South East Asian J. of Mathematics and Mathematical Sciences Vol. 21, No. 2 (2025), pp. 43-52

DOI: 10.56827/SEAJMMS.2025.2102.3 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ON THE SPECTRAL CHARACTERISTICS OF SIGNLESS LAPLACIAN MATRIX

Pallabi Bora and Muktarul Rahman*

Department of Mathematics, Cotton University, Guwahati - 781001, Assam, INDIA

E-mail: borapallabi47@gmail.com

*Department of Mathematics, Gauhati University, Guwahati - 781014, Assam, INDIA

E-mail: mrahman23.math@gmail.com

(Received: Jun. 01, 2025 Accepted: Aug. 09, 2025 Published: Aug. 30, 2025)

Abstract: In this paper, we present a comprehensive study on the spectral properties of the signless Laplacian matrix of the maximal graph. Specifically, we characterize the spectral radius of the signless Laplacian matrix of the maximal graph $M(\Gamma(\mathbb{Z}_n))$. Moreover, we study the smallest signless Laplacian eigenvalue of the maximal graph and introduce an interaction with the algebraic connectivity of $M(\Gamma(\mathbb{Z}_n))$ for some definite values of n. Finally, we derive an explicit formula for the Wiener index in terms of signless Laplacian eigenvalues of the graph.

Keywords and Phrases: Signless Laplacian Spectrum, Maximal Graph, Wiener Index.

2020 Mathematics Subject Classification: 05C50, 05C25, 05C75.

1. Introduction

In this paper, we consider only undirected simple graph G(V, E), with vertex set V and edge set E and we denote two vertices v_i and v_j are adjacent by $v_i \sim v_j$. Adjacency matrix of a graph G is defined as $A(G) = (a_{ij})_{n \times n}$, $a_{ij} = 1$ and 0 according as v_i is adjacent to v_j or not. The difference between diagonal matrix D(G),