J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 9, No. 1 (2021), pp. 29-46

ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

A STUDY ON GROWTH PROPERTIES OF GENERALISED ITERATED INTEGRAL FUNCTIONS

Dibyendu Banerjee and Sumanta Ghosh*

Department of Mathematics, Visva-Bharati, Santiniketan - 731235, West Bengal, INDIA

E-mail: dibyendu192@rediffmail.com

*Ranaghat P.C. High School, Ranaghat - 741201, Nadia, West Bengal, INDIA

E-mail: sumantarpc@gmail.com

(Received: Sep. 12, 2021 Accepted: Nov. 15, 2021 Published: Dec. 30, 2021)

Abstract: In the present paper we investigate some growth properties of generalised iterated integral functions.

Keywords and Phrases: Integral function, order, iteration

2020 Mathematics Subject Classification: 30D05.

1. Introduction and Definitions

Let f(z) and g(z) be two integral functions. In [3], T(r, f), M(r, f), N(r, a, f), $\delta(a, f)$, $\delta(a(z), f)$, $\log^+ x$ have their usual meanings in the Nevanlinna theory of meromorphic functions.

After that in [2], Clunie studied some comparative growths of T(r, fg) with T(r, f) and T(r, g) and showed that

$$\lim_{r \to \infty} \frac{T\left(r, fg\right)}{T\left(r, f\right)} = \infty \text{ and } \lim_{r \to \infty} \frac{T\left(r, fg\right)}{T\left(r, g\right)} = \infty,$$

where f(z) and g(z) are transcendental integral functions. In [7], Singh proved some comparative growths of $\log T(r, fg)$ and T(r, f). In [4] Lahiri proved some