South East Asian J. of Mathematics and Mathematical Sciences Vol. 21, No. 1 (2025), pp. 127-134 DOI: 10.56827/SEAJMMS.2025.2101.11 ISSN (Onli

ISSN (Online): 2582-0850 ISSN (Print): 0972-7752

ON *R_L* **TOPOLOGICAL SPACES**

S. Jafari, A. Pigazzini and R. Pinčák*

Mathematical and Physical Science Foundation 4200 Slagelse, DENMARK

E-mail : saeidjafari@topositus.com, pigazzini@topositus.com

*Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice, SLOVAK REPUBLIC

E-mail : pincak@saske.sk

(Received: Jul. 15, 2024 Accepted: Apr. 18, 2025 Published: Apr. 30, 2025)

Abstract: The aim of this paper is to introduce a new separation axiom called R_L and study some of its fundamental properties.

Keywords and Phrases: L-bounded set, R_L -separation axiom, countably compact.

2020 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05.

1. Preliminaries

The notion of R_0 topological space is introduced by Shanin [16] in 1943. Davis [4] rediscovered it independently and studied some properties of this weak separation axiom. Several topologists (e. g. [8], [9], [10], [13]) further investigated properties of R_0 topological spaces and many interesting results have been obtained in various contexts. In the same paper, Davis also introduced the notion of R_1 topological space which are independent of both T_0 and T_1 but strictly weaker than T_2 .

Throughout the paper (X, τ) (or simply X) will always denote a topological space. For a subset A of X, the closure and interior of A in X are denoted by Cl(A) and Int(A), respectively. Recall that a topological space (X, τ) is said to be