South East Asian J. of Mathematics and Mathematical Sciences Vol. 18, No. 1 (2022), pp. 267-276

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

PAIRWISE BICOMPACTNESS IN BISPACES AND PRODUCT OF BISPACES

Amar Kumar Banerjee and Rahul Mondal*

Department of Mathematics, The University of Burdwan, Golapbag, Burdwan - 713104, West Bengal, INDIA

E-mail: akbanerjee@math.buruniv.ac.in

*Vivekananda Satavarshiki Mahavidyalaya, Manikpara, Jhargram - 721513, West Bengal, INDIA

E-mail : imondalrahul@gmail.com

(Received: May 22, 2020 Accepted: Apr. 04, 2022 Published: Apr. 30, 2022)

Abstract: In this paper we have studied the idea of K-pairwise bicompactness and FHP pairwise bicompactness in a bispace. Also we have investigated few results in the product of bispaces.

Keywords and Phrases: σ -space, bispace, FHP pairwise bicompactness, K-pairwise bicompactness, product bispace.

2020 Mathematics Subject Classification: 54A05, 54E55, 54E99.

1. Introduction

One of the important generalizations of the notion of a topological space is that of Alexandroff space [1] or σ -space or simply space where only countable union of open sets were taken to be open. The idea of a bitopological space was introduced by J. C. Kelly [4]in 1963. Later many works on topological properties were done in the setting of a bitopological space ([8, 9, 11] etc.). In 1968 Y. W Kim [5] introduced a special type of compactness called K-pairwise compactness in a bitopological space. The concept of compactness for bitopological space was also studied by Fletcher, Hoyle and Patty [3] which is known as FHP pairwise compactness. But the two definitions are not the same. Here we have studied the ideas of K-pairwise compactness and FHP pairwise compactness in a bispace and their mutual relations. We have also investigated the validity of several results which are very much true in a bitopological space. Also we have studied the product of bispaces in a similar fashion as that of a bitopological space and have investigated some of its important properties.

2. Preliminaries

Definition 2.1. [1] A set X is called an Alexandroff space or σ - space or simply space if it is chosen a system \mathcal{F} of subsets of X, satisfying the following axioms (i) The intersection of countable number sets in \mathcal{F} is a set in \mathcal{F} . (ii) The union of finite number of sets from \mathcal{F} is a set in \mathcal{F} . (iii) The void set and X is a set in \mathcal{F} .

The members of \mathcal{F} are called closed sets. A subset of X is called open if its complement is closed. So one may also rewrite the definition of a space in terms of open set axioms where the countable union of open sets and finite intersection of open sets are open together with the condition that X and the void set are open. We denote the collection of such open sets by \mathcal{P} and the space by (X, \mathcal{P}) . It is noted that \mathcal{P} is not a topology in general as can be seen by taking $X = \mathbb{R}$, the set of real numbers and τ as the collection of all F_{σ} sets in \mathbb{R} .

Definition 2.2. [1] To every set M we correlate its closure \overline{M} = the intersection of all closed sets containing M.

Generally the closure of a set in a σ -space is not a closed set. We denote the closure of a set M in a space (X, \mathcal{P}) by $\mathcal{P}\text{-cl}(M)$ or cl(M) or $\text{simply }\overline{M}$ when there is no confusion about \mathcal{P} . The idea of limit points, derived set, interior of a set etc. in a space are similar as in the case of a topological space which have been thoroughly discussed in [6].

Definition 2.3. [2] Let (X, \mathcal{P}) be a space. A family of open sets B is said to form a base (open) for \mathcal{P} if and only if every open set can be expressed as countable union of members of B.

Theorem 2.1. [2] A collection of subsets B of a set X forms an open base of a suitable space structure \mathcal{P} of X if and only if

1) the null set $\phi \in B$

2) X is the countable union of some sets belonging to B.

3) intersection of any two sets belonging to B is expressible as countable union of some sets belonging to B.

Definition 2.4. [7] Let X be a non-empty set. If \mathcal{P} and \mathcal{Q} be two collection of subsets of X such that (X, \mathcal{P}) and (X, \mathcal{Q}) are two spaces, then X is called a bispace.

Definition 2.5. [7] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is called pairwise T_1 if for any two distinct points x, y of X, there exist $U \in \mathcal{P}$ and $V \in \mathcal{Q}$ such that $x \in U, y \notin U$ and $y \in V$, $x \notin V$.

Definition 2.6. [7] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is called pairwise Hausdorff if for any two distinct points x, y of X, there exist $U \in \mathcal{P}$ and $V \in \mathcal{Q}$ such that $x \in U, y \in V$, $U \cap V = \phi$.

Definition 2.7. [7] In a bispace $(X, \mathcal{P}, \mathcal{Q})$, \mathcal{P} is said to be regular with respect to \mathcal{Q} if for any $x \in X$ and a \mathcal{P} -closed set F not containing x, there exist $U \in \mathcal{P}$, $V \in \mathcal{Q}$ such that $x \in U$, $F \subset V$, $U \cap V = \phi$. $(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise regular if \mathcal{P} and \mathcal{Q} are regular with respect to each other.

Definition 2.8. [7] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise normal if for any \mathcal{P} -closed set F_1 and \mathcal{Q} -closed set F_2 satisfying $F_1 \cap F_2 = \phi$, there exist $G_1 \in \mathcal{P}$, $G_2 \in \mathcal{Q}$ such that $F_1 \subset G_2$, $F_2 \subset G_1$, $G_1 \cap G_2 = \phi$

Definition 2.9. [2] A function f mapping a bispace $(X, \mathcal{P}, \mathcal{Q})$ into a bispace $(X, \mathcal{P}^*, \mathcal{Q}^*)$ is said to be continuous if and only if induced mappings $f_1 : (X, \mathcal{P}) \longrightarrow (X, \mathcal{P}^*)$ and $f_2 : (X, \mathcal{Q}) \longrightarrow (X, \mathcal{Q}^*)$ are continuous.

3. Pairwise Bicompactness

Definition 3.1. [7] A space (or a set) is called bicompact if every open cover of it has a finite subcover.

Definition 3.2. [7] A cover B of $(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise open if $B \subset \mathcal{P} \cup \mathcal{Q}$ and B contains at least one nonempty member from each of \mathcal{P} and \mathcal{Q} .

Definition 3.3. [7] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be FHP pairwise bicompact if every pairwise open cover of it has a finite subcover.

The idea of K-pairwise compactness was given by Kim [5] in a bitopological space. Here we use it in a bispace and discuss on some important results.

Definition 3.4. [5] Let $(X, \mathcal{P}, \mathcal{Q})$ be a bispace and A and B be nonempty members of \mathcal{Q} and \mathcal{P} respectively. Now let us define

$$\mathcal{P}(A) = \{\emptyset, X\} \cup \{U \cup A : U \in \mathcal{P}\}$$
$$\mathcal{Q}(B) = \{\emptyset, X\} \cup \{V \cup B : V \in \mathcal{Q}\}$$

It is easy to verify that $(X, \mathcal{P}(A))$ and $(X, \mathcal{Q}(B))$ are spaces.

The bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be K-pairwise bicompact if $(X, \mathcal{P}(A))$ and $(X, \mathcal{Q}(B))$ are bicompact for every non-empty members A and B of \mathcal{Q} and \mathcal{P} respectively.

Example 3.1. Let $X = \mathbb{R}$, the set of real numbers. We now consider the collections \mathcal{P} and \mathcal{Q} of subsets of X as follows:

 $\mathcal{P} = \{\phi, X\} \cup \{\text{countable sub sets of irrational numbers}\}, \mathcal{Q} = \{\phi, X\} \cup \{\text{countable sub sets of X}\}.$ Clearly $(X, \mathcal{P}, \mathcal{Q})$ is a bispace. It is easy to examine that $(X, \mathcal{P}(A))$ and $(X, \mathcal{Q}(B))$ are spaces which are not topological spaces for any non-empty members $A(\neq X)$ and $B(\neq X)$ of \mathcal{Q} and \mathcal{P} respectively.

Theorem 3.1. A bispace $(X, \mathcal{P}, \mathcal{Q})$ is K-pairwise bicompact if and only if each \mathcal{P} closed set $C(\neq X)$ is \mathcal{Q} -bicompact and each \mathcal{Q} -closed set $E(\neq X)$ is \mathcal{P} -bicompact. **Proof.** First suppose that $(X, \mathcal{P}, \mathcal{Q})$ is K-pairwise bicompact. Since $C(\neq X)$ is \mathcal{P} -closed set, $X \setminus C$ is \mathcal{P} -open. So $Q(X \setminus C) = \{\emptyset, X\} \cup \{V \cup (X \setminus C) : V \in \mathcal{Q}\}$. Let \mathcal{B} be a \mathcal{Q} -open cover of C. Then $\{V \cup (X \setminus C) : V \in \mathcal{B}\}$ is an $\mathcal{Q}(X \setminus C)$ open cover for X. Since $(X, \mathcal{P}, \mathcal{Q})$ is K-pairwise bicompact, there exists a finite sub-cover $\{V_1 \cup (X \setminus C), V_2 \cup (X \setminus C), \ldots, V_n \cup (X \setminus C)\}$ (say) of this open cover. So $\bigcup_{i=1}^n (V_i \cup (X \setminus C)) = (\bigcup_{i=1}^n V_i) \cup (X \setminus C) = X$. Hence we have $C \subset \bigcup_{i=1}^n V_i$. Therefore C is \mathcal{Q} -bicompact. Similarly we can show that every \mathcal{Q} -closed set is \mathcal{P} -bicompact.

Conversely, let each \mathcal{P} -closed set is \mathcal{Q} -bicompact and \mathcal{Q} -closed set is \mathcal{P} -bicompact. We show that $(X, \mathcal{P}, \mathcal{Q})$ is K-pairwise bicompact. Now let A be a \mathcal{Q} -open set and $A \neq \emptyset$. Consider the space $(X, \mathcal{P}(A))$. Since $X \setminus A$ is \mathcal{Q} -closed, it is \mathcal{P} bicompact. Let $\{V_i \cup A\}_{i \in \Lambda}$ be a $\mathcal{P}(A)$ -open cover for X where $V_i \in \mathcal{P}$. So we have $\bigcup_{i \in \Lambda} (V_i \cup A) = X$ i.e., $(\bigcup_{i \in \Lambda} V_i) \cup A = X$. Therefore $X \setminus A \subset \bigcup_{i \in \Lambda} V_i$. Now $X \setminus A$ is \mathcal{P} -bicompact and $\{V_i\}_{i \in \Lambda}$ is a \mathcal{P} -open cover for $X \setminus A$. So there exists a finite sub-cover $\{V_1, V_2, \ldots, V_n\}$ (say) of this open cover. Therefore $\bigcup_{i=1}^n (V_i \cup A) = X$. So we see that $(X, \mathcal{P}(A))$ is bicompact. Similarly we can show $(X, \mathcal{Q}(B))$ is bicompact for any non-empty \mathcal{P} -open set B. Therefore $(X, \mathcal{P}, \mathcal{Q})$ is K-pairwise bicompact.

Note 3.1. It follows that if $(X, \mathcal{P}, \mathcal{Q})$ is FHP pairwise bicompact then each \mathcal{P} closed set $C(\neq X)$ is \mathcal{Q} -bicompact and each \mathcal{Q} -closed set $E(\neq X)$ is \mathcal{P} -bicompact. So it follows from the above theorem that if $(X, \mathcal{P}, \mathcal{Q})$ is FHP pairwise bicompact then it is K-pairwise bicompact. But the converse may not be true as shown in the following example.

Example 3.2. Example of a K-pairwise bicompact bispace which is not FHP pairwise bicompact.

Let X = the set of all irrational numbers. Let $\mathcal{P} = \{X, \emptyset, \text{ countable subsets}$ of negative irrational numbers $\}$, $\mathcal{Q} = \{X, \emptyset, \text{ countable subsets of positive irra$ $tional numbers}\}$. Now consider the bispace $(X, \mathcal{P}, \mathcal{Q})$. We see that $(X, \mathcal{P}, \mathcal{Q})$ is K-pairwise bicompact as every \mathcal{P} -closed set is \mathcal{Q} -bicompact and every \mathcal{Q} -closed set is \mathcal{P} -bicompact. But $(X, \mathcal{P}, \mathcal{Q})$ is not FHP pairwise bicompact because the pairwise open cover $\{\{x\} : x \in \mathbb{R}\}$ of X has no finite subcover.

Definition 3.5. [8] Two non empty subsets A and B in $(X, \mathcal{P}, \mathcal{Q})$ are said to be pairwise separated if there exists a \mathcal{P} -open set U and a \mathcal{Q} -open set V such that $A \subset U$ and $B \subset V$ and $A \cap V = B \cap U = \phi$ or there exists a \mathcal{Q} -open set U and a \mathcal{P} -open set V such that $A \subset U$ and $B \subset V$ and $A \cap V = B \cap U = \phi$.

Definition 3.6. [8] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be connected if and only if X can not be expressed as the union of two non empty pairwise separated sets.

Definition 3.7. [11] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be totally disconnected if for any two distinct points x and y there exists a disconnection X = A|B with $x \in A$ and $y \in B$, where A is \mathcal{P} -open and B is \mathcal{Q} -open.

Theorem 3.2. Let $(X, \mathcal{P}, \mathcal{Q})$ be K-pairwise bicompact and totally disconnected (hence pairwise Hausdorff). Then \mathcal{P} has a base whose members are \mathcal{Q} -closed and \mathcal{Q} has a base whose members are \mathcal{P} -closed.

Proof. We show that \mathcal{P} has a base whose members are \mathcal{Q} -closed. Let $x \in X$ and G be a \mathcal{P} -open set containing x. We now find a \mathcal{P} -open set B which is \mathcal{Q} -closed such that $x \in B \subset G$. Now $X \setminus G$ is a \mathcal{P} -closed set. By K-pairwise bicompactness $X \setminus G$ is \mathcal{Q} -bicompact. Since $(X, \mathcal{P}, \mathcal{Q})$ is totally disconnected we can find for each $y \in X \setminus G$, a \mathcal{Q} -open \mathcal{P} -closed set E_y containing y but not containing x. Now varying the point y over $X \setminus G$ we can obtain a \mathcal{Q} -open cover $\{E_y : y \in X \setminus G\}$ of $X \setminus G$. Hence there exists a finite subcover of this open cover $\{E_{y_1}, E_{y_2}, \ldots, E_{y_n}\}$ (say) such that $X \setminus G \subset \bigcup_{i=1}^n \{E_{y_i}\} = E$ (say). Since each E_{y_i} is \mathcal{Q} -open and \mathcal{P} -closed so also is E. Now let us consider $B = X \setminus E$. It is clear to us that B is \mathcal{P} -open and \mathcal{Q} -closed set such that $x \in B \subset G$.

We now give the definition of bicompactness in the following alternative way.

Definition 3.8. [11] Let $(X, \mathcal{P}, \mathcal{Q})$ be a bispace. A cover \mathcal{U} for X is called \mathcal{PQ} open cover if $\mathcal{U} \subset \mathcal{P} \cup \mathcal{Q}$.

A bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be \mathcal{PQ} pairwise bicompact if every \mathcal{PQ} -open cover of X has a finite subcover.

Remark 3.1. It is clear immediately that if $(X, \mathcal{P}, \mathcal{Q})$ is pairwise bicompact in the above sense, it is FHP pairwise bicompact and hence K-pairwise bicompact. Furthermore it follows that if $(X, \mathcal{P}, \mathcal{Q})$ is pairwise bicompact in the above sense, then (X, \mathcal{P}) and (X, \mathcal{Q}) are both bicompact.

If $(X, \mathcal{P}, \mathcal{Q})$ is pairwise Hausdorff and (X, \mathcal{P}) and (X, \mathcal{Q}) are bicompact, we can say from the example 5 of Lahiri and Das [7] that it may not imply $\mathcal{P} = \mathcal{Q}$ in a bispace. In our next theorem we give an additional condition on $(X, \mathcal{P}, \mathcal{Q})$ for which it would imply $\mathcal{P} = \mathcal{Q}$. **Theorem 3.3.** Let the bispace $(X, \mathcal{P}, \mathcal{Q})$ be pairwise Hausdorff and (X, \mathcal{P}) and (X, \mathcal{Q}) be bicompact. Also suppose that $(X, \mathcal{P}, \mathcal{Q})$ has the property that every \mathcal{P} -open set is \mathcal{Q} -bicompact and \mathcal{Q} -open set is \mathcal{P} -bicompact. Then $\mathcal{P} = \mathcal{Q}$.

Proof. Suppose \mathcal{P} is not a subset of \mathcal{Q} and U be a \mathcal{P} -open set which is not \mathcal{Q} open. Since (X, \mathcal{P}) is bicompact $X \setminus U$ is \mathcal{P} -bicompact. Now we claim that there exists a point $p \in U$ which is a \mathcal{Q} -limit point of $X \setminus U$. For, if we suppose there does not exist any such point then for every point $x \in U$ there is a \mathcal{Q} -open set V_x such that $V_x \cap (X \setminus U) = \emptyset$. Now consider the collection $\mathcal{B} = \{V_x : x \in U \text{ and} V_x \cap (X \setminus U) = \emptyset\}$. Then it is clear that \mathcal{B} is a \mathcal{Q} -open cover for U and since U is \mathcal{Q} bicompact, there exists a finite sub-cover say $V_{x_1}, V_{x_2}, \ldots, V_{x_n}$. Now $U = \bigcup_{i=1}^n V_{x_i}$. Hence U becomes a \mathcal{Q} -open set, which is a contradiction to our supposition.

Since $(X, \mathcal{P}, \mathcal{Q})$ is pairwise Hausdorff, for each $x \in X \setminus U$ there is a \mathcal{P} -open set U_x and \mathcal{Q} -open set W_x such that $x \in U_x$, $p \in W_x$ and $U_x \cap W_x = \emptyset$. Now $\mathcal{U} = \{U_x : x \in X \setminus U\}$ is a \mathcal{P} -open cover of $X \setminus U$. So there exists a finite subcover of this \mathcal{P} -open cover say $U_{x_1}, U_{x_2}, \ldots, U_{x_n}$. Let $W_{x_1}, W_{x_2}, \ldots, W_{x_n}$ be corresponding \mathcal{Q} -open sets such that $x_i \in U_{x_i}, p \in W_{x_i}$ and $U_{x_i} \cap W_{x_i} = \phi \ i = 1, 2, 3, \ldots, n$. Now $W = \bigcap_{i=1}^n W_{x_i}$ is \mathcal{Q} -open, $p \in W$ and $W \cap (X \setminus U) = \emptyset$. But this is impossible because p is a \mathcal{Q} -limit point of $X \setminus U$. Therefore $\mathcal{P} \subset \mathcal{Q}$. Similarly we have $\mathcal{Q} \subset \mathcal{P}$. Hence $\mathcal{P} = \mathcal{Q}$.

Definition 3.9. [7] A space (X, \mathcal{P}) is called locally bicompact if each point $x \in X$ has a bicompact neighborhood.

The one point compactification of a space can be done in a similar fashion given bellow as in the case of a topological space.

Theorem 3.4. Let (X, \mathcal{P}) be a space and $X^* = X \cup \{\infty\}$, where ∞ is an element not belonging to X. Now consider the collection \mathcal{T} of subsets of X^* as follows: $U \in \mathcal{T}$ if and only if i) $U \cap X \in \mathcal{P}$ and

ii) Whenever $\infty \in U$, $(X \setminus U)$ is bicompact in (X, \mathcal{P}) .

Then clearly (X^*, \mathcal{T}) is a space and (X^*, \mathcal{T}) is Hausdorff if and only if (X, \mathcal{P}) is locally bicompact Hausdorff space.

The proof is parallel as in the case of a topological space and so is omitted.

Definition 3.10. A bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be embedded as a subspace in a bispace $(X^*, \mathcal{P}^*, \mathcal{Q}^*)$ if $(X, \mathcal{P}, \mathcal{Q})$ is homeomorphic to a subspace of $(X^*, \mathcal{P}^*, \mathcal{Q}^*)$.

Theorem 3.5. Every bispace $(X, \mathcal{P}, \mathcal{Q})$ can be embedded as a subspace in a $\mathcal{P}\mathcal{Q}$ pairwise bicompact bispace $(X_{\infty}, \mathcal{P}_{\infty}, \mathcal{Q}_{\infty})$ where $X_{\infty} = X \cup \{\infty\}, \infty \notin X$ and \mathcal{P}_{∞} and \mathcal{Q}_{∞} are defined as follows: $U \in \mathcal{P}_{\infty}$ if (i) $U \in \mathcal{P}$ or (ii) $U = V \cup \{\infty\}$, $X \setminus V$ is bicompact and \mathcal{P} -closed. Similarly for \mathcal{Q}_{∞} .

The proof is similar as in the case of a bitopological space [11] and so is omitted.

4. Product Bispaces

Let (X, \mathcal{P}) be a space. A family of subsets S of X is said to form a subbase of a space structure \mathcal{P} if the collection of subsets obtained as the intersection of all finite sub-collections of S constitute a base for \mathcal{P} .

A collection of subsets S of a given set X forms a subbase of a suitable space structure of X if and only if

1)either $\phi \in S$ or ϕ is the intersection of a finite number of subsets belonging to S. 2) X is the countable union of subsets belonging to S.

Let $\{(X_i, \mathcal{P}_i) : i \in I\}$ be a family of spaces and let X denote the Cartesian product of sets $X_i, i \in I$. Let S be a family of subsets of X defined by

 $S = \{p_i^{-1}(U_i) : U_i \in \mathcal{P}_i, i \in I\}$ where $p_i : X \longrightarrow X_i$ is the *i*-th projection mapping for each $i \in I$. Then as in the case of a topological space it can be easily checked that S forms a sub base of a space structure \mathcal{P} on X. The space (X, \mathcal{P}) is called the product space of the given family of spaces.

Let $\{(X_i, \mathcal{P}_i, \mathcal{Q}_i)\}$ be any family of bispaces. We construct two spaces $(\prod X_i, \mathcal{P})$ and $(\prod X_i, \mathcal{Q})$, where $(\prod X_i, \mathcal{P})$ is the Cartesian product of spaces (X_i, \mathcal{P}_i) 's determined by the subbase generated by the family of all sets of the form $p_i^{-1}(G)$, where *i* is any index and $G \in \mathcal{P}_i$, p_i is the *i*-th projection mapping.

Similarly $(\prod X_i, \mathcal{Q})$ is the Cartesian product of spaces (X_i, \mathcal{Q}_i) 's. The bispace $(\prod X_i, \mathcal{P}, \mathcal{Q})$ is called the product bispace generated by the family of bispaces $\{(X_i, \mathcal{P}_i, \mathcal{Q}_i)\}$.

Theorem 4.1. Let $\{(X_i, \mathcal{P}_i, \mathcal{Q}_i)\}$ be an arbitrary family of nonempty bispaces. Then for each fixed *i*, the projection map $p_k : (\prod X_i, \mathcal{P}, \mathcal{Q}) \longrightarrow (X_k, \mathcal{P}_k, \mathcal{Q}_k)$ is a continuous surjection.

Proof. Let $S_{\mathcal{P}}$ and $S_{\mathcal{Q}}$ be the subbases for \mathcal{P} and \mathcal{Q} respectively. Since $p_k^{-1}(U_k) \in S_{\mathcal{P}}$, for each $U_k \in \mathcal{P}_k$ and $p_k^{-1}(V_k) \in S_{\mathcal{Q}}$, for each $V_k \in \mathcal{Q}_k$, the proof follows directly from definition of continuous function.

Theorem 4.2. Let $\{(X_i, \mathcal{P}_i, \mathcal{Q}_i)\}$ be any nonempty family of bispaces and let

$$f: (Y, \tau_1, \tau_2) \longrightarrow (\prod X_i, \mathcal{P}, \mathcal{Q})$$

be any map from an arbitrary bispace (Y, τ_1, τ_2) to the product bispace $(\prod X_i, \mathcal{P}, \mathcal{Q})$. Then f is continuous if and only if p_k of is continuous for each index k.

Proof. First suppose f is continuous. Now since composition of two continuous

functions is again continuous so it is obvious that $p_k of$ is continuous.

Conversely, suppose $p_k of : (Y, \tau_1, \tau_2) \longrightarrow (X_k, \mathcal{P}_k, \mathcal{Q}_k)$ is continuous. So the induced functions $p_k of_1 : (Y, \tau_1) \longrightarrow (X_k, \mathcal{P}_k)$ and $p_k of_2 : (Y, \tau_2) \longrightarrow (X_k, \mathcal{Q}_k)$ are continuous. We shall show that f is continuous. Now consider the induced function $f_1 : (Y, \tau_1) \longrightarrow (\prod X_i, \mathcal{P})$ and recall that a subbase of the product space $(\prod X_i, \mathcal{P})$ is defined by $\mathcal{B} = \{p_k^{-1}(G_\alpha) : k \in \Lambda, G_\alpha \in \mathcal{P}_k\}$. Now if $B \in \mathcal{B}, f_1^{-1}(B) = f_1^{-1}[p_k^{-1}(G_\alpha)] = f_1^{-1}op_k^{-1}(G_\alpha) = (p_k of_1)^{-1}(G_\alpha)$, where

Now if $B \in \mathcal{B}$, $f_1^{-1}(B) = f_1^{-1}[p_k^{-1}(G_\alpha)] = f_1^{-1}op_k^{-1}(G_\alpha) = (p_kof_1)^{-1}(G_\alpha)$, where $G_\alpha \in \mathcal{P}_k$. Hence $f_1^{-1}(B)$ is open as p_kof_1 is continuous. Similarly we can show $f_2: (Y, \tau_2) \longrightarrow (\prod X_i, \mathcal{Q})$ is continuous. Therefore $f: (Y, \tau_1, \tau_2) \longrightarrow (\prod X_i, \mathcal{P}, \mathcal{Q})$ is continuous.

Corollary: Let (Y, τ_1, τ_2) be any given bispace and let $\{(X_i, \mathcal{P}_i, \mathcal{Q}_i)\}$ be any family of bispaces. Suppose for each *i* there is a map $f_i : (Y, \tau_1, \tau_2) \longrightarrow (X_i, \mathcal{P}_i, \mathcal{Q}_i)$. Then *f* is continuous if and only if each f_i is continuous where $f : (Y, \tau_1, \tau_2) \longrightarrow$ $(\prod X_i, \mathcal{P}, \mathcal{Q})$ is defined by $f(y) = \{f_i(y)\}$.

Proof. We see that for all $y \in Y$, $(p_i o f)(y) = f_i(y)$. Therefore $p_i o f \equiv f_i$. So by the above theorem the result follows.

Theorem 4.3. Let $\{(X_i, \mathcal{P}_i, \mathcal{Q}_i)\}$ be a family of nonempty bispaces. Then $(\prod X_i, \mathcal{P}, \mathcal{Q})$ is pairwise Hausdorff if and only if $(X_i, \mathcal{P}_i, \mathcal{Q}_i)$ is pairwise Hausdorff for each *i*.

The proof is parallel as in the case of a bitopological space [11] and so is omitted.

Theorem 4.4. If $\{(X_i, \mathcal{P}_i, \mathcal{Q}_i)\}$ is a family of nonempty bispaces such that $(\prod X_i, \mathcal{P}, \mathcal{Q})$ is K- pairwise bicompact, then each $(X_i, \mathcal{P}_i, \mathcal{Q}_i)$ is K- pairwise bicompact. **Proof.** The projection map $p_k : (\prod X_i, \mathcal{P}, \mathcal{Q}) \longrightarrow (X_k, \mathcal{P}_k, \mathcal{Q}_k)$ is a continuous surjection. Let $(\prod X_i, \mathcal{P}, \mathcal{Q})$ be K- pairwise bicompact. Now consider a \mathcal{P}_k -closed set G in $(X_k, \mathcal{P}_k, \mathcal{Q}_k)$. Therefore $X_k \setminus G$ is \mathcal{P}_k -open set. Now $p_k^{-1}(X_k \setminus G) = \prod X_i \setminus p_k^{-1}(G)$. Therefore $p_k^{-1}(G)$ is \mathcal{P} -closed and hence \mathcal{Q} -bicompact. Now let $\{A_i\}$ be a \mathcal{Q}_k -open cover for G. Then $\{p_k^{-1}(A_i)\}$ be a \mathcal{Q} -open cover for $p_k^{-1}(G)$. Since $p_k^{-1}(G)$ is \mathcal{Q} -bicompact so we have a finite sub-cover $\{p_k^{-1}(A_1), p_k^{-1}(A_2), \ldots, p_k^{-1}(A_n)\}$ (say). Therefore $p_k^{-1}(G) \subset \bigcup_{i=1}^n p_k^{-1}(A_i)$. Now $A_1, A_2 \ldots, A_n$ becomes a finite subcover for G. Hence G is \mathcal{Q}_k -bicompact.

Similarly in $(X_k, \mathcal{P}_k, \mathcal{Q}_k)$ we can show every \mathcal{Q}_k -closed set is \mathcal{P}_k -bicompact. Hence $(X_k, \mathcal{P}_k, \mathcal{Q}_k)$ is K- pairwise bicompact.

Theorem 4.5. If $\{(X_i, \mathcal{P}_i, \mathcal{Q}_i)\}$ is a family of nonempty bispaces such that $(\prod X_i, \mathcal{P}, \mathcal{Q})$ is FHP pairwise bicompact, then each $(X_i, \mathcal{P}_i, \mathcal{Q}_i)$ is FHP pairwise bicompact.

The proof is parallel as in the case of a bitopological space [11] and so is omitted.

References

- Alexandroff A. D., Additive set functions in abstract spaces, (a) Mat. Sb. (N.S), 8:50(1940) 307-348 (English, Russian Summary). (b) ibid, 9:51(1941) 563-628, (English, Russian Summary).
- [2] Banerjee A. K. and Saha P. K., Bispace Group, Int. J. of Math. Sci. and Engg. Appl. (IJMESEA), Vol. 5 No. V (2011), 41-47.
- [3] Fletcher P., Hoyle H. B., and Patty C. W., The comparison of topologies, Duke Math. Journal, 36 (1969), 325-331.
- [4] Kelly J. C., Bitopological spaces, Proc. London Math. Soc., 13 no. 3 (1963), 71-89.
- [5] Kim Yong Woon, Pairwise compactness, Publications Math., 15 (1968), 87-90.
- [6] Lahiri B. K. and Das Pratulananda, Semi-open set in a space, Sains malaysiana, 24(4) (1995), 1-11.
- [7] Lahiri B. K. and Das Pratulananda, Certain bitopological concepts in a bispace, Soochow journal of mathematics, Vol. 27, No. 2 (2001), 175-185.
- [8] Pervin W. J., Connectedness in bitopological spaces, Proceedings of Royl Nederlands academy of sciences'series A, Vol. 70 (1967), 369-372.
- [9] Reilly I. L., On bitopological separation properties, Nanta Mathematica, 5 (1972), 14-25.
- [10] Riberiro H., Serless spaces a metrique faible, Porugaliae Math, 4 (1943), 21-40 and 65-08.
- [11] Swart J., Total disconnectedness in bitopological spaces and product bitopological spaces, Nederl. Akad. Wetenseh., Proe. Ser. A 74, Indag. Math., 33 (1971), 135-145.
- [12] Wilson W. A., On quasi-metric spaces, American J. Math., 53 (1931), 675-84.