−1)(z0r)

f (k−1)(z0)

]
1

1− r
.

Moreover from equation (2.24)

Re
f (k)(z0r)

f (k)(z0)
−Re

f (k−1)(z0r)

f (k−1)(z0)
≤ rn−k − rn+1−k

⇒ Re
f (k)(z0r)

f (k)(z0)
+ rn+1−k ≤ rn−k +Re

f (k−1)(z0r)

f (k−1)(z0)

⇒ −Ref
(k)(z0r)

f (k)(z0)
− rn+1−k ≥ −rn−k −Re

f (k−1)(z0r)

f (k−1)(z0)

lim
r→1

{(
1−Re

f (k)(z0r)

f (k)(z0)

)
1

1− r
+
rn−k − rn+1−k

1− r

}
≥ lim

r→1

[
1−Re

f (k−1)(z0r)

f (k−1)(z0)

]
1

1− r

z0f
(k+1)(z0)

f (k)(z0)
+ 1 ≥ z0f

(k)(z0)

f (k−1)(z0)
≥ n− (k − 1)

⇒ mk ≥ mk−1.

Therefore from equations (2.25) and (2.26) we conclude that mk ≥ mk−1 ≥ .... ≥
m1 ≥ n for all 1 ≤ k ≤ n.

Remark 1. Result in Theorem 3 generalizes Miller and mocanu lemma for n-th
order derivative of an analytic function.
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