South East Asian J. of Mathematics and Mathematical Sciences Vol. 21, No. 2 (2025), pp. 25-42

DOI: 10.56827/SEAJMMS.2025.2102.2 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

SPECTRUM OF THE GENERALIZED ZERO-DIVISOR GRAPHS

Krishnat Masalkar, Anita Lande and Anil Khairnar

Department of Mathematics, Abasaheb Garware College, Pune - 411004, Maharashtra, INDIA

E-mail: krishnatmasalkar@gmail.com, anita7783@gmail.com, ask.agc@mespune.in

(Received: Oct. 24, 2024 Accepted: Aug. 26, 2025 Published: Aug. 30, 2025)

Abstract: The generalized zero-divisor graph of a ring R, denoted by $\Gamma'(R)$, is a simple (undirected) graph with a vertex set consisting of all nonzero zero-divisors in R, and two distinct vertices x and y are adjacent if $x^n y = 0$ or $y^n x = 0$, for

some positive integer n. If $R = \prod_{i=1}^{n} R_i$ is a direct product of finite commutative

local rings R_i with $|R_i| = p_i^{\alpha_i}$, then we express $\Gamma'(R)$ as a H-generalized join of a family \mathcal{F} of a complete graph and null graphs, where H is a graph obtained from $\Gamma'(S^k)$ by contraction of edges of all nonzero nilpotents at a single vertex $\mathbf{0}$, and $S = \{0, 1, 2\}$ is a multiplicative submonoid of a ring \mathbb{Z}_4 . Also, we prove that the adjacency spectrum of $\Gamma'(R)$ is $\left\{(-1)^{(\beta-1)}, 0^{(\gamma-3^k+2^k+1)}\right\} \cup \sigma(NA(H))$, where β is the number of nonzero nilpotent elements, γ is the number of non-nilpotent zero-divisors in R and N is a diagonal matrix whose rows (columns) are indexed with vertices $e \in \Gamma'(H)$ with e^{th} diagonal entry is the cardinality of e^{th} graph in the family \mathcal{F} .

Keywords and Phrases: Eigenvalue, generalized zero-divisor graph, complete graph, regular graph, adjacency matrix.

2020 Mathematics Subject Classification: 05C25, 05C50.