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1. Introduction
One of the important generalizations of the notion of a topological space is

that of Alexandroff space [1] or σ-space or simply space where only countable
union of open sets were taken to be open. The idea of a bitopological space was
introduced by J. C. Kelly [4]in 1963. Later many works on topological properties
were done in the setting of a bitopological space ([8, 9, 11] etc.). In 1968 Y. W
Kim [5] introduced a special type of compactness called K-pairwise compactness
in a bitopological space. The concept of compactness for bitopological space was
also studied by Fletcher, Hoyle and Patty [3] which is known as FHP pairwise
compactness. But the two definitions are not the same.
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Here we have studied the ideas of K-pairwise compactness and FHP pairwise
compactness in a bispace and their mutual relations. We have also investigated
the validity of several results which are very much true in a bitopological space.
Also we have studied the product of bispaces in a similar fashion as that of a
bitopological space and have investigated some of its important properties.

2. Preliminaries

Definition 2.1. [1] A set X is called an Alexandroff space or σ- space or simply
space if it is chosen a system F of subsets of X, satisfying the following axioms
(i)The intersection of countable number sets in F is a set in F .
(ii)The union of finite number of sets from F is a set in F .
(iii)The void set and X is a set in F .

The members of F are called closed sets. A subset of X is called open if its
complement is closed. So one may also rewrite the definition of a space in terms of
open set axioms where the countable union of open sets and finite intersection of
open sets are open together with the condition that X and the void set are open.
We denote the collection of such open sets by P and the space by (X,P). It is
noted that P is not a topology in general as can be seen by taking X = R, the set
of real numbers and τ as the collection of all Fσ sets in R.

Definition 2.2. [1] To every set M we correlate its closure M= the intersection
of all closed sets containing M.

Generally the closure of a set in a σ-space is not a closed set. We denote the
closure of a set M in a space (X,P) by P-cl(M) or cl(M) or simply M when there
is no confusion about P . The idea of limit points, derived set, interior of a set
etc. in a space are similar as in the case of a topological space which have been
thoroughly discussed in [6].

Definition 2.3. [2] Let (X,P) be a space. A family of open sets B is said to form
a base (open) for P if and only if every open set can be expressed as countable
union of members of B.

Theorem 2.1. [2] A collection of subsets B of a set X forms an open base of a
suitable space structure P of X if and only if
1) the null set φ ∈ B
2) X is the countable union of some sets belonging to B.
3) intersection of any two sets belonging to B is expressible as countable union of
some sets belonging to B.

Definition 2.4. [7] Let X be a non-empty set. If P and Q be two collection of
subsets of X such that (X,P) and (X,Q) are two spaces, then X is called a bispace.
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Definition 2.5. [7] A bispace (X,P ,Q) is called pairwise T1 if for any two distinct
points x, y of X, there exist U ∈ P and V ∈ Q such that x ∈ U , y /∈ U and y ∈ V ,
x /∈ V .

Definition 2.6. [7] A bispace (X,P ,Q) is called pairwise Hausdorff if for any two
distinct points x, y of X, there exist U ∈ P and V ∈ Q such that x ∈ U , y ∈ V ,
U ∩ V = φ.

Definition 2.7. [7] In a bispace (X,P ,Q), P is said to be regular with respect to
Q if for any x ∈ X and a P-closed set F not containing x, there exist U ∈ P,
V ∈ Q such that x ∈ U , F ⊂ V , U ∩ V = φ. (X,P ,Q) is said to be pairwise
regular if P and Q are regular with respect to each other.

Definition 2.8. [7] A bispace (X,P ,Q) is said to be pairwise normal if for any
P-closed set F1 and Q-closed set F2 satisfying F1 ∩ F2 = φ, there exist G1 ∈ P,
G2 ∈ Q such that F1 ⊂ G2, F2 ⊂ G1, G1 ∩G2 = φ

Definition 2.9. [2] A function f mapping a bispace (X,P ,Q) into a bispace
(X,P∗,Q∗) is said to be continuous if and only if induced mappings f1 : (X,P) −→
(X,P∗) and f2 : (X,Q) −→ (X,Q∗) are continuous.

3. Pairwise Bicompactness

Definition 3.1. [7] A space ( or a set ) is called bicompact if every open cover of
it has a finite subcover.

Definition 3.2. [7] A cover B of (X,P ,Q) is said to be pairwise open if B ⊂ P∪Q
and B contains at least one nonempty member from each of P and Q.

Definition 3.3. [7] A bispace (X,P ,Q) is said to be FHP pairwise bicompact if
every pairwise open cover of it has a finite subcover.

The idea of K-pairwise compactness was given by Kim [5] in a bitopological
space. Here we use it in a bispace and discuss on some important results.

Definition 3.4. [5] Let (X,P ,Q) be a bispace and A and B be nonempty members
of Q and P respectively. Now let us define

P(A) = {∅, X} ∪ {U ∪ A : U ∈ P}

Q(B) = {∅, X} ∪ {V ∪B : V ∈ Q}

It is easy to verify that (X,P(A)) and (X,Q(B)) are spaces.
The bispace (X,P ,Q) is said to be K-pairwise bicompact if (X,P(A)) and

(X,Q(B)) are bicompact for every non-empty members A and B of Q and P re-
spectively.
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Example 3.1. Let X = R, the set of real numbers. We now consider the collec-
tions P and Q of subsets of X as follows:
P = {φ,X}∪{countable sub sets of irrational numbers}, Q = {φ,X}∪{countable
sub sets of X}. Clearly (X,P ,Q) is a bispace. It is easy to examine that (X,P(A))
and (X,Q(B)) are spaces which are not topological spaces for any non-empty mem-
bers A(6= X) and B(6= X) of Q and P respectively.

Theorem 3.1. A bispace (X,P ,Q) is K-pairwise bicompact if and only if each P-
closed set C(6= X) is Q-bicompact and each Q-closed set E(6= X) is P-bicompact.
Proof. First suppose that (X,P ,Q) is K-pairwise bicompact. Since C(6= X) is
P-closed set, X \ C is P-open. So Q(X \ C) = {∅, X} ∪ {V ∪ (X \ C) : V ∈ Q}.
Let B be a Q-open cover of C. Then {V ∪ (X \ C) : V ∈ B} is an Q(X \ C)
open cover for X. Since (X,P ,Q) is K-pairwise bicompact, there exists a finite
sub-cover {V1 ∪ (X \ C), V2 ∪ (X \ C), . . . , Vn ∪ (X \ C)} (say) of this open cover.
So
⋃n
i=1(Vi ∪ (X \ C)) = (

⋃n
i=1 Vi) ∪ (X \ C) = X. Hence we have C ⊂

⋃n
i=1 Vi.

Therefore C is Q-bicompact. Similarly we can show that every Q-closed set is
P-bicompact.

Conversely, let each P-closed set isQ-bicompact andQ-closed set is P-bicompact.
We show that (X,P ,Q) is K-pairwise bicompact. Now let A be a Q-open set
and A 6= ∅. Consider the space (X,P(A)). Since X \ A is Q-closed, it is P-
bicompact. Let {Vi∪A}i∈Λ be a P(A)-open cover for X where Vi ∈ P . So we have⋃
i∈Λ(Vi ∪A) = X i.e., (

⋃
i∈Λ Vi)∪A = X. Therefore X \A ⊂

⋃
i∈Λ Vi. Now X \A

is P-bicompact and {Vi}i∈Λ is a P-open cover for X \ A. So there exists a finite
sub-cover {V1, V2, . . . , Vn}(say) of this open cover. Therefore

⋃n
i=1(Vi∪A) = X. So

we see that (X,P(A)) is bicompact. Similarly we can show (X,Q(B)) is bicompact
for any non-empty P-open set B. Therefore (X,P ,Q) is K-pairwise bicompact.

Note 3.1. It follows that if (X,P ,Q) is FHP pairwise bicompact then each P-
closed set C(6= X) is Q-bicompact and each Q-closed set E(6= X) is P-bicompact.
So it follows from the above theorem that if (X,P ,Q) is FHP pairwise bicompact
then it is K-pairwise bicompact. But the converse may not be true as shown in the
following example.

Example 3.2. Example of a K-pairwise bicompact bispace which is not FHP
pairwise bicompact.
Let X = the set of all irrational numbers. Let P = {X, ∅, countable subsets
of negative irrational numbers}, Q = {X, ∅, countable subsets of positive irra-
tional numbers}. Now consider the bispace (X,P ,Q). We see that (X,P ,Q) is
K-pairwise bicompact as every P-closed set is Q-bicompact and every Q-closed set
is P-bicompact. But (X,P ,Q) is not FHP pairwise bicompact because the pair-
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wise open cover {{x} : x ∈ R} of X has no finite subcover.

Definition 3.5. [8] Two non empty subsets A and B in (X,P ,Q) are said to be
pairwise separated if there exists a P-open set U and a Q-open set V such that
A ⊂ U and B ⊂ V and A ∩ V = B ∩ U = φ or there exists a Q-open set U and a
P-open set V such that A ⊂ U and B ⊂ V and A ∩ V = B ∩ U = φ.

Definition 3.6. [8] A bispace (X,P ,Q) is said to be connected if and only if X
can not be expressed as the union of two non empty pairwise separated sets.

Definition 3.7. [11] A bispace (X,P ,Q) is said to be totally disconnected if for
any two distinct points x and y there exists a disconnection X = AB with x ∈ A
and y ∈ B, where A is P-open and B is Q-open.

Theorem 3.2. Let (X,P ,Q) be K-pairwise bicompact and totally disconnected (
hence pairwise Hausdorff ). Then P has a base whose members are Q-closed and
Q has a base whose members are P-closed.
Proof. We show that P has a base whose members are Q-closed. Let x ∈ X and
G be a P-open set containing x. We now find a P-open set B which is Q-closed
such that x ∈ B ⊂ G. Now X \G is a P-closed set. By K-pairwise bicompactness
X \G is Q-bicompact. Since (X,P ,Q) is totally disconnected we can find for each
y ∈ X \ G, a Q-open P-closed set Ey containing y but not containing x. Now
varying the point y over X \G we can obtain a Q-open cover {Ey : y ∈ X \G} of
X \ G. Hence there exists a finite subcover of this open cover {Ey1 , Ey2 , . . . , Eyn}
(say) such that X \ G ⊂

⋃n
i=1{Eyi} = E (say). Since each Eyi is Q-open and

P-closed so also is E. Now let us consider B = X \ E. It is clear to us that B is
P-open and Q-closed set such that x ∈ B ⊂ G.

We now give the definition of bicompactness in the following alternative way.

Definition 3.8. [11] Let (X,P ,Q) be a bispace. A cover U for X is called PQ-
open cover if U ⊂ P ∪Q.
A bispace (X,P ,Q) is said to be PQ pairwise bicompact if every PQ-open cover
of X has a finite subcover.

Remark 3.1. It is clear immediately that if (X,P ,Q) is pairwise bicompact in
the above sense, it is FHP pairwise bicompact and hence K-pairwise bicompact.
Furthermore it follows that if (X,P ,Q) is pairwise bicompact in the above sense,
then (X,P) and (X,Q) are both bicompact.
If (X,P ,Q) is pairwise Hausdorff and (X,P) and (X,Q) are bicompact, we can
say from the example 5 of Lahiri and Das [7] that it may not imply P = Q in
a bispace. In our next theorem we give an additional condition on (X,P ,Q) for
which it would imply P = Q.
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Theorem 3.3. Let the bispace (X,P ,Q) be pairwise Hausdorff and (X,P) and
(X,Q) be bicompact. Also suppose that (X,P ,Q) has the property that every P-
open set is Q-bicompact and Q-open set is P-bicompact. Then P = Q.
Proof. Suppose P is not a subset of Q and U be a P-open set which is not Q-
open. Since (X,P) is bicompact X \ U is P-bicompact. Now we claim that there
exists a point p ∈ U which is a Q-limit point of X \ U . For, if we suppose there
does not exist any such point then for every point x ∈ U there is a Q-open set Vx
such that Vx ∩ (X \ U) = ∅. Now consider the collection B = {Vx : x ∈ U and
Vx∩(X \U) = ∅}. Then it is clear that B is a Q-open cover for U and since U is Q-
bicompact, there exists a finite sub-cover say Vx1 , Vx2 , . . . , Vxn . Now U =

⋃n
i=1 Vxi .

Hence U becomes a Q-open set, which is a contradiction to our supposition.

Since (X,P ,Q) is pairwise Hausdorff, for each x ∈ X \ U there is a P-open
set Ux and Q-open set Wx such that x ∈ Ux, p ∈ Wx and Ux ∩ Wx = ∅. Now
U = {Ux : x ∈ X \U} is a P-open cover of X \U . So there exists a finite subcover
of this P-open cover say Ux1 , Ux2 , . . . , Uxn . Let Wx1 ,Wx2 , . . . ,Wxn be corresponding
Q-open sets such that xi ∈ Uxi , p ∈ Wxi and Uxi ∩Wxi = φ i = 1, 2, 3, . . . , n. Now
W =

⋂n
i=1 Wxi is Q-open, p ∈ W and W ∩ (X \ U) = ∅. But this is impossible

because p is a Q-limit point of X \U . Therefore P ⊂ Q. Similarly we have Q ⊂ P .
Hence P = Q.

Definition 3.9. [7] A space (X,P) is called locally bicompact if each point x ∈ X
has a bicompact neighborhood.

The one point compactification of a space can be done in a similar fashion given
bellow as in the case of a topological space.

Theorem 3.4. Let (X, P) be a space and X∗ = X ∪{∞}, where ∞ is an element
not belonging to X. Now consider the collection T of subsets of X∗ as follows:
U ∈ T if and only if i) U ∩X ∈ P and
ii)Whenever ∞ ∈ U , (X \ U) is bicompact in (X,P).
Then clearly (X∗, T ) is a space and (X∗, T ) is Hausdorff if and only if (X, P) is
locally bicompact Hausdorff space.

The proof is parallel as in the case of a topological space and so is omitted.

Definition 3.10. A bispace (X,P ,Q) is said to be embedded as a subspace in a
bispace (X∗,P∗,Q∗) if (X,P ,Q) is homeomorphic to a subspace of (X∗,P∗,Q∗).

Theorem 3.5. Every bispace (X,P ,Q) can be embedded as a subspace in a PQ
pairwise bicompact bispace (X∞,P∞,Q∞) where X∞ = X ∪ {∞},∞ /∈ X and P∞
and Q∞ are defined as follows:
U ∈ P∞ if (i) U ∈ P
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or (ii) U = V ∪ {∞}, X \ V is bicompact and P-closed.
Similarly for Q∞.

The proof is similar as in the case of a bitopological space [11] and so is omitted.

4. Product Bispaces

Let (X,P) be a space. A family of subsets S of X is said to form a subbase of
a space structure P if the collection of subsets obtained as the intersection of all
finite sub-collections of S constitute a base for P .

A collection of subsets S of a given set X forms a subbase of a suitable space
structure of X if and only if
1)either φ ∈ S or φ is the intersection of a finite number of subsets belonging to S.
2) X is the countable union of subsets belonging to S.
Let {(Xi,Pi) : i ∈ I} be a family of spaces and let X denote the Cartesian product
of sets Xi, i ∈ I. Let S be a family of subsets of X defined by
S =

{
p−1
i (Ui) : Ui ∈ Pi, i ∈ I

}
where pi : X −→ Xi is the i-th projection mapping

for each i ∈ I. Then as in the case of a topological space it can be easily checked
that S forms a sub base of a space structure P on X. The space (X,P) is called
the product space of the given family of spaces.

Let {(Xi,Pi,Qi)} be any family of bispaces. We construct two spaces (
∏
Xi,P)

and (
∏
Xi,Q), where (

∏
Xi,P) is the Cartesian product of spaces (Xi,Pi)’s de-

termined by the subbase generated by the family of all sets of the form p−1
i (G),

where i is any index and G ∈ Pi , pi is the i-th projection mapping.

Similarly (
∏
Xi,Q) is the Cartesian product of spaces (Xi,Qi)’s. The bispace

(
∏
Xi,P ,Q) is called the product bispace generated by the family of bispaces

{(Xi,Pi,Qi)}.
Theorem 4.1. Let {(Xi,Pi,Qi)} be an arbitrary family of nonempty bispaces.
Then for each fixed i, the projection map pk : (

∏
Xi,P ,Q) −→ (Xk,Pk,Qk) is a

continuous surjection.
Proof. Let SP and SQ be the subbases for P and Q respectively. Since p−1

k (Uk) ∈
SP , for each Uk ∈ Pk and p−1

k (Vk) ∈ SQ, for each Vk ∈ Qk, the proof follows directly
from definition of continuous function.

Theorem 4.2. Let {(Xi,Pi,Qi)} be any nonempty family of bispaces and let

f : (Y, τ1, τ2) −→ (
∏

Xi,P ,Q)

be any map from an arbitrary bispace (Y, τ1, τ2) to the product bispace (
∏
Xi,P ,Q).

Then f is continuous if and only if pkof is continuous for each index k.
Proof. First suppose f is continuous. Now since composition of two continuous
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functions is again continuous so it is obvious that pkof is continuous.
Conversely, suppose pkof : (Y, τ1, τ2) −→ (Xk,Pk,Qk) is continuous. So the

induced functions pkof1 : (Y, τ1) −→ (Xk,Pk) and pkof2 : (Y, τ2) −→ (Xk,Qk) are
continuous. We shall show that f is continuous. Now consider the induced function
f1 : (Y, τ1) −→ (

∏
Xi,P) and recall that a subbase of the product space (

∏
Xi,P)

is defined by B = {p−1
k (Gα) : k ∈ Λ, Gα ∈ Pk}.

Now if B ∈ B, f−1
1 (B) = f−1

1 [p−1
k (Gα)] = f−1

1 op−1
k (Gα) = (pkof1)−1(Gα), where

Gα ∈ Pk. Hence f−1
1 (B) is open as pkof1 is continuous. Similarly we can show

f2 : (Y, τ2) −→ (
∏
Xi,Q) is continuous. Therefore f : (Y, τ1, τ2) −→ (

∏
Xi,P ,Q)

is continuous.

Corollary: Let (Y, τ1, τ2) be any given bispace and let {(Xi,Pi,Qi)} be any fam-
ily of bispaces. Suppose for each i there is a map fi : (Y, τ1, τ2) −→ (Xi,Pi,Qi).
Then f is continuous if and only if each fi is continuous where f : (Y, τ1, τ2) −→
(
∏
Xi,P ,Q) is defined by f(y) = {fi(y)}.

Proof. We see that for all y ∈ Y , (piof)(y) = fi(y). Therefore piof ≡ fi. So by
the above theorem the result follows.

Theorem 4.3. Let {(Xi,Pi,Qi)} be a family of nonempty bispaces. Then (
∏
Xi,

P ,Q) is pairwise Hausdorff if and only if (Xi,Pi,Qi) is pairwise Hausdorff for
each i.
The proof is parallel as in the case of a bitopological space [11] and so is omitted.

Theorem 4.4. If {(Xi,Pi,Qi)} is a family of nonempty bispaces such that (
∏
Xi,

P ,Q) is K- pairwise bicompact, then each (Xi,Pi,Qi) is K- pairwise bicompact.
Proof. The projection map pk : (

∏
Xi,P ,Q) −→ (Xk,Pk,Qk) is a continuous

surjection. Let (
∏
Xi,P ,Q) be K- pairwise bicompact. Now consider a Pk-closed

set G in (Xk,Pk,Qk). Therefore Xk \G is Pk-open set. Now p−1
k (Xk \G) =

∏
Xi \

p−1
k (G). Therefore p−1

k (G) is P-closed and hence Q-bicompact. Now let {Ai} be a
Qk-open cover for G. Then {p−1

k (Ai)} be a Q-open cover for p−1
k (G). Since p−1

k (G)
isQ-bicompact so we have a finite sub-cover {p−1

k (A1), p−1
k (A2), . . . , p−1

k (An)} (say).
Therefore p−1

k (G) ⊂
⋃n
i=1 p

−1
k (Ai). Now A1, A2 . . . , An becomes a finite subcover

for G. Hence G is Qk-bicompact.
Similarly in (Xk,Pk,Qk) we can show every Qk-closed set is Pk-bicompact. Hence
(Xk,Pk,Qk) is K- pairwise bicompact.

Theorem 4.5. If {(Xi,Pi,Qi)} is a family of nonempty bispaces such that (
∏
Xi,

P ,Q) is FHP pairwise bicompact, then each (Xi,Pi,Qi) is FHP pairwise bicom-
pact.
The proof is parallel as in the case of a bitopological space [11] and so is omitted.
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