

PARTITION DIMENSION OF EXTENDED ZERO DIVISOR GRAPHS

S. Nithya and V. Prisci*

St. Xavier's College (Autonomous),
Palayamkottai - 627002, Tamil Nadu, INDIA

E-mail : nithyasxc@gmail.com

*Sri Ram Nallamani Yadava College of Arts & Science,
Kodikurichi, Tenkasi - 627804, Tamil Nadu, INDIA

E-mail : priscivictor97@gmail.com

(Received: Aug. 04, 2025 Accepted: Dec. 28, 2025 Published: Dec. 30, 2025)

Abstract: The ordered partition $\Pi = \{S_1, S_2, \dots, S_k\}$ of the vertices of the connected graph G is a resolving partition, if for any vertex $x \in V$ with respect to the partition Π is the vector $\zeta(x|\Pi) = (d(x, S_1), d(x, S_2), \dots, d(x, S_k))$ where $d(x, S_j), 1 \leq j \leq k$ represents the distance between the vertex x and the set S_j , is different for every pair of vertices and is denoted by $pd(G)$. The partition dimension is the minimum of k for which there is a resolving partition. In this paper, we investigate the partition dimension of the extended zero divisor graphs of certain finite commutative rings.

Keywords and Phrases: Partition dimension, Extended zero divisor graph, Ring of integers, Commutative ring.

2020 Mathematics Subject Classification: 13M05, 05C12, 13A70.

1. Introduction

The concept of resolvability and metric dimension was first introduced by Slater in [16]. The development of this concept lead to many application to the arrangement of the fewest possible loran/sonar detecting devices in a network to enable the unique representation of each vertex's position in relation to the devices in the