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Abstract: In this paper, we consider the new type of degenerate Changhee num-
bers and polynomials of the second kind which are different from the previously
introduced degenerate Changhee numbers and polynomials of the second kind by
Kim-Kim. We investigate some properties of these numbers and polynomials. In
addition, we give some new relations between the new type of degenerate Changhee
polynomials of the second kind and the Carlitz’s degenerate Euler polynomials.
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Q, and C,
will denote the ring of p-adic integers, the filed of p-adic rational numbers and the
completion of an algebraic closure of Q,. The p-adic norm | . |, is normalized by
| p |,= %. Let C(Z,) be the space of continuous function on Z,. For f € C(Z,),
the fermionic p-adic integral on Z, is defined by Kim as follows

pN-1

1) = | f@du-s(w) = lim > f@pa(z+pN2,)
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= lim > f(x)(=1), (see [3, 4, 5, 30]) (1.1)

=0
From (1.1), we note that
n—1

I(f)+(=D)" () =2) (=)™ '"f(a), (see [5, 6, 20-24, 33, 28, 9, 33, 30, 31]),

a

I
=)

(1.2)
where f,(x) = f(x 4+ n),(n € N).
Let the Changhee polynomials are defined by the generating function as follows
(see [20, 21])

(1417 ZCh (1.3)

Letting + = 0, Ch,, = Ch,(0),(n > 0) are called the Changhee numbers. From
(1.3), we note that

2+t

2
x4+
/Zp(l+t) dpa(y) = 5o (140 §:(Jh h (1.4)
Thus, by (1.4), we have

/Z (& + Wudpis(y) = Cho(x), (n > 0), (see 34, 38]), (1.5)

where (z)o=1,(x), =z(z—1)---(x —n+1),(n > 1),
As well known, the Euler polynomials are defined by

In the case x = 0, E,, = F,(0) are called the Euler numbers.
By using (1.1) and (1.6), we note that

/ ey (y) =
Zp

By (1.7), we get

’I’L

i (see [7-14, 25-28]). (1.7)

/Z (2 + 9)"dps(y) = Bo(z). (n > 0), (see 20, 21]), (18)
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For n > 0, the Stirling numbers of the first kind are defined by

= Sin, o, (see [1-7, 20-26, 30]). (1.9)
=0

The Stirling numbers of the second kind are defined by
" = ZSQ n,1)(x);, (n > 0), (see [14-19, 29-38)). (1.10)
From (1.3), (1.6), (1.9) and (1.10), we get

ZEZ )51 (n, 1), (1.11)

and
n

Eu(x) =Y Chy(x)Sa(n,1), (see [20, 21]) (1.12)
1=0
For any A € R, degenerate version of the exponential function e3(¢) is defined as
follows (see [18-27])

o n

€T t
eX(t) == (1 + M\t)* = Z(w)n,,\m, (see, [7, 22-65, 12-19, 29-34]) (1.13)

n=0

It follows from (1.13) is limy 0 €%(¢) = e*. Note that e}(t) := ex(t).
For n > 0, the degenerate Stirling numbers of the first kind (see [33]) are defined
by
o (1ogA (141)) ZSM (n, k - (k>0). (1.14)
Note that limy_,o S1a(n, k) = Si(n, k), where S;(n, k) are called the Stirling num-
bers of the first kind.
Kim introduced the degenerate Stirling numbers of the second kind (see [32])
are given by
(e Zsﬂ n, k . (k>0). (1.15)
It is clear that limy o So (1, k) = Sg(n, k), where Sa(n, k) are called the Stirling
numbers of the second.
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The degenerate Euler polynomials are defined by (see [22, 23])

z+y 2 x
14+ M) > du_ = ——(1+ M)
LT = gt

:EZ&M@ﬁ: (1.16)

From (1.16), we note that

/Z (& 1 Y)undiior(y) = Enn(a). (n > 0).

P

Recently, Kim [31] introduced the degenerate Changhee polynomials of the second
kind are defined by

2 :
1+(1+Alog(1+1t))<1+MOg(1H))A

/Z (1+ Mog(1 + 1) du_y(y) =

[e.e] tn
=Y Choa(2)—, (1.17)
0 n:

where A € C, with | A [,< 1.

When z = 0, Ch,,» = Ch, 1(0) are called the degenerate Changhee numbers of
the second kind.

This paper is organized as follows. In sect 2, we study new type of degener-
ate Changhee numbers and polynomials of the second kind and investigate some
properties of these numbers and polynomials. In sect 3, we introduce higher-order
new type of degenerate Changhee polynomials and numbers of the second kind
and we derive their explicit expressions and some other polynomials. Moreover, we
obtain identities involving those polynomials and some other special numbers and
polynomials.

2. New type of degenerate Changhee polynomials of the second kind
In this section, we introduce new type of degenerate Changhee polynomials of
the second and investigate some properties of these polynomials which are derived
from the fermionic p-adic integral on Z,,.
For A € R, the degenerate logarithm function log, (14 ¢), which is the composi-
tional inverse of the degenerate exponential function e, (t) and the motivation for
the definition of degenerate polylogarithm function, as follows (see [36])
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= "1 — t" 1
log,(1+1) IZA" Y n1/>\_ = XZ X (1+0)*—1). (2.1)
n=1 . n=1
Note that
(o] t”
: _ _1\n—17 _
lim log, (1 + ) = 2( 1) =log(1+1).

We start following definition as follows.
For A € C, with | A |,< 1. Now, we define the new type of degenerate Changhee
polynomials of the second kind by

2

Ty A lea L+ )R

[ Aoy (1) F da(o) = 5
Zp

(o) /\ tn
= Chua(x)—. (2.2)
n!
n=0
Note that, limy_o Chpx(x) = Chy(z), (n > 0), (see [20, 21]). We note that
x =0, C’hn \ = Chy, A(0) are called the new type of degenerate Changhee numbers

of the second kind.
Theorem 2.1. Forn > 0, we have

0 = Zsm g (7 ) sty

= Z/Z (@ + Yiadur ()N Sia(n, 1), (2.3)

where (z)ox =1 and (x)pr =z(x —A) -+ (. — (n—1)A) forn > 1.
Proof. Using (2.2), we note that

x—i—y
/Z(1+)\log/\(1+t) = du 1( Z/Z < )dﬂ 1 ))\l(IOgA(Ht))l

_ 2 (; Sia(n,1) /Z p (%)l!dul(y)k’> % (24)

Comparing the coefficients of on both sides of (2.2) and (2.4), we obtain the result
(2.3).
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Theorem 2.2. Forn > 0, we have
Z Chm ,\ SQ )\ n m) (25)

Proof. By replacing ¢ by e () — 1 in (2.2), we get

Z(Jhm M) — D)™ 21 (14 M)>
m! (1 + M) +1
o0 tn
— Z_% En)\(x)a. (2.6)

On the other hand,

Z Chma(z A(t) T )" = Z 6%m,x\(x) Z 52,)\(n,m)i—n!

— Z (Z Chyx(2)S2.0(n m)) i—n' (2.7)

By (2.6) and (2.7), we get the result.
Theorem 2.3. Forn > 0, we have

Chp(z ZZ( ) Yun Sk, ) Chyy_go . (2.8)

k=0 m=0

Proof. From (2.2), we note that

P (1) — = 1+ Aog, (1 + )3
>.C nA®) 1+(1—|—)\10g,\(1+t))( + Alog,(14¢))>




New type of Degenerate Changhee Polynomials of the Second Kind

(Es) (B(Zemem)s)

k=0 \m=0

L (EE Eomsemiin)

k=0 m=0
Therefore, by (2.2) and (2.9), we obtain at the required result.

Theorem 2.4. Forn > 0, we have
- . 2, ifn=0,
Chux(1) + Chpy =
0, if n>1,

Proof. By (1.2), we easily get

fle+Ddp () + | fz)dp(z) = 2f(0).

Zp Zp

Now, equation (2.11) can be written as

/Z (14 Mog, (1 + 1) du_y(z) —|—/Z (1+ Mogy (1 + ) du_y(z) = 2.

P

From (2.2) and (2.12), we have

2 2

(14 Mogy (1 +1))x +

14+ (1+ Alogy(1+1))

From (2.2) and (2.13), we have

o0 n

S~ (Char(1) + Chas) % _ 9.

n=0

In view of (2.14), we complete the proof.

Theorem 2.5. Forn >0, d € N with d = 1(mod 2) we have

ChnA—deZ a m%Sl,,\(n,m).

a=0

1+ (1+ Mogy(1+1))

93

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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Proof. For d € N with d = 1(mod 2), by (1.2), we have

U

-1

[z + d)dp_(z) + : f@)dp(z) =2 ) (=1)"f(a). (2.16)

Zp

e
I
o

Let us take f(z) = (1 + Alog, (1 +t))*. Then by (2.16), we get

d—1
xz 2 a
1+Alog,(14t)) dpu—_q1(x) = —1D)*(14+Xlog, (1+1))*.
(Ao (1) a1 ) = e S (L Ao (140)
(2.17)
d—1
2 )\ da
=) (=1 (14 =dlog, (1 +t))xd.
0 1 (14 Adlog,(1+4)3 - d

By (1.16), we easily get

2 )\ da > a dm
(14 Sdlog,(L+ )38 => B () —(log,(1+1)"
1+ (14 2dlog,(1+1))5 d — T (d) m!
= iE ddmis (n m)ﬁ
- ! mX ~ 1,)\ Y |

o0 n tn’
= Z Z demKSL)\(n,m)) E (2.18)

From (2.17) and (2.18), we note that

o o )
> Gty = [ (1 Mogy(1+6)3dus ()
n=0 ' Z

P

00 n d—1
tn
= m -1)E —. 2.1
> (S S g 219

a=0
Thus, by (2.19), we complete the proof.
Theorem 2.6. Forn > 0, we have

Cha(@+1) + Chup(z) =2 (@)maS1a(n,m). (2.20)

m=0
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Proof. Suppose that
2 . 2(1+ Alog, (1 +¢))x
(14 Alogy (14 1)) 4 ZLEABIL O
1+ (14 Alog, (1 +1¢))x 14 (14 Alog, (1 +t))x
= 2(1 + Alog, (1 +1))>. (2.21)

Thus, by (2.1) and (2.21), we get

t?’L
n!

N (6%%(95 T+ é?bm,\(x))

n=0

n=0

By comparing the coefficients of ¢, we get (2.20).
Theorem 2.7. Forn >0, d € N with d = 1(mod 2), we have

=2 (2 Z(x)m,)\SL)\(n,m)) Z—r: (2.22)

d—1 n
Choa(d) + Chyp =2 (=1)" > (a)maSia(n, m). (2.23)
a=0 m=0

Proof. From (2.2), we have

2
L+ (1+ Aog,(1+1))

2
1+ (1+ Mog, (1 +1)x

>la.

(1+ Alog,(14+t))> +

>

d—1

=2 (=1)%(1+ AMog,(1+1))%, (2.24)

a=0
where d € N with d = 1(mod 2).
By (2.2) and (2.24), we get
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_ 22 —1)° <Z( )m,/\SL,\(n,m)) 2—7:

m=0

n!

(2 ( )m,ASMm,m)) " (2.95)

Therefore, by (2.25), we obtain the result

3. New type of higher-order degenerate Changhee polynomials of the
second kind

In this section, we introduce new type of higher-order degenerate Changhee
polynomials of the second kind which are derived from the multivariate fermionic
p-adic integral on Z,.

For r € N, we define the new type of higher-order degenerate Changhee poly-
nomials of the second kind which are given multivariate fermionic p-adic integral
on Z, as follows:

T4z +FTp
/ / (14 Aogy (1 + 0) 5 du_y(21) - - dps (1)
Zp ZP

T

2 ’ -
(1+(1—|—>\logA(1+t))) (14 Alog,(1+1)) ZCh ) (3.1)

>/

When z = 0, C//%Sl = 6’717(:3\(0) are called the new type of higher-order degenerate
Changhee numbers of the second kind.

Theorem 3.1. Forn >0 and r € N, we have

=3 (T)

Ch,, 5( Z Em /\Sl A(n,m).
m=0
Proof. From (3.1), we note that

z+11+ t+zr
/ / (14 Mog,(1+1)) dp—q(zy) - dp—y(z,)
Zy Zy

_ OOO/ZP.../ZP (w)du_l(xl)---du_l(xr))\m(logA(l+t)))m

m

o0

_ / / (o1 2+ Dt (00) - s () (logy (14 1))

m=
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o0 n tn
= (Z/ / (1 +---—I—$,n~|—93)>\,mdu_1(a:1)---du_l(xr)SL,\(n,m)) l
n=0 \m=0 Zp Zp !

(3.2)
It is easy to show that
ety +tar
[ [ 0™ S b ) dpaen)
Zp ZP
(2 Y (14205 = iE“) () (3.3)
(14 M\)% +1 L A

where E,(er\(as) are the Carlitz’s degenerate Fuler polynomials of order r.
Thus, by (3.3), we get

/ / (1 + 2+ Damdp(z1) - dpy = ET(2), (m > 0). (3.4)
Zp Zp

Therefore, by (3.2), (3.3) and (3.4), we obtain the result.
Theorem 3.2. Forn > 0, we have

ZCh x)S A (n, m).

Proof. By changing ¢ by e)(¢) — 1 in (3.1), we have

ztzy +-Far
/Z /Z (L+X) > du_i(z1) - - dp—q(x,)

S et

m!
m=

n

(Z Ch ) Sy A (n m)) % (3.5)

Therefore, by (3.3) and (3.5), we get the result.
Theorem 3.3. Forn > 0, we have

() " oK) k)
Gz =3 ()i o)
=0
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Proof. From (3.1), we have

- \r n 2 ' x
Z(Jh() ~ | (14 Alog, (1 +1)3
S = 14+ (14 Aogy (1 41))x

>l

- ; k : o1+ 0
1+ (14 Mogy(1+1)% | \ 1+ (1+ Aogy(1+1)) A
- (Sar) (o)
- Z (Z( )Chn l/\é?Lz,\ )(I)> Z—T: (3.6)

In view of (3.5), we complete the proof.

Theorem 3.4. Forn > 0, we have

n k
—(r) +m—-1\__
Chpr = 3.3 (=1)™m! (’” " )2 Sy 5 (k,m)SyA(n, k).

m
k=0 m=0

Proof. By (3.1), we have

2 [+ Alog,(1+1)) -1, -
14 (14 Mog, (1 + )% 2

o0

_ (m>2 m((1+ Alogy (1 +1))

>

>

—ym

- Z(—1)m2—m<r+m )m'ZSu (k,m) logA( +1))*

— i < i(—l)mm! (7‘ + Z — 1)2 "Soa(k,m)S1A(n, k)) f; (3.7)

—0
In view of (3.1) and (3.7), we get the result.
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Theorem 3.5. Forn > 0, we have

/\(r

Chyp(2 ZZ( ) YmaSia(k, m)Ch.

k=0 m=0

Proof. From (3.1), we note that

(r, " 2 ' e
Zch o (1+(1+)\10gA(1+t))) (1+Alog,(1+1))

- (Z @’1%) (Z (3 )toma +t>>m)

_ (Z 3 (Z) (x)mM\SLA(k,m)éﬁg)k,,\) o (3.8)

=0

\'/ 3

Therefore, by (3. 1) and (3.8), we obtain at the required result.
Theorem 3.6. Forn > 0, we have

ZChm)\ )SaA(n,m) ZSQ,,\(n,m)C’hg;)(x).

m=0

Proof. Now, we observe that

z1t-terta

(1+ At)

e
- <(1+At)% —1+1) 1

>

_ - <x1++l‘r+]}
0

JICRPEEE

— m
= i(xl +o T 4T, i SQA(n,m)ﬁ
— ’ n!

n=m
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Z (Z Sox(n,m)(wy + -+ @, + x)m> ;—n' (3.9)

n= m=0

Thus, by (3.5) and (3.9), we get

T4z A+ FTp
/Z /Z (L+A) > dua(zr) -+ dp—a ()

o0

Z (ﬂi Sax(n,m / /Z T+ T+ ) pdp g (x) - -du_l(xT)> ;—n'

n=

— Z (Z Sy x(n,m)Ch{" (z )) ;—n' (3.10)

n=0 \m=0

Therefore, by (3.5) and (3.10), we obtain the result.
Theorem 3.7. Forn > 0, we have

—~(r) n .
Chy(x) = BV (2)S1a(n,m).

m=0

Proof. By replacing t by log, (1 +¢) in (3.3), we have

2 ' s = log, (1 +t))™
S| L+ Mogy (L+)% =D E,(n))\(x)—( %8 ‘ )
L (1 Mogy(1+ ) 2 Fm. il
) N n
=Y EW(2) Y Sialn,m)—
m=0 n=m
B 00 n E(T) g ﬁ .
Z m,A<x> 1,)\(71,, m) nl (3 ].)
n=0 \m=0 :
On the other hand, we have
2 ' ., i
= (14 Xog,(1+1))x = C’h (x)—. (3.12)
14+ (14 Alogy(1+1¢))x — n!

In view of (3.11) and (3.12), we obtain the result.
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Theorem 3.8. Forn > 0, we have

Ch\ (x +y) = ZZ() Y S1(kym)ChL i ().

k=0 m=0

Proof. From (3.1), we have

1+ (14 Mlog,(1

101

ZC’h x—l—ytn' ( 2 ( —i—t))i> (1+)\logA(1+t))%

- (oo chfiﬁlw%) (: () toga1+ t>>M)

Thus, by (3.13), we obtain at the required result.

4. Conclusion

(3.13)

Motivated by the works of Kim-Kim [23], we defined new type of degenerate
Changhee polynomials and numbers of the second kind. We derived their explicit
expressions and some identities involving them. Further, we introduced the higher-
order new type of degenerate Changhee numbers and polynomials of the second
kind and deduced their explicit expressions and some identities related to them.
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