SOME BILINEAR GENERATING RELATIONS INVOLVING CLASSICAL HERMITE POLYNOMIALS VIA MEHLER’S FORMULA

Chaudhary Wali Mohd., M.I. Qureshi, Deepak Kumar Kabra* and Shabana Khan

Department of Applied Sciences and Humanities,
Faculty of Engineering and Technology,
Jamia Millia Islamia (A Central University), New Delhi-110025, INDIA.
E-mails: chaudhary.walimohd@gmail.com, miqureshi_delhi@yahoo.co.in,
areenamalik30@gmail.com

*Department of Basic & Applied Sciences,
M. L. V. Textile & Engineering College,
Bhilwara, Rajasthan-311001, INDIA.
E-mail: dkabra20@gmail.com

(Received: August 04, 2017)

Abstract: In this paper, using series decomposition technique in Mehler’s formula, we obtain some bilinear generating relations associated with classical Hermite’s polynomials of even and odd degree.

Keywords and Phrases: Mehler’s formula, Classical Hermite’s polynomials, Decomposition technique.

2010 Mathematics Subject Classification: Primary: 33C45; Secondary: 33C05.

1. Introduction and preliminaries

Throughout in present paper, we use the following standard notations:
\(\mathbb{N} := \{1, 2, 3, \ldots\} \), \(\mathbb{N}_0 := \{0, 1, 2, 3, \ldots\} = \mathbb{N} \cup \{0\} \) and \(\mathbb{Z}^- := \{-1, -2, -3, \ldots\} = \mathbb{Z}_0^- \setminus \{0\} \). Here, as usual, \(\mathbb{Z} \) denotes the set of integers, \(\mathbb{R} \) denotes the set of real numbers, \(\mathbb{R}_+ \) denotes the set of positive real numbers and \(\mathbb{C} \) denotes the set of complex numbers.

The Pochhammer symbol (or the shifted factorial) \((\lambda)_{\nu}\) \((\lambda, \nu \in \mathbb{C})\) is defined, in terms of the familiar Gamma function, by

\[
(\lambda)_{\nu} := \frac{\Gamma(\lambda + \nu)}{\Gamma(\lambda)} = \begin{cases}
1 & (\nu = 0; \lambda \in \mathbb{C} \setminus \{0\}) \\
\lambda(\lambda + 1)\ldots(\lambda + n - 1) & (\nu = n \in \mathbb{N}; \lambda \in \mathbb{C})
\end{cases},
\]

(1.1)