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Abstract: For n ≥ 3, let pn denote the nth prime number. Let [ ] denote the floor
or greatest integer function. For a positive integer m, let π2(m) denote the number
of twin primes not exceeding m. The twin prime conjecture states that there are
infinitely many prime numbers p such that p + 2 is also prime. In this paper we
state a conjecture to the effect that given any integer a > 0 there exists an integer
N2(a) such that [

ap2n+1

2(n+ 1)

]
≤ π2

(
p2n+1

)
for all n ≥ N2(a) and prove the conjecture in the case a = 1. This, in turn,
establishes the twin prime conjecture.
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1. Introduction and Main Results
An integer p ≥ 2 is called a prime if its only positive divisors are 1 and p. The

prime numbers form a sequence:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 . . . . (1.1)

Euclid (300 B.C.) considered prime numbers and proved that there are infinitely
many. Prime numbers are odd except 2 and the only consecutive prime numbers


