ON THE INTEGRAL SOLUTIONS OF BINARY QUADRATIC DIOPHANTINE EQUATION $a x^{2}-b x=c y^{2}$

Ashokan Hari Ganesh and Kumaresan Prabhakaran*
Poompuhar College (Autonomous), Melaiyur - 609107, Nagapattinam (Dt.), Tamil Nadu, INDIA
E-mail : ahariganesh84@gmail.com
*Annai Vailankanni Arts and Science College, Thanjvur - 613007, Tamil Nadu, INDIA
E-mail: kprabu.maths@gmail.com

(Received: Nov. 30, 2020 Accepted: Jun. 13, 2021 Published: Aug. 30, 2021)
Abstract:In this paper, we show that the Diophantine equation $a x^{2}-b x=c y^{2}$ in positive integers x, y, a, b, c has infinitely many solutions where $a c$ is not a square. We transform the above equation into a Pellian equation to find its infinitely many integer solutions only when $a c$ is not a square. Finally, we present some recurrence relations for (x, y).
Keywords and Phrases: Diophantine Equation, Quadratic Equation, Integral Solutions, Pell's Equation, hyperbola.
2020 Mathematics Subject Classification: 11DXX, 11D09.

1. Introduction

The aim of this paper is to find the general solution of non-homogenous Diophantine equation of the form

$$
a x^{2}-b x=c y^{2}
$$

This equation is considered as a more general form of the equation introduced in [19]. Moreover, the equation is a special form of the Diophantine equation

