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Abstract: Convex functions play an important role in finding the inequalities,
those help in finding the solutions of different types of equations and equations in-
volving functions. In this article, we have considered convex functions in a normed
linear space. We have established some results on composite convex sets and com-
posite convex functions. We have considered quasi-arithmetic mean, that unifies
efficiently all types of power means. On applying the principles of composite convex
functions, we have established a Hermite-Hadamard like inequality. The functions
considered are composite convex functions with respect to a strictly monotonic
continuous composite function. The composite convex functions serve as a com-
prehensive generalization of composite convex functions. As an application, we
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have established some inequalities on integrable composite convex functions. The
results are deferred mean type inequalities. The results on inequalities can be ap-
plied for further investigations as well as for application in finding the solutions in
different areas of research.

Keywords and Phrases: Integral inequality; Convex function; Composite func-
tion.
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1. Introduction
A set K ⊑ R is termed convex if, for all x1, y1 ∈ K,α ∈ [0, 1], it satisfies the

condition (1 − α)x1 + αy1 ∈ K A function g : K → R is considered to be convex
in the classical sense for a normed linear space if, for all x1, y1 ∈ K,α ∈ [0, 1], the
following holds:

∥g((1− α)x1 + αy1∥ ≤ |(1− α)|∥g(x1)∥+ |α|∥g(y1)∥

The significance of convexity theory extends across various domains in both pure
and applied sciences. As a result, the traditional principles surrounding convex sets
and convex functions have undergone broad generalizations. A compelling factor
that draws numerous researchers to the field is the intimate connection between
convexity theory and the theory of inequalities. Numerous well-known inequalities
can be derived by employing the framework of convex functions. One extensively
studied outcome is the Hermite-Hadamard inequality, serving as a pivotal condition
for a function to be considered convex. The formulation of this result by Charles
Hermite and Jacques Hadamard is articulated as follows:

Theorm 1.1. Let g : [c, d] ⊑ R → R be an integrable normed linear space convex
function. Then∥∥∥∥g(c+ d

2

)∥∥∥∥ ≤ 1

|d− c|

∫ d

c

∥g(x1)∥dx1 ≤
∥g(c)∥+ ∥g(d)∥

2

The primary motivation behind this paper is to introduce the concepts of com-
posite convex sets and composite convex functions. The quasi-arithmetic mean or
generalised f -maen or Kolmogorov-Nogumo-de Finotti men is one, which is the
generalisation of different means such as the arithmetic mean, the geometric mean
etc. The results are established through the utilization of quasi-arithmetic means,
which effectively unify all the power means µgoh(x1, y1)

µgoh(x1,y1) = h−1og−1[(1− α)goh(x1) + α goh(y1)]
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These concepts are particularly tied to strictly monotonic continuous composite
functions. Applying the principles of composite convex functions, we proceed to
derive novel Hermite Hadamard-like inequalities. Simultaneously, we delve into
detailed discussions on various significant special cases.

2. Composite-convex functions
In this section we will now introduce novel categories encompassing composite

convex sets and composite convex functions.

Definition 2.1. A set Ã ⊑ R is defined as a composite convex set concerning a
strictly monotonic continuous composite function if

µgoh(x1,y1) = h−1og−1[(1− α)goh(x1) + α goh(y1)] ∈ Ã, x1, y1 ∈ Ã, α ∈ [0, 1]

Definition 2.2. A function g : Ã → R is regarded as a composite convex function
with respect to a strictly monotonic continuous composite function if

g
(
µgoh(x1,y1)

)
≤ (1− α)g(x1) + αg(y1),∀x1, y1 ∈ Ã, α ∈ [0, 1] (2.1)

Note that the function g is referred to strictly composite convex on Ã if the afore-
mentioned. Inequality holds strictly, as an inequality for each distinct x1 and
y1 ∈ Ã and for each α in the interval [0, 1].
The function g : Ã → R is termed composite -concave(strictly composite-concave)
on Ã if its negation, −g is composite-convex(strictly composite-convex) on Ã.
If we take α = 1/2 in (2.1), then we obtain

g

(
h−1og−1

(
goh(x1) + goh(y1)

2

))
≤ g(x1) + g(y1)

2
, for all x1, y1 ∈ Ã (2.2)

The function g is then referred to as a mid-convex function.
Now, let’s explore some special cases of Definition 2.2 :
Case-I. If we set goh(x1) = ln x1, then condition(2.1) becomes

g
(
x1−α
1 yα1

)
≤ (1− α)g(x1) + αg(y1), for all x1, y1 ∈ [a1, b1] ⊑ (0,∞), α ∈ [0, 1],

which is the idea of geometric convexity referred to in [1].
Case-2. If we set g ◦ h(x1) = 1/x1, then condition (2.1) becomes

g

(
x1y1

αx1 + (1− α)y1

)
≤ (1−α)g(x1)+αg(y1), for all x1, y1 ∈ [a1, b1] ⊑ (0,∞), α ∈ [0, 1].

Which is the idea of harmonic convexity as referred to in [15].
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Case-3. If we set g ◦ h(x1) = xp
1(p > 0), then condition (2.1) becomes

g
(
((1− α)xp1 + αyp1)

1
p

)
≤ (1−α)g(x1)+αg(y1), for all x1, y1 ∈ [a1, b1] ⊑ (0,∞), α ∈ [0, 1],

which is the idea of p-convexity as referred to in [16].
Case-4. If we take goh(x1) = ex1 , then the condition (2.1) becomes

g (ln ((1− α)ex1 + αex1)) ≤ (1−α)g(x1)+αg(y1), for all x1, y1 ∈ [a1, b1] ⊑ (0,∞), α ∈ [0, 1],

which is the concept of log-exponential convex functions on [a1, b1].

3. Application of composite-convex functions to integral inequalities
In this section, we illustrate a noteworthy application of composite-convex func-

tions by introducing fresh integral inequalities of the Hermite-Hadamard type. Un-
less stated otherwise, the interval I = [a1, b1] is applied, with goh representing a
continuously differentiable and strictly monotonic function in its domain. The set
R+ represents the collection of positive real numbers.

Theorem 3.1. Considering g :I → R+ is an integrable composite-convex function,
then we have following inequalities

g

(
h−1og−1

(
goh(x1) + goh(y1)

2

))
≤ 1

goh(b1)− goh(a1)

∫ b1

a1

g(x1)(g ◦ h)′(x1)dx1

≤ g(a1) + g(b1)

2
(3.1)

Proof. Since g is a composite-convex function, we have

g

(
h−1og−1

(
goh(x1) + goh(y1)

2

))
≤ g(x1) + g(y1)

2
.

Putting x1 = h−1og−1((1− α)goh(a1) + αgoh(b1)) and
y1 = h−1og−1(αgoh(a1) + (1− α)goh(b1)) in the above inequality, we have

g

(
h−1og−1

(
goh(a1) + goh(b1)

2

))
≤ g (h−1og−1((1− α)goh(a1) + αgoh(b1)))

2

+
g (h−1og−1(αgoh(a1) + (1− α)goh(b1)))

2
. (3.2)
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Integrating both sides with respect to α on [0,1] of (3.2), we get

g

(
g−1 ◦ h−1

(
g ◦ h(a1) + goh(b1)

2

))
≤ 1

g ◦ h(b1)− goh(a1)

∫ b

a

g(x1)(g ◦ h)′(x1)dx1. (3.3)

Similarly, in light of the assumption in Theorem 3.1 that g is the composite-convex
function, we have

g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
≤ (1− α)goh(a1) + αgoh(b1).

Integrating both sides with respect to α on [0, 1] of the above inequality, we get

1

g ◦ h(b1)− goh(a1)

∫ b1

a1

g(x1)(g ◦ h)′(x1)dx1 ≤
g(a1) + g(b1)

2
. (3.4)

From equation (3.3) and equation (3.4) we get the proof of Theorem.

Theorem 3.2. Let g : I → R+ be an integrable composite-convex function, then
we have the following inequalities

2g(a1)

goh(b1)− goh(a1)

∫ b1

a1

(
g ◦ h(b1)− g ◦ h(x1)

goh(b1)− goh(a1)

)
g(x1)(g ◦ h)′(x1)dx1

+
2g(b1)

goh(b1)− goh(a1)

∫ b1

a1

(
g ◦ h(x1)− goh(a1)

goh(b1)− goh(a1)

)
g(x1)(g ◦ h)′(x1)dx1

≤ 1

g ◦ h(b1)− goh(a1)

∫ b1

a1

g2(x1)(g ◦ h)′(x1)dx1 +
g2(a1) + g(a1)g(b1) + g2(b1)

3

≤ 2 [g2(a1) + g(a1)g(b1) + g2(b1)]

3
(3.5)

Proof. Using the arithmetic-geometric means inequality gives

2g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
{(1− α)g(a1) + αg(b1)}

≤
{
g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)}2
+ {(1− α)g(a1) + αg(b1)}2

=
{
g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)}2

+ (1− α)2g2(a1) + α2g2(b1) + 2α(1− α)g(a1)g(b1).
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Integrating both sides with respect to α on [0, 1] of the above inequality, we get

2g(a1)

∫ 1

0

(1− α)g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
dα

+ 2g(b1)

∫ 1

0

αg
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
dα

≤
∫ 1

0

g2
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
dα

+ g2(a1)

∫ 1

0

(1− α)2dα + g2(b1)

∫ 1

0

α2dα

+ 2g(a1)g(b1)

∫ 1

0

α(1− α)dα. (3.6)

By making the change of variables, inequality (3.6) can be written as

2g(a1) ·
1

g ◦ h(b1)− goh(a1)

∫ b

a

(
goh(b1)− goh(x1)

goh(b1)− goh(a1)

)
g(x1)(g ◦ h)′(x1)dx1

+ 2g(b1) ·
1

g ◦ h(b1)− goh(a1)

∫ b

a

(
goh(x1)− goh(a1)

goh(b1)− goh(a1)

)
g(x1)(g ◦ h)′(x1)dx1

≤ 1

g ◦ h(b1)− goh(a1)

∫ b

a

g2(x1)(g ◦ h)′(x1)dx1 +
g2(a1) + g(a1)g(b1) + g2(b1)

3
(3.7)

On the other hand, since g is a composite-convex function, we have
g (h−1og−1((1− α)goh(a1) + αgoh(b1))) ≤ (1− α)g(a1) + αg(b1), ∀α ∈ [0, 1]
therefore, we have

1

goh(b1)− goh(a1)

∫ b

a

g(x1)(g ◦ h)′(x1)dx1

=

∫ 1

0

g2
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
dα

≤
∫ 1

0

[(1− α)g(a1) + αg(b1)]
2dα =

g2(a1) + g(a1)g(b1) + g2(b1)

3
. (3.8)

Combining (3.7) and (3.8) leads to the inequalities described in Theorem 3.2.

Theorem 3.3. Let g : l → R+ be integrable composite- convex function, then we



Some Normed Linear Space and Integral Inequalities ... 139

have the following inequalities

1

goh(b1)− goh(a1)

∫ b

a

g(x1)(g ◦ h)′(x1)dx1

≤ 1

2
g

(
h−1og−1

(
goh(a1) + goh(b1)

2

))
+

1

4(goh(b1)− goh(a1))g
(
h−1og−1

(
goh(a1)+goh(b1)

2

)) ∫ b

a

g2(x1)(g ◦ h)′(x1)dx1

+
1

24g
(
h−1og−1

(
goh(a1)+goh(b1)

2

)) (
g2(a1) + g2(b1) + 4g(a1)g(b1)

)
.

Proof. Using the arithmetic-geometric means inequality and α the composite
convexity of g, it follows that

g

(
h−1og−1

(
goh(a1) + goh(b1)

2

))[
g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
+ g

(
h−1og−1(αgoh(a1) + (1− α)goh(b1))

)]
≤ g2

(
h−1og−1

(
goh(a1) + goh(b1)

2

))
+

1

4

[
g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

))
+ g(h−1og−1(αgoh(a1) + (1− α)goh(b1)))]

2

= g2
(
h−1og−1

(
goh(a1) + goh(b1)

2

))
+

1

4

[
g2

(
h−1og−1((1− α)goh(a1) + αgoh(b1))

))
+ g2(h−1og−1(αgoh(a1)

+ (1− α)goh(b1))) + 2g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
g
(
h−1og−1(αgoh(a1)+ (1− α)goh(b1)))]

≤ g2
(
h−1og−1

(
goh(a1) + goh(b1)

2

))
+

1

4

[
g2

(
h−1og−1((1− α)goh(a1) + αgoh(b1))

))
+ g2

(
h−1og−1(αgoh(a1)+

(1− α)goh(b1))) + 2((1− α)goh(a1) + αgoh(b1)))(αgoh(a1) + (1− α)goh(b1)))].
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Integrating both sides of the above inequality with respect to α on [0, 1], we obtain

g

(
h−1og−1

(
goh(a1) + goh(b1)

2

))[∫ 1

0
g
(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
dα

+

∫ 1

0
g
(
h−1og−1(αgoh(a1) + (1− α)goh(b1))

)
dα

]
≤ g2

(
h−1og−1

(
goh(a1) + goh(b1)

2

))∫ 1

0
dα

+
1

4

[∫ 1

0
g2

(
h−1og−1((1− α)goh(a1) + αgoh(b1))

)
dα

+

∫ 1

0
g2

((
h−1og−1(αgoh(a1) + (1− α)goh(b1)))dα+ 2(g(a1) + g(b1))∫ 1

0
α(1− α)dα+ 2g(a1)g(b1)

∫ 1

0

(
α2 + (1− α)2

)
dα

]
Performing the change of variable, we get

g

(
h−1og−1

(
g ◦ h(a1) + goh(b1)

2

))
2

g ◦ h(b1)− goh(a1)

∫ b

a

g(x1)(g ◦ h)′(x1)dx1

≤ g2
(
h−1og−1

(
g ◦ h(a1) + goh(b1)

2

))
+

1

2(g ◦ h(b1)− goh(a1))

∫ b

a

g2(x1)(g ◦ h)′(x1)dx1 +
g2(a1) + g2(b1) + 4g(a1)g(b1)

12

Upon performing straightforward computations, the aforementioned inequality can
be transformed into the desired form of Theorem 3.3.

4. Conclusion
We’ve presented the concept of composite-convex functions and demonstrated

that this class encompasses several traditional convexity classes. Indeed, compos-
ite convex functions serve as a comprehensive generalization of convex functions
associated with various power means. Additionally, by employing the notion of
composite convexity, we’ve derived novel integral inequalities akin to the Hermite-
Hadamard type. We anticipate that the ideas and methodologies presented in this
paper may inspire further exploration and research in this particular field.
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