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Abstract: In the present article, a new subclasses of analytic function is introduced
by making use of linear multiplier fractional ¢-differentiable operator. For func-
tions belonging to these classes we obtained coefficient estimates, extreme points,
q¢- Bernardi integral operator and many more properties.
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1. Introduction
Let A denote the class of functions of the form

o(r) =7+ (1.1)

which are analytic and univalent in the open unit disc U.
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Let T denote the subclass of A in U, consisting of analytic functions whose non-
zero coefficients from the second terms onwards are negative. That is, an analytic
function ¢ € T if it has a Taylor series expansion of the form

o

$(r)=7=> |nlt" (rn=>0) (1.2)

=2

which are analytic in the open disc U.
Now recall the following g-analogue definitions given by Gasper and Rahman [7].
The recurrence relation for g-gamma function is given by

Ly(z+1) = [z],I'y(z), where, [z], =

and called g-analogue of z.
Jackson’s g-derivative and g¢-integral of a function ¢ defined on a subset of C
are, respectively, given by (see Gasper and Rahman [7])

¢(1) — ¢(7q)

A= (1 #0,q#0).

Dq¢(7-) =

| ot =t -0 astram),
0 m=0
A linear multiplier fractional g-differentiable operator [13] is defined as
0 —
DEL¢(r) = ()

D2Lo(7) = (1 — w)Q8o(7) + prD, (e(r)),
D5o(r) = Dgy, (D o(7))

D;6(7) = Dy, (D' o(7)) (1.3)

q?/”‘

We note that if ¢ € A is given by (1.1), then by (1.3), we have

DLo(r) =7+ > Bl p,p,t, q)ri7 (1.4)

e
=2
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where

It can be seen that, for different parametric values, the operator ngz reduces
to many known and new integral and differential operators. In particular, when
p =0, ¢ — 17 the operator Dg:; reduces to the operator introduced by Al-
Oboudi [1] and if p=0, p =1 and ¢ — 1~ it reduces to the operator introduced
by Salagean [15].

Now using linear multiplier fractional g-differentiable operator D#7,¢(7), we de-
fine the following subclasses S, (¢, ¢, p, i, b) and TS, (¢, (, p, 1, b) of analytic func-
tion.

Definition 1.1. For —1<e<1, (>0, 0<p<2,b€C—-{0} and 0<g<1,
let S,(e,C, p,p,b) be the subclass of A consisting of functions of the form (1.1),
and satisfying the analytic criterion

2 2/7D [D’”qb] 2 (7D [D"tcb] 2

Let TS8q(€, ¢, p i b) = Sqle, ¢, p p, b)) N T
It can be seen that, the special cases of the class TS,(e,(, p,p,b) as ¢ — 1~

and for different choices of the parameters we get the results obtained by Altintat
and Owa [2]|, Bharathi, Parvatham and Swaminathan [4], Caglar and Orhan [5],
Caglar, Orhan and Srivastava [6], Gour, Joshi and Purohit [8], Padamanabhan and
Jayamala [12], Owa and Srivastava [11], Kim and Ronning [9], Ravikumar N, S
Latha and B A Frasin [14], Selvakumaran, Rajaguru, Purohit and Suthar [16].

2. Main Results

First we prove the necessary and sufficient conditions for the class S, (e, C, p, i, b)
and qu(€7 <7 IO7 ,LL, b)
Theorem 2.1. A sufficient condition for a function ¢ of the form (1.1), to be in
S(I(EJ <7 pa 1y b) ’iS thdt

o0

DA+ O, — 1) + (=] B p, st @)l < b(1 = ). (2.1)

=2

B(l,p,p.t,q) = (

Proof. Suppose ¢ € S,(¢,(, p, i1, b) ,

Dy [D0 ) 2 (7DD
C‘E( Di%o 1)‘_%{5( Di%o 1>}
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D, Dpt
)

> (g = 1B, p, st )] | 7]

2(1+¢) | "=
— b S
1= " B(l,p, p.t,q)|r|7]

=2

Letting 7 — 1 we have,
oo

(g = 1B p, s T, q) 1]
2(1+¢) | 1=

>~ b )
1 - ZB(l,p,/L,t,QMTl'
=2

This is bounded above by 1 — € if

DA+ O, 1) + b= B p, st @)l < b(1— ).

1=2
Hence the proof.
Theorem 2.2. A function ¢ € TS,(¢,(,p, p,b) and 7 if

i [2(C - 1)(1 B [l]q)b_(’_lbﬁle; 6)] B(lv Py t7 Q) < 1.
=2

Proof. In view of Theorem 2.1, we need to prove the necessity part of the theorem.
If ¢ €TS,(e,C, p,p,b) and 7 real then

et i (o)) (5 1)

That is,
2 | — -
i [Z(l — ) B(L, p, pyt, )7 1]

=2

- (1 B E) [1 N ZB(LpaﬂvtaQ)hﬂTZ_l] .

=2
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Letting 7 — 1, along the real axis we obtain the desired inequality,

D 2(¢=1)(1 = [lg) +b(1—e)
- b1 —0)

B(l, p,p,t,q) < 1.

Theorem 2.3. Let ¢ € TS,(¢,(, p,p,b) define ¢1(7) =71 and

b(1—e) -l
2(C = 1)1 = [l]y) +b(1 = €)]B(, p, 1, t,q)

Then ¢ € TS,(€,C,p, 11, b) if and only if ¢ can be expressed as

¢i(1) =7 —

= ZX[¢1(T), where x; >0 and ZXl = 1. (2.2)
=1

=1
Proof. If ¢(r leqﬁl ) with le =1, x; >0 then
=1

b(1 —¢)
2(¢ =11 = [tlg) +0(1 = ]B(, ps 1, 9)

S R(C-1)(1-[ly) +b(1-)] B (z,p,u,t,qm[

=2

o

Z b(1—e€)=(1—x1)(1—€)b<b(1l—e¢).

=2

Hence ¢ € TS,(¢,(, p, i1, b). Conversely, let ¢(7) = 7— Z Iri| 7 € TS, (e, ¢, p, 11, ),
1=2

_ 26 =1 — []g) + (1 — )] B p, s t, ) i
Al b(1— e :

define

and define y; =1 — Z X:- From Theorem 2.1,
1=2

> <1 and x>0,
=2

Therefore, we can see that ¢(7) can be expressed in the (2.2).
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Corollary 2.4. Let ¢ € TS,(¢,¢, p,p,b), then

b(1 —¢)
2(¢ =1 = [lly) + (1 = )]B(L p, 1,1, q)

Theorem 2.5. Let py < pio then TS,(€,(, p, pia,b) C TSy(€, ¢, p, i1, b).
Proof. Let ¢ € TS,(e,C, p, p2,b), then we have

|T’l| <

o0

2(¢ = 1)(1 = [lly) +0(1 = €)|B(, p, 2, t, q)
=2 <1

b(1 —¢) -

l

but hence B(l, p, i, t,q) is an increasing function of y,
B(l, p, p1,t,q) < B(l, p, po,t,q), so we have

o0

2(¢ = 1)1 = [l]g) +b(1 = )]B( p, i1, 1, q)

=2

b(1—e) I
> (¢ = 1)(1 = [lg) +b(1 — ) B(L, p, ia, 1, )
< b1 =0 il <1,

then (b € TSCI(€7 Cupu K1, b)

Theorem 2.6. The class TS,(€, ¢, p, p,b) is closed under convez linear combina-
tion.

Proof. Let ¢ and 1 be the arbitrary elements of 7S,(¢,(, p, it,b) then for every
n(0 <n < 1), we need to show that

(I—n)p+np € TS,(e,C, p, p1,b). Thus we have

o

L= +mp=7=> [(1=n)r|+nlb))7
=2
and

o0

2[2(C - 1)(1 - [Z]Q) + b(l - 6)]B(lvpnuat>q)

=2

b(1 — ¢) [(1 = n)|r| + nlbi]] < 1.
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Theorem 2.7. Let ¢ € TS,(€,(, p, i1, b). For the g- analogous Bernardi’s integarl
operator defined by

Lanolr) = 1 [T 0060,

T 0

then we have Lq ¢ € TS,(€,C, p, 11, b).
Proof. We have

Lyotr) = L r 0 ) S g rgtora)
7=0

=+ 1,(1—q) > é(re)

J=0

=[y+1],(1 —¢) Zq”Zq”h“lh
7=0
- [y + 1
Z[’Y‘i‘l]q

=2

1
Since ¢ € TS,(€,(, p, p,b) and since by + 1l <1, i [ > 2, we have
['Y + l]q
S 12(¢ ~ (1~ [1g) + (1~ B po .t g) i L < b1 — o)
—2 [y + l]q

Theorem 2.8. Let ¢ € TS,(e,¢,p,p,b) then L, ¢(7) is q- starlike of order
0<e <1 in |r]| <Ry where

[v+1q [q([l]q — €3)b(1 =€)
Proof. It is sufficient to prove

T(DgLgyd(7))
Lgyd(7)

5 :mf{[muq (1~ es)[2(¢ — (L = [llg) +0(1 = bllopo s ) |77 N/{l}‘}

—1‘<1—€3, TEU.

Now

T(DgLqq¢(7))
Lq,7¢(7)

_1‘
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oo

-1+ 1
|- i
N }OO: -1 ['7 + 1](1

o 1=2 |Tl||7— | ['7+l]q

This last expression is less than 1 — €3, since

- by + 1, (1= e)[2(¢ = 1)(1 = [1l,) +b(1 = b, p, 1, t, )
‘T|§{thh ({4 — e5)b(1 —€) ]}

Using the fact that ¢ is convex if and only if 7D,¢ is starlike, we obtain the
following.

Theorem 2.9. Let ¢ € TS,(e,C,p,p,b) then L, () is q- convex of order
0<e3<1 in |t| <Ry where

1

[ {m lly (1= )2~ (1 = [llg) +b(1 — B .11, 1,0)| 77
b+ 1, Wy — )b —

3. Conclusions

This article investigated two subclasses of analytic functions S, (e, ¢, p, pt, b) and
TS,(e,C, p,p,b) on unit disc U. For functions belonging to these classes, we cal-
culated co-efficient estimate, extreme points, convex linear combination, g-Bernalli
integral operator, g-Starlike and g-convex functions. Further research can be con-
ducted to investigate more properties using these classes.

:m € N/{1}.
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