
South East Asian J. of Math. & Math. Sci. ISSN : 0972-7752
Vol.14, No.1 2018, pp. 115-134

SEMI λ∗-CLOSED SETS AND NEW SEPARATION AXIOMS IN
ALEXANDROFF SPACES

Amar Kumar Banerjee and Jagannath Pal

1Department of Mathematics,
The University of Burdwan, Golapbag,

East Burdwan-713104, West Bengal, INDIA
E-mail: akbanerjee1971@gmail.com, jpalbu1950@gmail.com

(Received: October 13, 2017)

Abstract: Here we have studied the idea of semi λ∗-closed sets and investigate
some of their properties in spaces considered by A. D. Alexandroff [1]. We have
introduced some new separation axioms namely semi-Tω
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and

their inter-relation with semi-T0 and semi-T1. We have shown that under certain
conditions these axioms are equivalent.
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1. Introduction
Topological spaces have been generalised in several ways. By weakening the union
requirements A. D. Alexandroff (1940) [1] generalised the idea of topological space
to a σ-space (or simply space) by taking only countable unions of open sets to
be open. Later many works on generalisation of sets were done in a more general
structure of a bispace [3] and [4]. Also several topological properties were studied
in a bispace in [2] and [5].

The idea of generalised closed sets in a topological space was given by Levine [17]. In
1987, Bhattacharyya and Lahiri [7] introduced the class of semi-generalised closed
sets in a topological space. Many works on semi-generalised closed sets (sg-closed
sets) have been done [15], [18], [21], etc. where more references can be found. By
taking an equivalent form of sg-closed sets, P. Das and Rashid (2004) [13] gave
the idea of a generalisation of semi-closed sets in the σ-spaces called semi g∗-closed
(sg∗-closed in short) sets and studied its various properties. Recently M. S. Sarsak
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(2011) [20] studied gµ-closed sets in a generalised topological space and introduced
new separation axioms namely µ-T 1

4
, µ-T 3

8
and µ-T 1

2
axioms by defining λµ-closed

sets and investigate their properties and relations among the axioms. In [6] the
idea of λ∗-closed sets was given in a space.

In this paper we have studied the idea of semi-generalised closed sets namely sg∗-
closed sets in Alexandroff spaces. We also introduce the idea of semi λ∗-closed sets
in Alexandroff spaces and investigate various properties of these sets and obtain
new separation axioms like semi-Tω

4
, semi-T 3ω

8
and semi-T 5ω

8
axioms in Alexandroff

spaces. Some examples are subtantiated where necessary to enrich it.

2. Preliminaries
Definition 2.1 [1] : A non empty set X is called a σ-space or simply a space if in
it is chosen a system of subsets F satisfying the following axioms:
(1) The intersection of a countable number of sets in F is a set in F .
(2) The union of a finite number of sets in F is a set in F
(3) The void set is a set in F .
(4) The whole set X is a set in F .
Sets of F are called closed sets. Their complementary sets are called open sets.
The collection of all such open sets will sometimes be denoted by τ and the space
by (X, τ). When there is no confusion, the space (X, τ) will simply be denoted by
X. The complement of a set A is denoted by Ac.
Note that a topological space is a space but in general τ is not a topology as can
be easily seen by taking X = R and τ as the collection of all Fσ-sets in R. Several
examples of spaces are seen in [10], [11], [16]. The definition of closure of a set and
interior of a set in a space are similar as in the case of a topological space. Note
that closure of a set in a space may not be closed in general. Also interior of a set
in a space may not be open.
Throughout the paper X stands for a space and sets are always subsets of X un-
less otherwise stated. The letters R and Q stand respectively for the set of real
numbers and the set of rational numbers.

Definition 2.2 [16] : A set A in X is said to be semi-open if there exists an open
set G in X such that G ⊂ A ⊂ G.

Definition 2.3 [14] : A set A in X is said to be semi-closed if and only if X − A
is semi-open.
The class of all semi-open sets and semi-closed sets in X will be respectively de-
noted by s.o. (X) and s.c. (X).
Note that obviously open set is semi-open and closed set is semi-closed.



Semi λ∗-closed Sets and New Separation Axioms in Alexandroff Spaces 117

Definition 2.4 [13] : Two non-void sets A,B in X are said to be semi-separated if
there exist two semi-open sets U, V such that A ⊂ U,B ⊂ V and A∩V = B∩U = ∅.
Definition 2.5 [13] : A space (X, τ) is called semi-T0 if for any two distinct points
x, y of X, there exists a semi-open set U which contains one of the points not the
other.
Observe that a space (X, τ) is semi-T0 if and only if for any pair of distinct points
x, y ∈ X, there is a set A containing one of the points, say x, but not y such that
A is either semi-open or semi-closed.

Definition 2.6 [13] : A space (X, τ) is said to be semi-T1 space if for any two
distinct points x, y ∈ X, there are semi-open sets U, V such that x ∈ U, y 6∈ U, y ∈
V, x 6∈ V .

Definition 2.7 [14] : A point x ∈ X is said to be a semi-limit point of A ⊂ X in a
space (X, τ) if and only if for any semi-open set U containing x, U ∩ (A−{x}) 6= ∅
. The set of all semi-limit points of A is called the semi derived set of A and is
denoted by A′s.

Definition 2.8 [14]: Semi closure of a set A is denoted by As and is defined by
As = A ∪ A′s or equivalently As = ∩{F : F is semi-closed containing A }.
Theorem 2.9 [14] : Countable intersection of semi-closed sets in a space is semi-
closed.
In [13] it is shown that countable union of semi-open sets is semi-open.

3. Semi g∗-closed sets, Semi ∧τ -sets, Semi generalised ∧τ -sets and Semi-
Tω spaces
Definition 3.1 [7] : In a topological space, a subset A is said to be semi-generalised
closed set if and only if scl(A) ⊂ O whenever A ⊂ O and O is semi-open, where
scl(A) denotes the semi-closure of A.

Definition 3.2 [13] : A subset A of X is said to be semi g∗-closed set (sg∗-closed
set in short) if and only if there is a semi-closed set F containing A such that
F ⊂ O whenever A ⊂ O and O is semi-open.

Definition 3.3 [13] : A set A is called semi g∗-open (sg∗-open) if X − A is sg∗-
closed.

Remark 3.4 : Clearly by definition, every semi-closed set is sg∗-closed set, but
the converse may not be true which has been shown by an Example 1 in [13].

Definition 3.5 [13] : For A ⊂ X, the semi-kernel of A denoted by sA∧τ is the set
∩{U : U is semi-open, U ⊃ A}.
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Definition 3.6 : If A ⊂ X, then we define sA∨τ = ∪{F : F is semi-closed, F ⊂ A}.
Theorem 3.7 [13] : A set A is sg∗-closed if and only if there is a semi-closed set
F containing A such that F ⊂ sA∧τ .

Definition 3.8 : A set A in X is called a semi ∧τ -set (s∧τ -set in short) if and only
if A = sA∧τ or equivalently, A is the intersection of all semi-open sets containing A.

Definition 3.9 : A set A in X is called a s∨τ -set if and only if A = sA∨τ or
equivalently, X − A is s∧τ -set i.e. A is the union of all semi-closed sets contained
in A.
It may be noted that semi-open sets may not be open, semi closure of a set may
not be semi-closed, and finite intersection of semi-open sets may not be semi-open.
For the sake of completeness we are giving below some new examples to support
the above assertions.

Example 3.10 : Semi-open set may not be open.
Suppose X = R − Q and τ = {X, ∅, Gi} where {Gi} are the countable subsets of
X each containing

√
3. Then (X, τ) is a space but not a topological space. Then

Gi = X for each i. Now let A be the set of all irrational numbers in (1, 2). Take
B = {

√
2,
√

3}, then B is an open set and B = X. Therefore B ⊂ A ⊂ B. So A is
a semi-open set, but not an open set.

Example 3.11 : Semi closure of a set may not be semi-closed.
Suppose X = R − Q and τ = {X, ∅, Gi} where {Gi} are the countable subsets of
X. Then (X, τ) is a space but not a topological space. Let A be the set of all
irrational numbers in (0,∞). Then As = A. But A is not semi-closed, since X−A,
the set of all irrational numbers in (−∞, 0), is not semi-open.

Example 3.12 : Finite intersection of semi-open sets may not be semi-open.
Suppose X = R − Q and τ = {X, ∅, Gi} where {Gi} are countable subsets
of X − {

√
2}. Then (X, τ) is a space but not a topological space. Let A =

{
√

5,
√

3,
√

2}. Then {
√

5,
√

3} ⊂ A ⊂ {
√

5,
√

3} = {
√

5,
√

3,
√

2} where {
√

5,
√

3}
is an open set. This implies A is semi-open. Similarly the set B = {

√
11,
√

7,
√

2}
is semi-open. But the set A ∩B = {

√
2} is not semi-open.

Theorem 3.13 [13] : A subset A in X is sg∗-closed if and only if there is a
semi-closed set F containing A such that F − A does not contain any non-void
semi-closed set.

Theorem 3.14 (cf. Theorem 10 [13]) : For each x ∈ X, {x} is semi-closed or
X − {x} is sg∗-closed.
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Definition 3.15 : A set A is called a semi generalised ∧τ -set (sg∧τ -set in short)
if sA∧τ ⊂ F whenever F ⊃ A and F is semi-closed.
A set A is called a semi generalised ∨τ -set (sg∨τ -set in short) if X −A is sg∧τ -set.

Theorem 3.16 : For each x ∈ X, {x} is either semi-open or sg∨τ -set.
Proof. Suppose x ∈ X and {x} is not semi-open, then X−{x} is not semi-closed.
Then s(X − {x})∧τ = ∩{U,U is semi-open, U ⊃ (X − {x})} ⊂ X where X is the
only semi-closed set containing X−{x}. Therefore X−{x} is sg∧τ -set and so {x}
is sg∨τ -set.

Lemma 3.17 : Suppose A,B be subsets of X, the following can be easily verified.
(1) s∅∧τ = ∅, s∅∨τ = ∅, sX∧τ = X, sX∨τ = X.
(2) A ⊂ sA∧τ , A ⊃ sA∨τ
(3) s(sA∧τ )∧τ = sA∧τ , s(sA∨τ )∨τ = sA∨τ
(4) If A ⊂ B then sA∧τ ⊂ sB∧τ .
(5) If A ⊂ B then sA∨τ ⊂ sB∨τ .
(6) s(X \ A)∧τ = X \ sA∨τ , s(X \ A)∨τ = X \ sA∧τ .

Theorem 3.18 : If a set A is s∧τ -set, then A is sg∗-closed if and only if A is
semi-closed.
Proof. Let A be s∧τ -set and sg∗-closed set. Then by Theorem 3.7, there exists a
semi-closed set F containing A such that F ⊂ sA∧τ = A i.e. F ⊂ A. So F = A and
so A is semi-closed. On the other hand, a semi-closed set is obviously a sg∗-closed.
Hence the result.
In particular, s(sA∧τ )∧τ = sA∧τ and so sA∧τ is a s∧τ -set. Therefore sA∧τ is sg∗-closed
if and only if sA∧τ is semi-closed.

Theorem 3.19 : If A ⊂ X and sA∧τ is sg∗-closed, then A is sg∗-closed.
Proof. Suppose A ⊂ X and sA∧τ is sg∗-closed, then there exists a semi-closed
set F containing sA∧τ such that F ⊂ s(sA∧τ )∧τ = sA∧τ . Since F ⊃ sA∧τ ⊃ A,A is
sg∗-closed.
But the converse of the above theorem may not be true as shown in the following
example.

Example 3.20 : Suppose that X = R−Q and τ = {X, ∅, Gi, Ai} where {Gi} are
the countable subsets of X containing

√
2, {Ai} are the cocountable subsets of X

also containing
√

2. Then (X, τ) is a space but not a topological space. Let A be
a countably infinite subset of X excluding

√
2. Then A is a closed set, so a semi-

closed set which implies that A is sg∗-closed. Again A is not an open set and also
not a semi-open set since there is no open set contained in A. Now sA∧τ = {

√
2}∪A

which is an open set so a semi-open set. But sA∧τ is not a semi-closed set, since
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√
2 ∈ sA∧τ . Since sA∧τ is a s∧τ -set, sA∧τ is not sg∗-closed, by Theorem 3.18.

Theorem 3.21 : Arbitrary union of s∨τ -sets is a s∨τ -set.
Proof. Suppose Ai are s∨τ -sets, i ∈ I where i is an index set and A = ∪{Ai :
i ∈ I}. So Ai ⊂ A for each i. Therefore sAi∨τ ⊂ sA∨τ for all i ∈ I and so
∪{sAi∨τ : i ∈ I} ⊂ sA∨τ . So, A = ∪{Ai : i ∈ I} = ∪{sAi∨τ : i ∈ I} ⊂ sA∨τ ⊂ A by
Lemma 3.17 (2). Therefore A = sA∨τ .

Theorem 3.22 : Intersection of two s∨τ -sets is a s∨τ -set.
Proof. Let A,B be two s∨τ -sets , then A = sA∨τ , B = sB∨τ . Now A ∩ B ⊂ A
and also A ∩ B ⊂ B. So s(A ∩ B)∨τ ⊂ sA∨τ and s(A ∩ B)∨τ ⊂ sB∨τ . Therefore
s(A ∩B)∨τ ⊂ sA∨τ ∩ sB∨τ ....(1).
On the other hand, suppose that x ∈ sA∨τ ∩ sB∨τ then x ∈ sA∨τ and x ∈ sB∨τ .
So there exist semi-closed sets F, P such that x ∈ F ⊂ A, x ∈ P ⊂ B. There-
fore x ∈ F ∩ P ⊂ A ∩ B. This implies that x ∈ s(A ∩ B)∨τ since F ∩ P is a
semi-closed set. Therefore sA∨τ ∩ sB∨τ ⊂ s(A ∩ B)∨τ .......(2). So by (1) and (2)
s(A ∩B)∨τ = sA∨τ ∩ sB∨τ = A ∩B.

Corollary 3.23 : Let ( X, τ) be a space. Then the collection of all s∨τ -sets forms
a topology.
The proof follows from above two Theorems 3.21 and 3.22 and Lemma 3.17.

Lemma 3.24 : If A,B are two subsets of X, then s(A ∪B)∧τ = sA∧τ ∪ sB∧τ .
Proof. Let A,B be two subsets of X. Then A ⊂ A ∪ B implies that sA∧τ ⊂
s(A∪B)∧τ and B ⊂ A∪B implies that sB∧τ ⊂ s(A∪B)∧τ . Therefore (sA∧τ ∪sB∧τ ) ⊂
s(A ∪ B)∧τ . Again, sA∧τ = ∩{Ui : Ui ⊃ A,Ui is semi-open} and sB∧τ = ∩{Vj : Vj ⊃
B, Vj is semi-open}. Therefore sA∧τ ∪ sB∧τ = ∩{(Ui ∪ Vj) : Ui ⊃ A, Vj ⊃ B;Ui, Vj
are semi-open} ⊃ ∩{G : G ⊃ A ∪ B,G is semi-open }=s(A ∪ B)∧τ . Therefore
sA∧τ ∪ sB∧τ = s(A ∪B)∧τ .
But arbitrary union of s∧τ -sets is not always a s∧τ -set as can be seen from the
example given below.

Example 3.25 : Let X = R − Q and τ = {X, ∅, Gi} where {Gi} be the count-
able subsets of X. Then (X, τ) is a space but not a topological space. Here every
singleton is an open set, so a semi-open set and hence a s∧τ -set. Now the set
A = [1, 2]−Q is not an open set and also not a semi-open set because the closure
of any open set B contained in A is B. Again any set C(6= X) containing A can not
be a semi-open set, since closure of any open set D contained in C is D. Therefore
sA∧τ = X 6= A. So A is not a s∧τ -set. But A = ∪{{r} : r ∈ A} where {r} is
s∧τ -set.

Theorem 3.26 : Intersection of two s∧τ -sets is a s∧τ -set.
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Proof. Let A,B be two s∧τ -sets , then A = sA∧τ , B = sB∧τ . Now A ∩ B ⊂ A
implies s(A ∩ B)∧τ ⊂ sA∧τ and A ∩ B ⊂ B implies s(A ∩ B)∧τ ⊂ sB∧τ . So
s(A ∩ B)∧τ ⊂ sA∧τ ∩ sB∧τ = A ∩ B ⊂ s(A ∩ B)∧τ by Lemma 3.17. Therefore
A ∩B = s(A ∩B)∧τ .The result follows.

Definition 3.27 [13] : A space (X, τ) is said to be a semi-Tω space if and only if
every sg∗-closed set is semi-closed.

Definition 3.28 [13] : A topological spsce is called a semi-T 1
2

space if and only if
every sg-closed set is semi-closed.
It is seen in [13] that semi-T 1

2
axiom lies between semi-T0 and semi-T1 axioms. But

semi-Tω axiom in a space does not have this property as evident from the Example
5 [13].
In Theorem 15 [13], it is shown that every semi-Tω space is semi-T0 space. But the
converse is not true as shown in the Example 5 [13]. Also, in Examples 5 and 6
[13] it has been shown that in general, semi-Tw and semi-T1 axioms in a space are
independent of each other.

Theorem 3.29 [13] : In a space, semi-T1 axiom implies semi-Tω if the condition
(P ): “Arbitrary intersection of closed sets is semi-closed in X” is satisfied.
Next we see some necessary and sufficient conditions for a space to be semi-Tω. For
this we introduce the following definition.

Definition 3.30 [13] : For any E ⊂ X, let E∗s = ∩{A : E ⊂ A, A is sg∗-closed set
in X}, then E∗s is called sg∗-closure of the set E.
We denote the following sets as B and B′ which will be used frequently in the
sequel.
(i) B = {A : (X − A)s is semi-closed} and
(ii) B′ = {A : (X − A)∗s is sg∗-closed}.
Theorem 3.31 [13] : A space (X, τ) is semi-Tω if and only if
(a) for each x ∈ X, {x} is either semi-open or semi-closed and
(b) B = B′
where B = {A : (X − A)s is semi-closed} and B′ = {A : (X − A)∗s is sg∗-closed}.
4. Semi λ∗-closed sets and Semi λ∗-open sets in space
Definition 4.1 : A subset A of a space (X, τ) is said to be semi λ∗-closed (sλ∗-
closed in short) if A = K ∩ P s where K is a s∧τ -set and P is a subset of X.

Definition 4.2 : A subset A of a space (X, τ) is said to be semi λ∗-open (sλ∗-open
in short) if X − A is sλ∗-closed.

Definition 4.3 : The semi-interior of a set A in X is defined as the union of all
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semi-open sets contained in A and is denoted by sInt(A).

Theorem 4.4 : Suppose A ⊂ X, then X − (X − A)s = sInt(A).
Proof. Suppose G be any semi-open set and G ⊂ A. Then X − G ⊃ X − A
implies (X −G)s ⊃ (X − A)s which implies that X − G ⊃ (X − A)s. Therefore,

G ⊂ X − (X − A)s which implies that sInt(A) ⊂ X − (X − A)s.

Conversely, (X − A)s = ∩{P ;P is semi-closed, P ⊃ (X−A)}. So X− (X − A)s =
∪{V ;V is semi-open, V ⊂ A}. Each semi-open set V of the collection {V = P c : V
is semi-open,V ⊂ A} is contained in sInt(A). Hence X − (X − A)s ⊂ sInt(A).

Therefore, X − (X − A)s = sInt(A).

Lemma 4.5 : Let A be a subset of a space (X, τ), then As = As.

Proof. Since A ⊂ As then As ⊂ As. Now As = ∩i∈Λ{Vi;Vi’s are semi-closed
and Vi ⊃ As}. Again, As = ∩j∈Λ′{Uj;Uj’s are semi-closed and Uj ⊃ A}. The
sets Uj, j ∈ Λ′ also contain As i.e. Uj ⊃ As, j ∈ Λ′. Therefore the collection

{Uj, j ∈ Λ′} ⊂ {Vi, i ∈ Λ} and so ∩j∈Λ′Uj ⊃ ∩i∈ΛVi implies As ⊃ As. Hence

As = As.

Theorem 4.6 : For a subset A of a space (X, τ) the following are equivalent:
(i) A is sλ∗-closed
(ii) A = sA∧τ ∩ P s, P ⊂ X.
(iii) A = K ∩ As, K is a s∧τ -set.
(iv) A = sA∧τ ∩ As.
Proof. (i) ⇐⇒ (ii) : Suppose A is sλ∗-closed, then A = K ∩ P s where K is
a s∧τ -set and P ⊂ X. Since A ⊂ K and A ⊂ P s, sK

∧
τ ⊃ sA∧τ . Therefore

A ⊂ sA∧τ ∩ P s ⊂ sK∧τ ∩ P s = K ∩ P s = A. So A = sA∧τ ∩ P s. Conversely, let
A = sA∧τ ∩ P s, P ⊂ X. Since sA∧τ is a s∧τ -set, then A is sλ∗-closed.
(i) ⇐⇒ (iii) : Suppose A is sλ∗-closed, then A = K ∩ P s where K is a s∧τ -set

and P ⊂ X. Since A ⊂ K and A ⊂ P s implies As ⊂ P s = P s. Therefore
A ⊂ K ∩ As ⊂ K ∩ P s = A. So A = K ∩ As. Conversely, suppose A = K ∩ As
where K is a s∧τ -set and A ⊂ X. Hence A is sλ∗-closed.
(i) ⇐⇒ (iv) : Suppose A is sλ∗-closed, then A = K ∩P s where K is a s∧τ -set and

P ⊂ X. Since K ⊃ A and A ⊂ P s then sK∧τ ⊃ sA∧τ and As ⊂ P s = P s. Therefore
A ⊂ sA∧τ ∩ As ⊂ sK∧τ ∩ P s = K ∩ P s = A. So A = sA∧τ ∩ As. Conversely, let
A = sA∧τ ∩ As where A ⊂ X and sA∧τ is a s∧τ -set. Then A is sλ∗-closed.

Remark 4.7 : From Theorem 4.6 (iv) we can say that a subset A is said to be
sλ∗closed if A can be expressed as the intersection of all semi-open sets and all
semi-closed sets containing it.
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Now we show by citing Examples 4.8 and 4.9 given below that there does not exist
any relation between sg∗-closed sets and sλ∗-closed sets.

Example 4.8 : Example of a sλ∗-closed set which is not sg∗-closed.
Suppose X = R − Q and τ = {X, ∅, Gi} where {Gi} are the countable subsets
of X, each contains

√
3 then (X, τ) is a space but not a topological space. Let

A = {
√

3,
√

7}. Therefore A is an open set so a semi-open set. Then sA∧τ = A and
As = X. Therefore A is sλ∗-closed. Here X is the only semi-closed set containing
A which implies that A is not sg∗-closed.

Example 4.9 : Example of a sg∗-closed set which is not sλ∗-closed.
SupposeX = R−Q, {Gi} are the countable subsets ofX−{

√
3} and τ = {X, ∅, Gi},

then (X, τ) is a space but not a topological space. Let the subset A = X − {
√

3}.
Since {

√
3} is not a semi-open set, X − {

√
3} is not semi-closed. So As = X.

Since closure of any open set B ⊂ A is B ∪ {
√

3}, there is no semi-open set except
X containing A. So sA∧τ = X, hence, sA∧τ ∩ As = X 6= A. Therefore A is not
sλ∗-closed. Again, since X is the only semi-open set containing A,A is sg∗-closed.

Example 4.10 : Example of a finite set which is not sλ∗-closed.
Suppose X = R − Q and τ = {X, ∅, Gi ∪ {

√
3,
√

5}} where {Gi} are the count-
able subsets of X containing {

√
3,
√

5}, then (X, τ) is a space but not a topolog-
ical space. Let A = {

√
3,
√

7}. So A is not a semi-open set because no proper
open set is contained in A. But sA∧τ = A ∪ {

√
5} and As = X. Therefore

sA∧τ ∩ As = (A ∪ {
√

5}) ∩ X = A ∪ {
√

5} 6= A. Hence A is not a sλ∗-closed
set.
Clearly every s∧τ -set is sλ∗-closed and semi-closed set is sλ∗-closed. But the con-
verse may not be true as shown in the following example.

Example 4.11 : Let X = R−Q, τ = {X, ∅, Gi}, where {Gi} are the all countable
subsets of X. So (X, τ) is a space but not a topological space. Let A be the set
of all irrational numbers in (0,∞). Since sA∧τ = X and As = A, A is sλ∗-closed.
But A is not semi-closed because X −A is not semi-open. Also A is not a s∧τ -set
since sA∧τ = X 6= A.

Theorem 4.12 : A space (X, τ) is semi-Tω if and only if every subset of (X, τ) is
sλ∗- closed and B = B′ where B and B′ are collection of sets as in Theorem 3.31.
Proof. Suppose every subset of (X, τ) is sλ∗-closed and B = B′. Let x ∈ X.
We claim that {x} is either semi-open or semi-closed. Suppose {x} is not semi-
open, then X −{x} is not semi-closed. Since X −{x} is also a sλ∗-closed set then
X −{x} = s(X −{x})∧τ ∩ (X − {x})s [by Theorem 4.6 (iv)] = s(X −{x})∧τ ∩X =
s(X−{x})∧τ . Therefore X−{x} is a s∧τ -set. So X−{x} is a semi-open set which
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implies {x} is semi-closed. Then by Theorem 3.31, (X, τ) is semi-Tω space.
Conversely, suppose that (X, τ) is semi-Tω space and A ⊂ X. Then by The-
orem 3.31, every singleton is either semi-open or semi-closed and B = B′. So
for each x ∈ X − A, either {x} ∈ s.o.(X) or (X − {x}) ∈ s.o.(X). Let A1 =
{x : x ∈ X − A, {x} ∈ s.o.(X)}, A2 = {x : x ∈ X − A,X − {x} ∈ s.o.(X)},
K = ∩[X − {x} : x ∈ A2] = X − A2 and P = ∩[X − {x} : x ∈ A1] = X − A1.
Note that K is a s∧τ -set i.e. K = sK∧τ and P = P s.
Now, K ∩ P s = (X −A2)∩ (X −A1) = X − (A1 ∪A2) = X − (X −A) = A. Thus
A is sλ∗-closed.

Remark 4.13 : It is already seen that if a subset A is semi-closed then A is sg∗-
closed and sλ∗-closed .
But the converses of this result may not hold in a space as shown in the Example
1 [13] and in the Example 4.11. However, it is true if the additional condition that
B = B′ holds which is shown in the following Theorem 4.14.

Theorem 4.14 : If A is sg∗-closed and sλ∗-closed and satisfies the condition
B = B′, then A is a semi-closed set.
Proof. Suppose A is sg∗-closed and sλ∗-closed satisfying the condition B = B′.
Since A is sg∗-closed, there is a semi-closed set F containing A such that F ⊂ sA∧τ .
Now A ⊂ F implies As ⊂ F s = F ⊂ sA∧τ . Again since A is sλ∗-closed, A =
sA∧τ ∩ As = As..............(1).
Now A is sg∗-closed , so A∗s = A, therefore (X−A) ∈ B′. Since B = B′, (X−A) ∈ B
which implies As is semi-closed. Therefore from (1) we have A is a semi-closed set.

Remark 4.15 : Union of two sλ∗-closed sets may not be sλ∗-closed set as revealed
in the under noted Example 4.16.

Example 4.16 : Suppose X = R − Q and τ = {X, ∅, Gi} where {Gi} are the
countable subsets of X − {

√
2}. Then (X, τ) is a space, but not a topological

space. Suppose A = X−{
√

2,
√

3,
√

5} and B = X−{
√

2,
√

7,
√

11}. Then X−A
is semi-open set since {

√
3,
√

5} is an open set and {
√

3,
√

5} ⊂ X−A ⊂ {
√

3,
√

5}.
Similarly X − B is also semi-open. Therefore A and B are semi closed sets. Now
sA∧τ ∩ As = A and sB∧τ ∩ Bs = B. So A and B are sλ∗-closed sets. Again take
C = A ∪ B = {X − {

√
2,
√

3,
√

5}} ∪ {X − {
√

2,
√

7,
√

11}} = X − {
√

2}. Since
{
√

2} is not semi-open, X−{
√

2} is not semi-closed. So Cs = X. Since the closure
of any proper open set D contained in C will be D∪{

√
2}, so D ⊂ C 6⊂ D since C

is not countable where as D is countable, this implies X − {
√

2} is not semi-open.
Therefore sC∧τ = X. So Cs ∩ sC∧τ = X 6= C, hence C is not sλ∗-closed set.

Note 4.17 : In view of the Example 4.16, it follows that intersection of two sλ∗-
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open sets may not be sλ∗-open.

Theorem 4.18 : A subset A of X is sλ∗-open if and only if A = N ∪ sInt(H)
where N is a s∨τ -set and H is a subset of X.
Proof. Let A be a sλ∗-open set. Then X − A is a sλ∗-closed set. Then,
X − A = K ∩ P s, where K is a s∧τ -set and P ⊂ X. Therefore, A = (K ∩ Ps)c =
Kc∪(P s)

c = (X−K)∪(X−P s), where X−K is a s∨τ -set and (X−P s) ⊂ X. Take
N = X −K ⊂ A and H = X − P . So P = X −H implies P s = (X −H)s implies

X−(X −H)s = X−P s. So by Theorem 4.4, sInt(H) = X−(X −H)s = X−P s.
Therefore A = N ∪ sInt(H).
Conversely, Suppose A = N ∪ sInt(H), N is a s∨τ -set and H ⊂ X. Therefore
X − A = N c ∩ (sInt(H))c = (X − N) ∩ (X − sInt(H)), where N c = K (say) is
s∧τ -set. Take P = X − H. By Theorem 4.4, X − (X −H)s = sInt(H) implies

(X −H)s = X−sInt(H). Therefore X−A = K∩P s implies X−A is a sλ∗-closed
set and hence A is a sλ∗-open set.

Theorem 4.19 : A subset A of X is sλ∗-open if and only if A = sA∨τ ∪ sInt(A).
Proof. Suppose A is sλ∗-open, Then A = N ∪ sInt(H) where N is a s∨τ -set and
H is a subset of X. Since N ⊂ A then sN∨τ ⊂ sA∨τ and since sInt(H) ⊂ A,
then sInt(sInt(H)) ⊂ sInt(A). So A = N ∪ sInt(H) = sN∨τ ∪ sInt(H) ⊂
sA∨τ ∪ sInt(H) = sA∨τ ∪ sInt(sInt(H)) ⊂ sA∨τ ∪ sInt(A). Again sA∨τ ⊂ A and
sInt(A) ⊂ A then sA∨τ ∪ sInt(A) ⊂ A. Therefore we get A = sA∨τ ∪ sInt(A).
Conversely, suppose A = sA∨τ ∪ sInt(A). Since sA∨τ is a s∨τ -set and A ⊂ X, then
A is sλ∗-open.

Remark 4.20 : Clearly s∨τ -sets are sλ∗-open sets and semi-open sets are sλ∗-
open sets. On the other hand if A is sλ∗-open, sg∗-open, and B = B′ then A is
semi-open.
In [20] it is seen that the collection of all λµ-open sets forms a generalised topology
µ on X, but in view of the Note 4.17, the collection of sλ∗-open sets does not form
a space structure σ on X.

5. Semi-Tω
4

space, Semi-T 3ω
8

space, Semi-T 5ω
8

space

Definition 5.1 : A space (X, τ) is called semi-Tω
4

if for every finite subset P of X
and for every y ∈ X − P , there exists a set Ay containing P and disjoint from {y}
such that Ay is either semi-open or semi-closed.

Theorem 5.2 : A space (X, τ) is semi-Tω
4

if and only if every finite subset of X is
sλ∗-closed.
Proof. Suppose (X, τ) is semi-Tω

4
space and P is a finite subset of X. So for every

y ∈ X −P there is a set Ay containing P and disjoint from {y} such that Ay is ei-
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ther semi-open or semi-closed. Let K be the intersection of all such semi-open sets
Ay and F be the intersection of all such semi-closed sets Ay as y runs over X −P .
Then K = sK∧τ i.e. K is a s∧τ -set and F s = F . Therefore K ∩ F = K ∩ F s = P .
So P is sλ∗-closed.
Conversely, let P be a finite set. So by the condition it is sλ∗-closed. Let y ∈ X−P .
Then P = K ∩P s, by Theorem 4.6 (iii) where K is a s∧τ -set. If y 6∈ P s then there
exists a semi-closed set Ay containing P such that {y} 6⊂ Ay. Again if y ∈ P s, then
y 6∈ K. Then there exists some semi-open set Ay containing K such that y 6∈ Ay
and Ay contains P also. Hence (X, τ) is semi-Tω

4
space.

Theorem 5.3 : A space (X, τ) is semi-T0 if and only if every singleton of X is
sλ∗-closed.
Proof. Let the space (X, τ) be semi-T0 and x ∈ X. Take a point y ∈ X − {x}.
Since (X, τ) is semi-T0, there exists a set Ay containing {x} such that y 6∈ Ay
and Ay is either semi-open or semi-closed. Let K and P be the intersection of all
such semi-open sets Ay and all such semi-closed sets Ay respectively as y runs over
X − {x}. Then P s = P and K = sK∧τ . Therefore {x} = K ∩ P s. This implies
that {x} is a sλ∗-closed set by Definition.
Conversely, let {x} be sλ∗-closed for each x ∈ X. Then {x} = s{x}∧τ ∩ {x}s by

Theorem 4.6 (iv). Suppose y ∈ X−{x}. If y 6∈ {x}s, then there exists a semi-closed

set P containing {x} such that y 6∈ P . If y ∈ {x}s then y 6∈ s{x}∧τ . Therefore there
exists a semi-open set V containing {x} such that y 6∈ V . Hence the space (X, τ)
is semi-T0.

Theorem 5.4 : Every semi-Tω
4

space is a semi-T0 space.
Proof. Suppose the space (X, τ) is semi-Tω

4
and x, y are two distinct points in

X. Since the space is semi-Tω
4
, then for every y ∈ X − {x} there exists a set Ay

containing x for each x such that Ay is either semi-open or semi-closed and y 6∈ Ay.
This implies that (X, τ) is semi-T0 space.

Definition 5.5 : A space(X, τ) is called semi-T 3ω
8

space if for every countable
subset P of X and for every y ∈ X − P , there exists a set Ay containing P and
disjoint from {y} such that Ay is either semi-open or semi-closed.

Theorem 5.6 : A space(X, τ) is semi-T 3ω
8

space if and only if every countable sub-
set of X is sλ∗-closed. Proof is similar to the proof of Theorem 5.2, so is omitted.

Definition 5.7 : A space(X, τ) is called semi-T 5ω
8

space if for any subset P of X

and for every y ∈ X − P , there exists a set Ay containing P and disjoint from {y}
such that Ay is either semi-open or semi-closed.
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Theorem 5.8 : A space(X, τ) is semi-T 5ω
8

space if and only if for every subset E
of X is sλ∗-closed. Proof is parallel to the proof of Theorem 5.2, so is omitted.
Note that semi-T 5ω

8
-space does not imply the condition B = B′ where B and B′ are

as in Theorem 3.31.

Remark 5.9 : It follows from the Theorems 4.12, 5.8, 5.6, 5.2 that every semi-Tω
space is semi-T 5ω

8
space and semi-T 5ω

8
space is semi-T 3ω

8
space and semi-T 3ω

8
space

is semi-Tω
4

space.
However, the converse of each implication may not be true which are substantiated
respectively in the undermentioned examples.

Example 5.10 : Example of a semi-T 5ω
8

space which is not semi-Tω space.

Let X = R − Q, τ = {X, ∅, Gi}, where {Gi} are the all countable subsets of X.
So (X, τ) is a space but not a topological space. Let A be a subset of X. Then
As = A. So sA∧τ ∩As = A. This implies that A is sλ∗-closed. Therefore any subset
of X is sλ∗-closed which in turn (X, τ) is semi-T 5ω

8
space. Now let B be the set of

all irrationals in (0,∞). Then B is sg∗-closed but not semi-closed since X is the
only semi-open set containing B and X − B is not semi-open. This implies the
space is not semi-Tω space.

Example 5.11 : Example of a semi-T 3ω
8

space which is not semi-T 5ω
8

space.

Suppose X = R − Q and τ = {X, ∅, Gi} where {Gi} are all countable subsets of
X−{

√
2}. Then (X, τ) is a space but not a topological space. Take any countable

subset A ⊂ X. Then if
√

2 6∈ A, A is an open set, so A is semi-open which implies
that A is sλ∗-closed. Again if

√
2 ∈ A,A is not open. But since A − {

√
2} is an

open set and (A − {
√

2}) ⊂ A ⊂ A− {
√

2} = A, then A is semi-open. Therefore
in both cases sA∧τ = A. Hence A is sλ∗-closed. So (X, τ) is a semi-T 3ω

8
space.

Now suppose B = X −{
√

2} which is an uncountably infinite subset of X. There-
fore B is not an open set. Since the closure of any proper open set D ⊂ B will be
D ∪ {

√
2} and D ⊂ B 6⊂ D, therefore X − {

√
2} is not semi-open. So sB∧τ = X.

Since {
√

2} is not semi-open, X − {
√

2} is not semi-closed, so Bs = X. Then
sB∧τ ∩ Bs = X 6= B. Therefore B is not sλ∗-closed. So (X, τ) is not semi-T 5ω

8

space.

Example 5.12 : Example of a semi-Tω
4

space which is not semi-T 3ω
8

space.

Suppose X = R − Q,X∗ = {2} ∪ X, τ = {∅, X∗, {2} ∪ (X − A) : A ⊂ X,A is
finite}. Therefore (X∗, τ) is a topological space so a space also. Take any finite
subset E ⊂ X∗, we get the following observations:
(i) if 2 ∈ E, sE∧τ = ∩{(X−{α})∪{2}, α ∈ X−E} = {2}∪E = E. So sE∧τ ∩Es = E
which implies that E is a sλ∗-closed set.
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(ii) if 2 6∈ E,E is a closed set which implies that E is a semi-closed set. Hence E
is sλ∗-closed.
So (X∗, τ) is a semi-Tω

4
space.

Suppose Y is a countably infinite subset of X. So 2 6∈ Y and Y itself is not a
semi-open set. Therefore sY ∧τ = {2} ∪ Y . Y is not a closed set, since Y is not a
finite set. Also X∗ − Y is not semi-open because there is no non-empty open set
contained in X∗ − Y whose closure is non-empty, Y is not itself a semi-closed set.
We will prove now that no semi-closed set is there containing Y except X∗. If a
proper semi-closed set B contains Y , then X∗ − B would be semi-open. But any
open set contained in X∗−B is the null set ∅ whose closure is ∅ which contradicts
the definition of semi-open set. Here closed sets are finite. Therefore Y s = X∗.
Thus Y s ∩ sY ∧τ = [{2} ∪ Y ] ∩X∗ = {2} ∪ Y 6= Y . Therefore Y is not sλ∗-closed.
Hence the result.

Definition 5.13 : A space (X, τ) is said to be semi-R0 if every semi-open set
contains the semi-closure of each of its singleton.

Theorem 5.14 : If (X, τ) is semi-T0 then for every pair of distinct points p, q ∈ X,
either p 6∈ {q}s or q 6∈ {p}s.
Proof. Let (X, τ) be semi-T0 and p, q ∈ X, p 6= q. Since X is semi-T0 space, there
exists a semi-open set U which contains only one of p, q. Suppose that p ∈ U and
q 6∈ U . Then the semi-open set U has an empty intersection with {q}. Hence
p 6∈ {q}′s. Since p 6= q, p 6∈ {q}s. Similarly if U contains the point q then q 6∈ {p}s.
Theorem 5.15 : A space (X, τ) is semi-T1 space if and only if it is semi-T0 and
semi-R0.
Proof. Let (X, τ) be semi-T1 space. Obviously then it is semi-T0. Suppose A
is semi-open and x ∈ A. Let y ∈ X, y 6= x. Since the space is semi-T1, there is
semi-open set V such that y ∈ V and x 6∈ V . Hence y cannot be a semi-limit
point of {x}, rather no point lying outside {x} can be a semi-limit point of {x},
so {x}′s ⊂ {x}. Hence {x}s = {x} ⊂ A. So (X, τ) is semi-R0 space.
Conversely, let (X, τ) be semi-T0 and semi-R0. So for x, y ∈ X and x 6= y, either
x 6∈ {y}s or y 6∈ {x}s, by Theorem 5.14. Suppose x 6∈ {y}s, then there exists a semi-
closed set F containing y such that x 6∈ F . Therefore x ∈ X − F , a semi-open set
and y 6∈ X −F . Since the space is also semi-R0, by definition 5.13, {x}s ⊂ X −F .

So {x}s∩F = ∅ which implies that {x}s∩{y} = ∅. Hence y 6∈ {x}s. As x 6= y and

y 6∈ {x}s, y is not a semi-limit point of {x}. Therefore there exists a semi-open set
V containing y, but x 6∈ V . Since x, y ∈ X and x 6= y, we get two semi-open sets
X − F and V containing x, y respectively and y 6∈ X − F and x 6∈ V . Thus (X, τ)
is semi-T1 space.
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Theorem 5.16 : A space (X, τ) is semi-T1 if and only if every singleton is s∧τ -set.
Proof. Let the space (X, τ) be semi-T1. By Theorem 5.15, (X, τ) is semi-T0 and
semi-R0. Since (X, τ) is semi-T0, every singleton is sλ∗-closed , by Theorem 5.3.
Suppose x ∈ X, then {x} is sλ∗-closed , so {x} = s{x}∧τ ∩ {x}s, by Theorem 4.6

(iv). We claim that {x} = s{x}∧τ . If not, there exists y ∈ s{x}∧τ −{x}. So y 6∈ {x}s
and hence there is a semi-closed set F , F ⊃ {x} such that y 6∈ F . Therefore
y ∈ X − F , a semi-open set. Again since (X, τ) is semi-R0, {y}s ⊂ X − F . Thus

{y}s ∩ F = ∅. Since x ∈ F , then x 6∈ {y}s. Therefore there exists a semi-open set
V containing x but y 6∈ V . This implies that y 6∈ s{x}∧τ , a contradiction. Hence
{x} is a s∧τ -set.
Conversely, let x, y ∈ X and x 6= y. So y 6∈ {x}. By supposition {x} and {y} are
s∧τ -sets. So {x} = s{x}∧τ , therefore y 6∈ s{x}∧τ . So there exists a semi-open set
V ′ such that x ∈ V ′, but y 6∈ V ′. Similarly, since {y} = s{y}∧τ , there exists a
semi-open set U ′ such that y ∈ U ′ and x 6∈ U ′. Hence x, y are semi-separated by
semi-open sets V ′ and U ′ respectively. So (X, τ) is semi-T1space.

Corollary 5.17 : If every subset of X is s∧τ -set then (X, τ) is semi-T1 space.
The proof follows directly from Theorem 5.16.

Note: 5.18 : The converse of the Corollary 5.17 is not true as revealed in the
following Example 5.19. However the converse is true if additional conditions are
imposed as given in Theorem 5.24. Also note that the converse part is true in a
µ-space [20].

Example 5.19 : Let X = R − Q, {Gi} be the all countable subsets of X and τ
= {X, ∅, Gi}. Therefore (X, τ) is a space but not a topological space. Since every
singleton in (X, τ) is s∧τ -set, the space is T1 by Theorem 5.16. Let B be the set
of all irrationals in (0, 1). Then B is not a s∧τ -set as sB∧τ = X 6= B. Hence the
result follows.

Definition 5.20 : A space (X, τ) is said to be semi-symmetric if x, y ∈ X, x ∈
{y}s ⇒ y ∈ {x}s
Definition 5.21 : A space (X, τ) is said to be strongly semi-symmetric if each
singleton in X is sg∗-closed.

Theorem 5.22 : A strongly semi-symmetric space (X, τ) is semi-symmetric.
Proof. Suppose x ∈ {y}s, but y 6∈ {x}s for x, y ∈ X. Then there is a semi-closed
set F ⊃ {x} such that y 6∈ F . So {y} ⊂ F c where F c is semi-open. Since {y} is
sg∗-closed, there is a semi-closed set F ′ ⊃ {y} such that F ′ ⊂ F c. So {y}s ⊂ F ′

and hence x ∈ {y}s ⊂ F ′ ⊂ F c, a contradiction, since x ∈ F . Hence the result.
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But the converse may not be true as shown by the undernoted Example 5.23.

Example 5.23 : Suppose X = R − Q and τ = {X, ∅, Gi} where {Gi} are the
countable subsets of X. So (X, τ) is a space but not a topological space. Suppose
x, y ∈ X. If x 6= y then x ∈ {y}s implies that x is a semi-limit point of {y}. But
{x} is a semi-open set contains x which does not intersect {y}. So x cannot be a
semi-limit point of {y}. So we must have x = y. So in that case y ∈ {x}s. Hence
(X, τ) is semi-symmetric. But for each singleton {x} in X, s{x}∧τ = {x} and {x}
is not semi-closed. So no singleton is sg∗-closed. Hence the result.

Theorem 5.24 : If (X, τ) is a strongly semi-symmetric semi-T1 space and satisfies
the condition B = B′ where B and B′ are as in Theorem 3.31, then every subset of
X is a s∧τ -set.
Proof. Let (X, τ) be a strongly semi-symmetric semi-T1 space satisfying the con-
dition B = B′ and let A ⊂ X. Let x ∈ X−A. Then {x} is sg∗-closed. Since (X, τ)
is semi-T1 space, {x} is a s∧τ -set by Theorem 5.16, so a sλ∗-closed set. Therefore
{x} is a semi-closed set by Theorem 4.14. Therefore X − {x} is a semi-open set
containing A. So sA∧τ = ∩{X −{x}, x ∈ X −A} = A which implies A is a s∧τ -set.

Remark 5.25 : If the space (X, τ) is a strongly semi symmetric semi-T1 space and
satisfies the condition B = B′, then it follows from Theorem 5.24 that union and
intersection of two sλ∗-closed sets are sλ∗-closed sets.

Definition 5.26 : A space (X, τ) is said to be weak semi-R0 space if every sλ∗-
closed singleton is a s∧τ -set.

Theorem 5.27 : Every semi-R0 space is a weak semi-R0 space.
Proof. Let the space be semi-R0 and x ∈ X be such that {x} be sλ∗-closed.
Then {x} = s{x}∧τ ∩ {x}s by Theorem 4.6 (iv). We claim that {x} is a s∧τ -set
i.e. {x} = s{x}∧τ . If not, i.e if {x} 6= s{x}∧τ , then there exists y ∈ s{x}∧τ − {x}.
Therefore y 6∈ {x}s, so there is a semi-closed set F, F ⊃ {x} such that y 6∈ F .
This implies that y ∈ X − F , a semi-open set. Since(X, τ) is semi-R0 space,
{y}s ⊂ X −F . Therefore {y}s ∩F = ∅. Since x ∈ F , x 6∈ {y}s = {y}∪ {y}′s where
{y}′s denotes the set of semi-limit points of {y}. Therefore there exists a semi-open
set V ⊃ {x} but y 6∈ V , since x 6= y and x is not also the semi-limit point of {y} .
This implies that y 6∈ s{x}∧τ , a contradiction. Hence (X, τ) is weak semi-R0 space.

Theorem 5.28 : For a space (X, τ) , the following statements are equivalent:
(1) (X, τ) is semi-T1

(2) (X, τ) is semi-T0 and semi-R0

(3) (X, τ) is semi-T0 and weak semi-R0.
Proof. (1)⇒ (2) follows from Theorem 5.15
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(2)⇒ (3) follows from Theorem 5.27
(3)⇒ (1) : Let (X, τ) be semi-T0 and weak semi-R0 and {x} ⊂ X. So by Theorem
5.3, {x} is sλ∗-closed . Again (X, τ) is weak semi-R0, {x} is s∧τ -set. By Theorem
5.16, (X, τ) is semi-T1.

Theorem 5.29 : If (X, τ) is a strongly semi-symmetric semi-T1 space and satisfies
the condition B = B′, then it is semi-Tω space.
Proof. Let (X, τ) be strongly semi-symmetric semi-T1 space satisfying the con-
dition B = B′ and let A be a sg∗-closed set. Then A∗s = A, so A∗s is sg∗-closed.
Therefore X − A ∈ B′. Since B = B′, so X − A ∈ B which implies that As is
semi-closed. We wish to prove that As = A. If not, let x ∈ As − A. Since (X, τ)
is semi-T1 and strongly semi-symmetric space, {x} is sg∗- closed and sλ∗-closed
and since B = B′, {x} is a semi-closed set by Theorem 4.14. But by Theorem
3.13, {x} 6⊂ As − A. Therefore x ∈ A and so As = A which implies that A is a
semi-closed set and hence (X, τ) is semi-Tω space.

Theorem 5.30 : If the space (X, τ) is strongly semi-symmetric, weak semi-R0,
and satisfies the condition B = B′, then the following are equivalent:
(1) (X, τ) is semi-T0

(2) (X, τ) is semi-T1

(3) (X, τ) is semi-Tω
(4) (X, τ) is semi-T 5ω

8

(5) (X, τ) is semi-T 3ω
8

(6) (X, τ) is semi-Tω
4
.

Proof. (1) ⇒ (2): It follows from Theorem 5.28.
(2) ⇒ (3): It follows from Theorem 5.29.
(3) ⇒ (4): It follows from Theorem 4.12 and Theorem 5.8.
(4) ⇒ (5): It follows from Theorem 5.8 and Theorem 5.6
(5) ⇒(6) : It follows from Theorem 5.6 and Theorem 5.2
(6)⇒ (1): It follows from Theorem 5.4.

Theorem 5.31 : A semi-symmetric semi-T0 space is semi-T1.
Proof. Let (X, τ) be semi-symmetric semi-T0 space and a, b ∈ X, a 6= b. Since
(X, τ) is semi-T0, by Theorem 5.14 either a 6∈ {b}s or b 6∈ {a}s must hold. Let

a 6∈ {b}s . Then b 6∈ {a}s. For if b ∈ {a}s then it would imply a ∈ {b}s, since

(X, τ) is semi-symmetric. But this contradicts that a 6∈ {b}s. Since a 6∈ {b}s, there
is a semi-closed set F such that b ∈ F and a 6∈ F . So a ∈ X − F , a semi-open
set and b 6∈ X − F . Again since b 6∈ {a}s, there is a semi-closed set P such that
a ∈ P and b 6∈ P . So b ∈ X − P , a semi-open set and a 6∈ X − P . So a, b are
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semi-separated by semi-open sets X − F and X − P . Hence (X, τ) is semi-T1.

Corollary 5.32 : If every subset is the intersection of all semi-open sets and
all semi-closed sets containing it, then each singleton is either semi-open or semi-
closed.
Proof. Let x ∈ X but {x} is not semi-open. So X − {x} is not semi-closed.
Since X − {x} ⊂ X, so X − {x} is the intersection of all semi-open sets and semi-
closed sets containing it. Now we see that X is the only semi-closed set containing
X − {x}. But X is also a semi-open set containing X − {x}, so by the condition
X − {x} must be semi-open which in turn {x} is a semi-closed set.

Remark 5.33 : The equivalence of the conditions stated in the Theorem 5.30
can also be deduced in terms of another assumption shown in Theorem 5.34 and
Theorem 5.35.

Theorem 5.34 : If the space (X, τ) is semi-symmetric and satisfies the condition
B = B′, then the following statements are equivalent:
(1) (X, τ) is semi-T0

(2) (X, τ) is semi-T1

(3) (X, τ) is semi-Tω
(4) (X, τ) is semi-T 5ω

8

(5) (X, τ) is semi-T 3ω
8

(6) (X, τ) is semi-Tω
4
.

Proof. (1) ⇒ (2): It follows from Theorem 5.31.
(2) ⇒ (3): It follows from Theorem 5.16, Corollary 5.32 and Theorem 3.31.
(3) ⇒ (4): It follows from Theorem 4.12 and Theorem 5.8.
(4) ⇒ (5): It follows from Theorem 5.8 and Theorem 5.6.
(5) ⇒ (6): It follows from Theorem 5.6 and Theorem 5.2.
(6)⇒ (1): It follows from Theorem 5.4.

Theorem 5.35 : If the space (X, τ) is semi-symmetric and the condition (P) given
in Theorem 3.29 is satisfied, then the following statements are equivalent:
(1) (X, τ) is semi-T0

(2) (X, τ) is semi-T1

(3) (X, τ) is semi-Tω
(4) (X, τ) is semi-T 5ω

8

(5) (X, τ) is semi-T 3ω
8

(6) (X, τ) is semi-Tω
4
.

Proof. (1) ⇒ (2): It follows from Theorem 5.31.
(2) ⇒ (3): It follows from Theorem 3.29.
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(3) ⇒ (4): It follows from Theorem 4.12 and Theorem 5.8.
(4) ⇒ (5): It follows from Theorem 5.8 and Theorem 5.6.
(5) ⇒ (6): It follows from Theorem 5.6 and Theorem 5.2.
(6) ⇒ (1): It follows from Theorem 5.4.
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