ON SOME COMBINATORIAL INTERPRETATIONS FOR ROGERS-RAMANUJAN TYPE IDENTITIES

V. Gupta and M. Rana
School of Mathematics, Thapar Institute of Engineering and Technology, Patiala - 147004, Punjab, INDIA
E-mail : vasudhasingla.singla2@gmail.com, mrana@thapar.edu

(Received: Nov. 24, 2022 Accepted: Mar. 12, 2023 Published: Apr. 30, 2023)
Abstract: We implement an advanced technique to provide combinatorial interpretations of some Rogers-Ramanujan type identities, also known as sum-product identities. Specifically, we elaborate on the notion of modular Ferrers diagrams to explain these identities in terms of n-color overpartitions. Additionally, we reveal the interdependence between split part n-color partitions, 2 -color F-partitions, and n-color overpartitions.

Keywords and Phrases: Rogers-Ramanujan type identities; n-color overpartitions; Split part n-color partition; 2-color F-partition; Modular Ferrers diagram; Combinatorial interpretation.
2020 Mathematics Subject Classification: 05A17, 19, 11P81, 84.

1. n-color Overpartition

A partition of a positive integer n is a weakly decreasing sequence of positive integers $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{r}=n$. We use $l(\lambda)$ to denote the number of parts in a partition λ and $|\lambda|$ to denote the number being partitioned. As a convention, we consider the number of partitions of 0 to be 1 . Partitions can also be represented graphically by a Ferrers diagram. A Ferrers diagram of a partition $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ of n consist of r rows of left aligned cells, with the $i^{\text {th }}$ row having λ_{i} cells. For example, the partition $\lambda=(6,4,3,1)$ of 14 has the following Ferrers diagram:

