

**A HYBRID ITERATIVE APPROACH FOR SOLVING NONLINEAR
TIME-FRACTIONAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS TO FRACTIONAL REACTION-TRANSPORT
MODELS**

Keerthika V and R. Prahalatha*

Department of Mathematics,
Annapoorana Engineering College,
Salem - 636308, Tamil Nadu, INDIA

E-mail : krt.keerthika@gmail.com

*Department of Mathematics,
Vellalar College for Women,
Erode - 638012, Tamil Nadu, INDIA

E-mail : prahalatha@vcw.ac.in

(Received: May 06, 2025 Accepted: Dec. 14, 2025 Published: Dec. 30, 2025)

Abstract: This paper proposes a novel hybrid iterative method for the numerical solution of nonlinear fractional differential equations (FDEs) in the Liouville-Caputo sense. The methodology integrates the Formable integral transform with a new algorithm based on the Daftardar-Gejji and Jafari iterative method to provide accurate approximations for complex FDEs. The efficacy of the approach is demonstrated through applications to the chemical Schnakenberg model and the coupled one-dimensional time-fractional Keller-Segel chemotaxis model. Numerical results confirm the convergence of fractional-order solutions towards their corresponding integer-order formulations, thereby validating the precision and reliability of the proposed technique. This study contributes significantly to the computational analysis of fractional reaction-transport phenomena and offers novel insights into the dynamic characteristics of nonlinear fractional models.

Keywords and Phrases: Fractional reaction-diffusion model, Chemotaxis, Series solution, Formable integral transform, Iterative technique.